2016山东公务员行测数量关系技巧之基本工程问题

合集下载

行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧在公务员行测考试中,数量关系一直是让众多考生头疼的一个模块。

但其实,只要我们掌握了常见的题型和有效的答题技巧,就能在这一部分取得不错的成绩。

下面,我将为大家详细介绍行测数量关系中常见的题型以及对应的答题技巧。

一、工程问题工程问题是数量关系中比较常见且容易掌握的一类题型。

其核心公式为:工作总量=工作效率×工作时间。

在解题时,我们通常需要根据题目所给条件,先确定工作总量、工作效率和工作时间这三个量中的已知量和未知量,然后通过设未知数、列方程来求解。

例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。

两人合作需要多少天完成?我们设工作总量为 1(也可以设为甲、乙工作时间的最小公倍数30),那么甲的工作效率就是 1/10,乙的工作效率就是 1/15。

两人合作的工作效率为 1/10 + 1/15 = 1/6,所以两人合作完成这项工程需要的时间为 1÷(1/6) = 6 天。

答题技巧:对于工程问题,当题目中给出的工作时间的数值是具体的量时,我们往往将工作总量设为时间的最小公倍数,这样可以方便计算工作效率。

二、行程问题行程问题也是行测数量关系中的高频考点,主要包括相遇问题、追及问题、流水行船问题等。

相遇问题的核心公式为:相遇路程=速度和×相遇时间;追及问题的核心公式为:追及路程=速度差×追及时间;流水行船问题中,顺水速度=船速+水速,逆水速度=船速水速。

比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇。

A、B 两地相距多远?根据相遇问题的公式,相遇路程=(5 + 3)×2 = 16 千米,即 A、B 两地相距 16 千米。

再如:甲、乙两人同向而行,甲在乙前面 10 千米处,甲的速度为 4 千米/小时,乙的速度为 6 千米/小时,乙多久能追上甲?根据追及问题的公式,追及时间= 10÷(6 4)= 5 小时。

国家公务员行测考试:工程问题介绍及题型分析.doc

国家公务员行测考试:工程问题介绍及题型分析.doc

2016国家公务员行测考试:工程问题介绍及题型分析为了各位考生更好的备战2016国家公务员考试,华图教育根据历年考试经验与习题分析认为工程问题仍然是2016国家公务员考试中常考的问题之一,华图教育撰文介绍工程问题的基础情况以及考查形式,希望各位考生可以举一反三、有所收获。

一、基础知识(一)工程问题的基本数量关系工作总量=工作效率工作时间常考考点:正反比的应用,(1)当工作总量一定时,工作效率与工作时间成反比;(2)当工作效率一定时,工作总量与工作时间成正比;(3)当工作时间一定时,工作总量与工作效率成正比。

2016国家公务员行测考试:工程问题介绍及题型分析(2)2016国家公务员行测考试:工程问题介绍及题型分析(2)(1)当已知工作效率或工作时间的实际值,往往设工作总量为特值,就设工作总量为工作效率或工作时间的最小公倍数即可。

例:一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。

甲、乙、丙三人共同完成该工程需多少天?A.8天B.9天C.10天D.12天解析:设工作总量为30,18,15的最小公倍数=90,则甲的效率为3,甲、乙效率之和为5,乙、丙效率之和为6,从而易知,那么,甲、乙、丙合作的天数=90 (3+6)=10。

故选C。

(2)当已知工作效率的比例关系,就设工作效率为其最简比所代表的实际值。

例:甲乙丙三个工程队完成一项工作的效率比为2:3:4。

某项工程,乙先做了1/3后,余下交由甲与丙合作完成,3天后完成工作。

问完成此项工程共用了多少天?A:6B:7C:7D:9解析:设甲的效率为2,乙的效率为3,丙的效率为4,乙先做了1/3后,则甲丙合作完成剩余的2/3,所代表的实际量=(2+4)*3=18,则1/3所代表的实际量=9,则实际乙自己工作1/3所用时间=9/3=3天,则该工程总计3+3=6天完工。

故选A.2、比例法:正反比的应用。

例:对某工程队修水渠,原计划要18小时完成,改进工作效率后只需12小时就能完成,已知后来每小时比原计划每小时多修8米,问这段水渠共多少米?解析:先后时间之比=18:12=3:2,可得先后效率之比=2:3,则由题意可得1份=8米,2份就是16米,所以水渠共=16 18=288(米)。

行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧在公务员考试的行政职业能力测验(简称行测)中,数量关系一直是让众多考生感到头疼的模块。

但只要我们掌握了常见的题型和有效的答题技巧,就能在考试中轻松应对,提高得分。

一、常见题型1、工程问题工程问题是研究工作效率、工作时间和工作总量之间关系的问题。

通常会给出不同人员或团队完成某项工作的时间,要求计算工作效率或完成工作所需的时间。

例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?答题技巧:工程问题一般采用“设工作总量为1”的方法,然后根据工作效率=工作总量÷工作时间,求出各自的工作效率,再根据合作时间=工作总量÷合作工作效率来计算。

2、行程问题行程问题主要涉及速度、时间和路程之间的关系。

包括相遇问题、追及问题、流水行船问题等。

比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇,A、B 两地相距多远?解题技巧:对于相遇问题,路程=(甲的速度+乙的速度)×相遇时间;追及问题,路程差=(快的速度慢的速度)×追及时间;流水行船问题,顺水速度=船速+水速,逆水速度=船速水速。

3、利润问题利润问题与商品的成本、售价、利润、利润率等有关。

常见的例子:某商品进价为 100 元,按 20%的利润率定价,然后打9 折出售,该商品的利润是多少?答题要点:利润=售价成本,售价=定价×折扣,利润率=利润÷成本×100% 。

4、排列组合问题排列组合问题是研究从给定元素中选取若干元素进行排列或组合的方式。

例如:从 5 个不同的元素中选取 3 个进行排列,有多少种排列方式?解题思路:排列用 A 表示,组合用 C 表示。

排列时考虑顺序,组合不考虑顺序。

要准确区分是排列还是组合问题,然后运用相应的公式进行计算。

5、容斥问题容斥问题是研究集合之间重叠部分的问题。

行测数量关系技巧:比例法解工程问题

行测数量关系技巧:比例法解工程问题

行测数量关系技巧:比例法解工程问题行测数量关系技巧:比例法解工程问题公务员考试中,工程问题是近年来的热门考题,考察频率也比拟高。

广阔考生在解工程问题的时候,几乎都能想到方程法和特值法,但是对于比例法,很多考生并不容易想到。

在这里教大家利用比例法解决工程问题。

一、工程问题中的正反比例当工作总量W一定时,效率P和时间t成反比例;当效率P一定时,时间t与工作总量W成正比例;当时间t一定时,效率P与工作总量W成正比例。

工程问题当中的正反比例法是指:当工作总量一定时,工作效率与工作时间成反比,工作效率比可得到工作时间之比,再根据实际提早的天数或推延的天数采用比例法进展求解。

或者,工作时间之比可得到工作效率之比,在根据前后效率只差采用比例法进展求解。

例1:对某批零件进展加工,原方案要18小时完成,改良工作效率后只需12小时就能完成,后来每小时比原方案每小时多加工8个零件,问这批零件共有多少个?【解析】288。

先后时间之比=18:12=3:2,可得先后效率之比=2:3,那么由题意可得1份=8个零件,2份就是16零件,所以零件总数=16×18=288(个)。

例2:某工程由小张、小王两人合作刚好可在规定的时间内完成。

假如小张的工作效率进步20%,那么两人只需用规定时间的就可完成工程;假如小王的工作效率降低25%,那么两人就需延迟2.5小时完成工程。

问规定的时间是多少?A.20 hB.24 hC.26 hD.30 h【解析】答案:A。

“小张的工作效率进步20%”,可设特值为由5进步到6,“两人只需用规定时间的”,根据工作总量不变,效率与时间成反比,得出两人的效率之和由9进步到10,那么小王的效率为4。

“小王的工作效率降低25%”,就是由4降低到3,那么两人的效率之和由9降低到8,还是根据工作总量不变,效率与时间成反比,时间由8份变成9份,“延迟2.5小时”就是9-8=1份,由此推出规定时间8份是2.5×8=20(小时)。

公务员考试行测数学运算:工程问题

公务员考试行测数学运算:工程问题

公务员考试:工程问题基本数量关系:工作总量=工作效率*时间抓住单独的工作效率或合作的工作效率是解题的关键。

工程问题比较难的题型主要有两种1、合作的过程中有人休息的(一般假设不休息来算)2、轮流工作的(一般用周期来算)其他的工程问题一般都比较简单,我在这里就不分析了!下面主要讲解下上面提到的2种情况1、一件工作,甲单独做需要10 天完成,乙单独做需要30 天完成。

两人合作,期间甲休息了2 天,乙休息了8 天(不在同一天休息),从开始到完工共用了多少天?()A.11B.15C.16D.20------------------------------------甲休息的2天,乙单独做;同理,乙休息的8天甲单独做所以甲8天的+乙2天的+合作的=1甲和乙合作,工作效率为:1/10+1/30=4/308/10+2/30+X/30/4=1X=12+8+1=112、一件工作,甲单独做12小时完成,乙单独做9小时完成。

如果按照甲先乙后的顺序轮流做进行,完成这件工作需要几小时-----------------------------------甲12小时完成,乙9小时完成,所以他们的工作效率分别为1/12和1/9轮流做的题,我们就用周期的办法来解决把甲、乙各做一个小时看做一个周期,一个周期他们完成的工作量是(1/12+1/9)=7/361/(7/36)=5….1/36即合作了5个周期后还剩下1/36,所以甲再做1/36/1/12=1/3个小时就可以完成了。

所以总的需要5*2+1/3个小时3、一份稿件,甲、乙、丙三人单独打各需20、24、30小时。

现在三人合打,但甲因中途另有任务提前撤出,结果用12小时才完成。

那么甲只打了几小时?----------------------------------我们先考虑乙和丙,他们12个小时能打1/2+4/10=9/10所以甲打了1/10/1/20=2小时4、一项工程甲队独做24天完成,乙队独做30天完成,甲乙两队合作8天后,余下的由丙队做,又做了6天才完成。

行测工程问题 解题技巧

行测工程问题 解题技巧

行测工程问题解题技巧哎呀,行测工程问题,这玩意儿听起来就挺头大的,但别急,我来给你捋一捋。

首先,行测里的工程问题,其实就是要你计算一些工程进度、成本、效率之类的东西。

这玩意儿,说难不难,说简单也不简单,关键是要找到解题的窍门。

比如说,有这么一个题目吧,给你一个工程,需要10天完成,第一天完成了20%,第二天完成了30%,问你第三天开始每天需要完成多少百分比,才能在10天内完成整个工程。

这题,你可别一上来就瞎算,得先冷静,想想这工程的总进度。

第一天20%,第二天30%,加起来就是50%,对吧?那剩下的就是50%。

现在还剩8天,你把50%除以8,算出来每天得完成6.25%。

但是,这题里有个坑,因为你不能只算百分比,还得考虑实际情况。

比如说,第三天开始,可能因为各种原因,工作效率会提高或者降低。

所以,你得留点余地,不能真的就每天6.25%。

你可以考虑留出一天来应对意外情况,这样你每天需要完成的百分比就少一点,压力也小一点。

这就是解题技巧之一,你得会灵活运用,不能死板地套公式。

而且,你得有预判能力,知道可能会发生什么情况,提前做好准备。

再比如,有时候题目会给你一些额外的信息,比如天气、人力、材料供应之类的。

这些信息,你可别小看,它们往往能帮你找到解题的关键。

比如,如果题目告诉你,因为天气原因,有两天工程进度会减半,那你就得重新计算,看看怎么调整进度。

说到底,行测工程问题,就是要你多观察,多思考,多实践。

你得像一个真正的工程师一样,考虑各种因素,做出合理的计划。

而且,别忘了,有时候,答案可能不止一个,你得学会灵活变通。

最后,别忘了,行测工程问题,其实就是在模拟现实中的工程管理。

所以,你得把自己想象成一个项目经理,站在那个角度去思考问题。

这样,你的答案才会更加贴近实际,也更容易得到高分。

行了,就说这么多吧,希望对你有点帮助。

记得,行测工程问题,就是要你动脑子,别怕麻烦,多练习,多总结,慢慢就能找到感觉了。

加油!。

公务员行测考试数量关系:工程问题题型解题技巧

公务员行测考试数量关系:工程问题题型解题技巧

工程问题也是数学运算的常考题型,在复习过程中,考生应重点掌握工程问题涉及的基本概念,并学会对计算公式的灵活运用。

国家公务员考试中,工程问题主要考查二人合作型、多人合作型和水管问题。

其中,二人或者多人合作的工程问题考查的比较多,教育专家研究认为,这类问题解题关键是找到二人或者多人的工作效率和。

下面,专家就针对工程问题题型进行全面讲解。

一、工程问题基本概念及关系式工程问题中涉及到工作量、工作时间和工作效率三个量。

工作量:指工作的多少,可以是全部工作量,在没有指明具体数量时,工作总量可视为已知量。

一般来说,可设总量为“1”;部分工作量用分数表示。

工作时间:指完成工作的所需时间,常见的单位一般为小时、天。

这里需要注意“单位时间”这个概念。

当工作时间的单位是小时,那么单位时间为1小时;当工作时间的单位是天,那么单位时间为1天。

工作效率:指工作的快慢,也就是单位时间里所完成的工作量。

工作效率的单位一般是“工作量/天”或“工作量/小时”。

工作量、工作时间、工作效率三个量之间存在如下基本关系式:工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率。

解决基本的工程问题时,要明确所求,找出题目中工作量、工作时间、工作效率三量中的已知量,再利用公式求出未知量。

二、工程问题常考题型(一)二人合作型例题:有甲、乙两项工程,张师傅单独完成甲工程需6天,单独完成乙工程需30天,李师傅单独完成甲工程需18天,单独完成乙工程需24天,若合作两项工程,最少需要的天数为:A.16天B.15天C.12天D.10天(二)多人合作型例题:甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。

两项工程同时开工,耗时16天同时结束。

问丙队在A工程中参与施工多少天?A.6B.7C.8D.9解析:本题答案选A。

公务员考试行测数量关系高分技巧

公务员考试行测数量关系高分技巧

公务员考试行测数量关系高分技巧在公务员考试行测中,数量关系一直是让众多考生头疼的模块。

然而,只要掌握了正确的技巧和方法,数量关系也能成为我们得分的利器。

接下来,我将为大家分享一些实用的高分技巧。

一、熟悉题型是基础数量关系的题型多种多样,包括工程问题、行程问题、利润问题、几何问题等等。

我们首先要做的就是熟悉各种题型的特点和解题思路。

比如工程问题,通常涉及工作效率、工作时间和工作量之间的关系,解题的关键往往是找到它们之间的比例关系或者通过设未知数来建立方程。

再比如行程问题,要清楚速度、时间和路程的关系,同时要注意相遇、追及等不同情况的公式运用。

只有对各种题型了如指掌,我们在考场上才能迅速判断出题目所属的类型,从而选择合适的解题方法。

二、掌握基本公式和定理数量关系中有很多基本的公式和定理,如等差数列通项公式、等比数列求和公式、勾股定理等。

这些公式和定理是我们解题的重要工具,必须牢记于心。

以等差数列为例,通项公式为\(a_n = a_1 +(n 1)d\),其中\(a_1\)为首项,\(d\)为公差,\(n\)为项数。

在遇到相关问题时,能够熟练运用这个公式,可以大大提高解题速度。

三、学会运用解题方法1、代入排除法当题目中给出的选项信息比较充分,或者直接求解比较困难时,可以采用代入排除法。

将选项逐一代入题干进行验证,从而快速找到正确答案。

例如,“一个数除以 5 余 3,除以 6 余 4,除以 7 余 5,这个数最小是多少?”我们可以从选项中最小的数开始代入,看哪个数满足所有条件。

2、数字特性法根据题目中数字的特性,如整除特性、奇偶特性、倍数特性等,来快速排除错误选项或者确定答案。

比如,“某班男生人数是女生人数的 2 倍,全班人数是 50 人,男生有多少人?”因为男生人数是女生人数的 2 倍,所以全班人数是女生人数的 3 倍,那么全班人数一定能被 3 整除,50 除以 3 余 2,所以选项中除以 3 余 2 的数一定不是正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016山东公务员行测数量关系技巧之基本工程问题
行测作为山东公务员考试公共科目,考察内容包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分;从近几年山东公务员招考信息情况来看,山东公务员考试一般在每年4月份进行。

中公教育面为考生整理了大量山东公务员行测考点供考生学习提高。

工程问题:在日常生活中,做某一件事、制造某种产品、完成某项任务等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本关系是:
我们研究这三个量之间关系的问题就是工程问题。

考试中所有的工程问题都离不开这个公式的运用,那针对我们公务员考试中的工程问题,我们怎么去运用这个公式呢?在公务员考试中工程问题主要有两种题型:基本工程问题和交叉合作问题。

本文主要讲解基本工程问题。

这类工程问题主要是与后面的交替合作问题相区别,也就是说除了交替合作的工程问题,其它的我们都归结为基本工程问题,基本工程问题很简单,考试中主要有两种方法需要大家去掌握。

1、比例法
确定比例关系,把比例看成份数,份数做差对应实际量。

当题目中有某一量不变时,就要想到运用比例法。

根据这个式子我们可以得到三个比例关系:
工作总量一定时,工作时间之比等于工作效率之比的反比例。

工作时间一定时,工作总量之比等于工作效率之比。

工作效率一定时,工作总量之比等于工作时间之比。

第一个比例关系考的最多,后面两个比例关系基本不考。

例1. 对某批零件进行加工,原计划要18小时完成,改进工作效率后只需要12小时就能完成,已知后来每小时比原计划每小时多加工8个零件,问这批零件共有多少个?
【中公分析】工作总量是一定的,前后效率有变化,那就要用比例法,原时间:改进效率后时间=18:12=3:2,则原效率:改进后效率=2:3,效率之差是1,对应的实际量是8,原效率就是,又原工作时间是18,总的零件数= 个。

2、特值法
当某一个量具有任意性时我们可以设特值,在公务员考试中,设特值不再像小学时那样简单的设单位“1”了,更多是体现了一种技巧性,在工程问题中,有两种典型的情况需要我们灵活地设特值。

①工作效率有变化,把工作效率的比设为前后实际的工作效率。

例2. 建筑队计划150天建好大楼,按此计划工作30天后由于购买新型设备,工作效率提高了20%,此大楼可以提前多少天完工?
②一项工程由不同的对象去完成有不同的时间,这时我们设工作总量为“时间们”的最小公倍数,这个特值方法主要是针对多者合作问题(就是一项工程由几个对象同时去做合作完成)。

例3. 某项工程,由甲项目公司单独做需4天才能完成,由乙项目公司单独做需6天才能完成,甲、乙、丙三个公司共同做2天就可以完成,现因交工日期在即,需多个公司合作,但甲公司因故退出,则由乙、丙公司合作完成此项目共需多少天?
上面主要讲了基本工程问题比例法和特值法,只要各考生按照正确的思路去多练习,工程问题就可以迎刃而解了!
还有疑问?点击这里>>>在线咨询
在公务员考试备考过程中,注意一定要多做山东公务员历年真题,行测做题的基本原则有二:一为强项优先原则,二为资料分析不靠后原则;从而在考试中出色发挥,一举成功!全方位备考计划点击山东公务员笔试课程了解!。

相关文档
最新文档