中考真题函数及其图像

合集下载

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
中的函数表达式为
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。

y= x

,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标

1


2

直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加

中考数学专题复习 函数及其图像

中考数学专题复习 函数及其图像

中考数学专题复习函数及其图像考点3.1 位置与坐标序号考查内容考查方式学习目标考点位置与坐标坐标与象限1、坐标值的几何意义2、特殊点的坐标特征3、两点之间距离的求法4、能根据图形建立适当坐标系并写出关键点的坐标5、能根据点的坐标值确定其余各点的坐标6、用极坐标表示点的位置考点3.2 函数的表示序号考查内容考查方式学习目标考点一函数的取值范围分式或根式何时有意义考点二函数及其图像实际问题与函数图像1、能根据具体情况识别函数图象2、能从函数图象中读出关键信息考点3.3 一次函数序号考查内容考查方式学习目标考点一一次函数图像和性质一次函数图像和性质综合应用1、能熟练判断出图像中的k b取值范围2、能根据k,b的取值范围熟练画出函数图象的草图3、能判断出函数图的共存4、能用待定系数法熟练求出函数解析式过程完整考点二一次函数的应用结合一次函数图像解决实际问题1、能正确解释交点坐标在实际问题中的意义2、能正确分割三角形和多边形的面积进而求出其面积3、能正确理解和应用简单的分段函数图象及其代表的意义考点3.4 反比例函数序号考查内容考查方式学习目标考点一反比例函数解析式的确定确定比例系数1、能从不同的表达式中分离出比例系数2、能根据比例系数画出函数草图待定系数法求解析式利用比例系数的几何意义确定反比例函数解析式k值的几何意义反映到函数中要结合具体的象限来确定值k考点二反比例函数的应用一次函数与反比例函数的综合应用考点3.5 二次函数序号考查内容考查方式学习目标考点一二次函数图像和性质确定二次函数图像的对称轴和顶点、与x轴的交点的坐标1、能准确化为一般形式,并指出其系数2、能熟练进行配方写出其顶点坐标式3、能熟练从三种解析式几个方面值的确定考点二二次函数的应用画二次函数图像及应用能熟练画出草图并进行分析应用考点三二次函数与实际问题(二次函数的应用题)确定解析式、求极值(解答题)能根据已知条件熟练写出解析式,并进行五个方面的相关计算考点3.6 用函数观点看方程(组)和不等式序号考查内容考查方式学习目标考点一函数与方程二次函数与一元二次方程理解二次函数与一元二次方程的联系,并能正确地将二次函数问题转化为一元二次方程,能用一元二次方程的根解释图象中的交点坐标考点二函数与不等式一次函数与一元一次不等式1、能根据图象正确判断不等式的解集2、理解交点坐标的意义3、能根据交点坐标正确写出方程或方程组反比例函数与不等式一次函数、反比例函数与不等式同上。

杭州中考真题分类:2、函数

杭州中考真题分类:2、函数

15.(2015•杭州)在平面直角坐标系中,O 为坐标原点,设点 P(1,t)在反比例函数 y = 2 的图象上,过点 P 作直线 l 与 x 轴 x
平行,点 Q 在直线 l 上,满足 QP = OP.若反比例函数 y = k 的图象经过点 Q,则 k =

x
第5页
22.(2013•杭州)(1) ② 如图②,在直角坐标系中,点 A 在 y 轴正半轴上,AC∥x 轴,点 B,C 的横坐标都是 3,且 BC = 2,点 D 在 AC 上,且
(4)丙骑摩托车与乙同时出发,从 N 地沿同一公路匀速前往 M 地,若丙经过 4 h 与乙相遇,问丙出发后多少时间与甲相遇? 3
第3页
三、反比例函数 图像
6.(2014•杭州)函数的自变量 x 满足 1 ≤ x ≤ 2 时,函数值 y 满足 1 ≤ y ≤ 1,则这个函数可以是(
2
4
A.y = 1 2x
第 12 页
23. (2011 杭州)设函数 y=kx2+(2k+1)x+1(k 为实数) (1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图象; (2)根据所画图象,猜想出:对任意实数 k,函数的图象都具有的特征,并给予证明; (3)对任意负实数 k,当 x<m 时,y 随着 x 的增大而增大,试求出 m 的一个值。
第 11 页
22. (2016 杭州)已知函数 y1=ax2+bx,y2=ax+b(ab≠0). 在同一平面直角坐标系中. (1)若函数 y1 的图象过点(−1,0),函数 y2 的图象过点(1,2),求 a,b 的值. (2)若函数 y2 的图象经过 y1 的顶点. ①求证:2a+b=0;

中考数学--函数的图像与性质(较难)

中考数学--函数的图像与性质(较难)

专题6:函数的图象与性质一、选择题1.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A. 1x <-B. 1x >-C. 1x >D.1x <2.如图,直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。

则AF·BE=A. 8B.6C. 4D. 623.已知直线l 经过点A(1,0)且与直线y x =垂直,则直线l 的解析式为 A .1y x =-+ B .1y x =-- C .1y x =+ D . 1y x =-4.有下列函数:①3y x =- ②1y x =- ③1(0)y x x=-> ④221y x x =++,其中函数值y 随自变量x 增大而增大的函数有A .①②B .②④C .②③D .①④5.已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=﹣1,给出下列结果①b 2>4ac ;②abc >0;③2a +b=0;④a+b+c >0;⑤a ﹣b+c <0,则正确的结论是 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤6.如图,直线b x y +-=(b >0)与双曲线xky =(x >0)交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ;有以下结论:①OA=OB ,②△AOM ≌△BON ,③若∠AOB=45°,则S △AOB =k ,④当AB=2时,ON -BN=1;其中结论正确的个数为A .1B .2C .3D .47.若二次函数2()1y x m =--,当1x ≤时,y 随x 的增大而减小,则m 的取值范围是 A 、1m =B 、1m >C 、1m ≥D 、1m ≤8.反比例函数y =-1-a 2x (a 是常数)的图象分布在A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上、向右平 移3个单位,那么在新坐标系中此抛物线的解析式是 A .y =3(x -3)2+3 B .y =3(x -3)2-3 C .y =3(x +3)2+3 D .y =3(x +3)2-310.若是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 211.小明乘车从南充到成都,行车的平均速度v (km/h )和行车时间t (h )之间的函数图象是12小明的父亲饭后出去散步,从家中出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明的父亲离家的距离y (米)与离家的时间x (分)之间的函数关系的是13.(已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的图象如图所示,有下列结论:①abc >0,②b 2﹣4ac <0,③a ﹣b+c >0,④4a ﹣2b+c <0,其中正确结论的个数是A 、1B 、2C 、3D 、4二、填空题1.在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小。

中考数学真题专题[一次函数的图像与性质]

中考数学真题专题[一次函数的图像与性质]

表达式为
A. B. C. D.
【答案】A
14.(2010 山东东营)一次函数的图象不经过( )
(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
【答案】B
15.(2010
湖北孝感)若直线的交点在第四象限,则整数m的值

()
A.—3,—2,—1,0 B.—2,—1,0,1
C.—1,0,1,2 D.0,1,2,3
一、选择题 1.(2010山东烟台)如图,直线y1=k1x+a与y2=k3x+b的交点坐标为
(1,2),则使y1∠ y2的x的取值范围为 A、x>1 B、x>2 C、x<1 Dx<2
【答案】C 2.(2010 浙江省温州)直线y=x+3与y轴的交点坐标是(▲) A.(0,3) B.(0,1) C.(3,O) D.(1,0) 【答案】A 3.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函
∴△ABP的面积为或. 4.(2010湖北随州)某同学从家里出发,骑自行车上学时,速度v(米/
秒)与时间t(秒)的关系如图a,A(10,5),B(130,5), C(135,0). (1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动 过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度 ×时间); (3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用 字母S表示图中阴影部分面积,试求S与t的函数关系式; (4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路 程与此时S的数量关系.
【答案】B
18.(2010 贵州贵阳)一次函数的图象如图2所示,当<0时, x的取值范围是 (A)x<0 (B)x>0 (C)<2 (D)x>2

中考数学试题分类分析汇编专题6:函数的图像与性质

中考数学试题分类分析汇编专题6:函数的图像与性质

中考数学试题分类分析汇编(12专题)专题6:函数的图像与性质一.选择题1. (2001年福建福州4分)二次函数2y ax bx c(a 0)=++≠的图象如图所示,下列结论: (1)c 0<(2)b 0> (3)4a 2b c 0++> (4)22(a c)b +<其中正确的有【 】 A. 1个B. 2个C. 3个D. 4个【答案】C 。

【考点】二次函数图象与系数的关系。

【分析】(1)∵图象与y 轴交于y 轴负半轴,则c <0,正确。

(2)∵对称轴bx 12a=-=,开口向下,∴a<0,故b >0,正确。

(3)当x=2时,y <0,即4a +2b +c >0,错误。

(4)22(a c)b +<可化为(a -b +c )(a +b +c )<0,∵当x=1时,a +b +c >0,当x=-1时,a -b +c <0,故22(a c)b +<正确。

故选C 。

2. (2002年福建福州4分)如果反比例函数ky x=的图象经过点(-2,-1),那么k 的值为【 】 (A )21 (B )-21 (C )2 (D )-2【答案】C 。

【考点】曲线上点的坐标与方程的关系。

【分析】根据点在曲线上点的坐标满足方程的关系,将(-2,-1)代入k y x =,得k12-=-,解得k=2。

故选C 。

3. (2002年福建福州4分)已知:二次函数y =x 2+bx+c 与x 轴相交于A (x 1,0)、B (x 2,0)两点,其顶点坐标为P (b 2-,24c b 4-),AB =︱x 1-x 2︱,若S △APB =1,则b 与c 的关系式是【 】 (A )b 2-4c +1=0 (B )b 2-4c -1=0 (C )b 2-4c +4=0(D )b 2-4c -4=04. (2003年福建福州4分)反比例函数4y x=-的图象大致是【 】 (A ) (B ) (C ) (D )【答案】A 。

2018-2019年北京中考数学真题分类解析【06】函数的图像与性质(解析版)

2018-2019年北京中考数学真题分类解析【06】函数的图像与性质(解析版)

1.(2003年北京市4分)如果反比例函数ky x =的图象经过点P (-2,3),那么k 的值是【 】A. -6B. 32-C. 23- D. 6中.考.资.源.2. (2006年北京市大纲4分)一次函数y=x+3的图象不经过...的象限是【 】A 、第一象限B 、第二象限C 、第三象限D 、第四象限3.(2019年北京市4分)将二次函数2y x 2x 3=-+化成的2y (x h)k =-+形式,结果为【 】A. 2y (x 1)4=++B. 2y (x 1)4=-+C. 2y (x 1)2=++D. 2y (x 1)2=-+4.(2019年北京市4分)抛物线y=x2﹣6x+5的顶点坐标为【】A、(3,﹣4)B、(3,4)C、(﹣3,﹣4)D、(﹣3,4)1.(2004年北京市4分)我们学习过反比例函数.例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为a=Sb(S为常数,S≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:▲ ;函数关系式:▲ .2.(2005年北京市4分)反比例函数ky=x的图象经过点(1,﹣2),则这个反比例函数的关系式为▲ .3.(2006年北京市大纲4分)如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为▲ 。

[:中.考.资.源.WWW.ZK5U]4.(2019年北京市4分)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式▲ .5.(2019年北京市4分)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数ky(k0)x=≠,使它的图象与正方形OABC有公共点,这个函数的表达式为▲ .∴这个函数的表达式可以为2yx=(答案不唯一).1.(2003年北京市8分)已知:抛物线2y ax 4ax t =++与x 轴的一个交点为A (-1,0)(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴,y 轴的距离 的比为5:2的 点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问 :在抛物线的对称轴上是否存在点P , 使△APE 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由。

中考复习数学分类检测试卷(3)函数及其图像(含答案)

中考复习数学分类检测试卷(3)函数及其图像(含答案)

中考复习数学分类检测三 函数及其图象(时间:90分钟 总分:120分)一、选择题(每小题4分,共40分)1.在平面直角坐标系中,点P (3,-x 2-1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若反比例函数y =kx 的图象经过点(-1,2),则这个函数的图象一定经过点( )A .(2,-1)B .⎝⎛⎭⎫-12,2C .(-2,-1)D .⎝⎛⎭⎫12,2 3.如果一次函数y =kx +b 的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <04.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD .下列说法正确的是( )A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度大C .在起跑后180秒时,两人相遇D .在起跑后50秒时,小梅在小莹的前面5.把抛物线y =-x 2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( )A .y =-(x -1)2-3B .y =-(x +1)2-3C .y =-(x -1)2+3D .y =-(x +1)2+36.矩形面积为4,长为y ,宽为x ,y 是x 的函数,其函数图象大致是( )7.如图,A 是反比例函数y =kx 图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则k 的值为( )A .1B .2C .3D .48.图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽为4 m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .y =-2x 2B .y =2x 2C .y =-12x 2D .y =12x 29.函数y =x +m 与y =mx(m ≠0)在同一坐标系内的图象如图,可以是( )10.函数y =ax 2+bx +c 的图象如图所示,那么关于x 的一元二次方程ax 2+bx +c -3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根 二、填空题(每小题4分,共24分)11.在平面直角坐标系中,点A (1,2)关于y 轴对称的点为B (a ,2),则a =__________. 12.函数y =-xx -1中自变量x 的取值范围是__________.13.如图,l 1反映了某公司的销售收入与销量的关系,l 2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量必须__________.14.已知关于x 的一次函数y =mx +n 的图象如图所示,则|n -m |-m 2可化简为__________.15.函数y 1=x (x ≥0),y 2=4x(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是__________.16.抛物线y =-x 2+bx +c 的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论:__________,__________.(对称轴方程,图象与x 轴正半轴、y 轴交点坐标例外)三、解答题(共56分)17.(6分)在平面直角坐标系xOy 中,反比例函数y =k x 的图象与y =3x 的图象关于x 轴对称,又与直线y =ax +2交于点A (m ,3),试确定a 的值.18.(9分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元;(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x (x >0)支钢笔需要花y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱. 19.(9分)如图,一次函数y =ax +b 的图象与反比例函数y =kx 的图象相交于A ,B 两点,与y 轴交于点C ,与x 轴交于点D ,点D 的坐标为(-2,0),点A 的横坐标是2,tan ∠CDO =12.(1)求点A 的坐标;(2)求一次函数和反比例函数的解析式; (3)求△AOB 的面积.20.(10分)某单位准备印制一批证书.现有两个印刷厂可供选择.甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价. (2)当印制证书8千个时,应选择哪个印刷厂节省费用?节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?21.(10分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图,根据题中相关信息回答下列问题.(1)求爆炸前后空气中CO 浓度y 与时间x 的函数关系式,并写出相应自变量的取值范围.(2)当空气中的CO 浓度达到34 mg/L 时,井下3 km 的矿工接到自动报警信号,这时他们至少要以多快的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.22.(12分)如图,对称轴为直线x =72的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标.(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围. ①OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.参考答案一、1.D2.A 将(-1,2)代入y =k x ,得k =-2,则y =-2x ,然后将A 项的横坐标代入,得y =-22=-1,可知A 项符合,其他选项不符合.3.B ∵当k <0,b <0时,一次函数y =kx +b 的图象只能过第二、三、四象限,而不过第一象限,又∵函数图象与y 轴负半轴相交,∴b <0,k >0.4.D5.D 将抛物线向左平移1个单位长度得到y =-(x +1)2,再向上平移3个单位长度得到y =-(x +1)2+3.6.B 7.D8.C 根据题意设抛物线解析式为y =ax 2,点(2,-2)在函数图象上,所以代入y =ax 2,得a =-12,故解析式为y =-12x 2.9.B ∵对于y =x +m 中,k =1>0, ∴y 随x 的增大而增大;又∵当m >0时,y =mx (m ≠0)的图象在第一、三象限内,且y =x +m 的图象与y 轴交于正半轴,故知选B.10.C 由图象可知,4ac -b 24a =3,可得b 2-4ac =-12a .而一元二次方程ax 2+bx +c -3=0判别式为b 2-4a (c -3)=b 2-4ac +12a =-12a +12a =0,所以方程有两相等的实数根.二、11.-1 12.x ≥0,且x ≠113.大于4 从图象上看,销量等于4时,销售收入和成本相等;销量大于4时,收入大于成本. 14.n 由图象可知m <0,n >0, ∴|n -m |-m 2=n -m +m =n .15.①③④ 令y 1=y 2,即x =4x ,得x =±2,∵x >0, ∴x =2,∴交点A 的坐标为(2,2),结论①正确;由两个函数图象可知,当x >2时,函数y 2在函数y 1的下方,即当x >2时,y 2<y 1,所以结论②错误; 当x =1时,y 1=1,y 2=4,所以BC =y 2-y 1=3,结论③正确; 由正比例函数、反比例函数的性质可知,结论④正确.16.答案不唯一.如①c =3;②b +c =1;③c -3b =9;④b =-2;⑤当x >-1时,y 随x 的增大而减小;⑥当x <-1时,y 随x 的增大而增大,等等.三、17.解:由题意,得k =-3,即y =-3x ,把A (m,3)代入得m =-1,即A (-1,3).将A (-1,3)代入y =ax +2,得-a +2=3,故a =-1.18.解:(1)设每个笔记本x 元,每支钢笔y 元,则⎩⎪⎨⎪⎧ 4x +2y =86,3x +y =57,解得⎩⎪⎨⎪⎧x =14,y =15,故每个笔记本14元,每支钢笔15元.(2)y =⎩⎪⎨⎪⎧15x ,0<x ≤10,12x +30,x >10.(3)当14x <12x +30时,x <15;当14x =12x +30时,x =15;当14x >12x +30时,x >15.综上,当买超过10件但少于15件商品时,买笔记本省钱;当买15件奖品时,买笔记本和钢笔一样;当买奖品超过15件时,买钢笔省钱.19.解:(1)过点A 作AE 垂直x 轴于E ,因为D (-2,0),E (2,0),所以OD =OE =2.因为在R t △ADE 中,∠AED =90°,tan ∠ADE =AE DE ,因为tan ∠CDO =tan ∠ADE =12,OD =2,OE =2,所以AE =tan ∠ADE ·DE=12×4=2,所以A (2,2).(2)因为反比例函数y =k x 过点A (2,2),所以k =4,所以y =4x.因为一次函数y =ax +b 过A (2,2),D (-2,0),所以⎩⎪⎨⎪⎧2a +b =2,-2a +b =0,解得⎩⎪⎨⎪⎧a =12,b =1,所以y =12x +1.(3)因为4x =12x +1,所以x 2+2x -8=0,即(x +4)(x -2)=0,所以x 1=-4,x 2=2,所以B (-4,-1),所以S △AOB =S △AOD +S △BOD =12×2×2+12×2×1=3.20.解:(1)制版费1千元,y 甲=12x +1,证书单价0.5元.(2)把x =6代入y 甲=12x +1中得y 甲=4.当x ≥2时,由图象可设y 乙与x 的函数关系式为y 乙=kx +b ,由已知得⎩⎪⎨⎪⎧2k +b =3,6k +b =4,解得⎩⎨⎧b =52,k =14,得y 乙=14x +52.当x =8时,y 甲=12×8+1=5,y 乙=14×8+52=92,5-92=0.5(千元).即当印制8千张证书时,选择乙厂,节省费用500元. (3)设甲厂每个证书的印刷费用应降低a 元, 8 000a =500, 解得a =0.062 5.答:甲厂每个证书印刷费最少降低0.062 5元.21.解:(1)∵爆炸前浓度呈直线型增加,∴可设y 与x 的函数关系式为y =k 1x +b . 由图象知y =k 1x +b 过点(0,4)与(7,46),∴⎩⎪⎨⎪⎧ b =4,7k 1+b =46,解得⎩⎪⎨⎪⎧k 1=6,b =4.∴y =6x +4,此时自变量x 的取值范围是0≤x ≤7. ∵爆炸后浓度成反比例下降, ∴可设y 与x 的函数关系式为y =k 2x.由图象知y =k 2x 过点(7,46),∴k 27=46,∴k 2=322,∴y =322x,此时自变量x 的取值范围是x >7. (2)当y =34时,由y =6x +4得6x +4=34,x =5. ∴撤离的最长时间为7-5=2(h). ∴撤离的最小速度为3÷2=1.5(km/h).(3)当y =4时,由y =322x 得x =80.5,80.5-7=73.5(h).∴矿工至少在爆炸后73.5小时才能下井.22.解:(1)由抛物线的对称轴是x =72,可设解析式为y =a ⎝⎛⎭⎫x -722+k , 把A ,B 两点坐标代入上式,得⎩⎨⎧a ⎝⎛⎭⎫6-722+k =0,a ⎝⎛⎭⎫0-722+k =4,解得a =23,k =-256,故抛物线解析式为y =23⎝⎛⎭⎫x -722-256,顶点为⎝⎛⎭⎫72,-256.(2)∵点E (x ,y )在抛物线上,位于第四象限,且坐标适合y =23⎝⎛⎭⎫x -722-256, ∴y <0,即-y >0,-y 表示点E 到OA 的距离. ∵OA 是OEAF 的对角线,∴S =2S △OAE =2×12×OA ·|y |=-6y =-4⎝⎛⎭⎫x -722+25. ∵抛物线与x 轴的两个交点是(1,0)和(6,0), ∴自变量x 的取值范围是1<x <6.①根据题意,当S =24时,即-4⎝⎛⎭⎫x -722+25=24, 化简,得⎝⎛⎭⎫x -722=14,解得x 1=3,x 2=4, 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4), 点E 1(3,-4)满足OE =AE ,此时OEAF 是菱形; 点E 2(4,-4)不满足OE =AE ,此时OEAF 不是菱形.②当OE ⊥EA ,且OE =EA 时,OEAF 是正方形,此时点E 的坐标只能是(3,-3),而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF 为正方形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010中考真题函数及其图像7.若点A (x i , yj 、B (X 2, y 2)在反比例函数y0的大小关系是A. y i 讨2 0B. y i y 0C. y i 014.抛物线y X 2 bx c 的部分图象如图所示, 若y 0,贝U x 的取值围是 _____________ .i9. ( 8分)20i0年4月i4日我国地区发生强烈地震,急需大量赈灾帐篷 .某帐篷生产企业接到任务后,加大生产投入,提高生产效率, 实际每天生产帐篷比原计划多200顶,现在生产3 000顶帐篷所用的时间与原计划生产 2 000顶的时间相同.现在该企业每天能生产多少顶帐篷?22. (i0分)如图(i ),某灌溉设备的喷头 B 高出地面i.25m ,喷出的抛物线形水流在与喷 头底部A 的距离为im 处达到距地面最大高度 2.25m ,试在恰当的直角坐标系中求出与该抛 物线水流对应的二次函数关系式 .学生小龙在解答图(i )所示的问题时,具体解答如下:② 设抛物线水流对应的二次函数关系式为 y ax 2 ; ③ 根据题意可得 B 点与x 轴的距离为im 故B 点的坐标为(i , i ); ④ 代入y ax 2得i a-i ,所以a i ;⑤所以抛物线水流对应的二次函数关系式为y x 2.数学老师看了小龙的解题过程说: “小龙的解答是错误的”.(i )请指出小龙的解答从第 __________ 步开始出现错误,错误的原因是什么? (2 )请你写出完整的正确解答过程 .24. (i2分)师傅在铺地板时发现,用 8块大小一样的长方形瓷砖恰好可以拼成一个大的长 方形,如图(i ).然后,他用这8块瓷砖又拼出一个正方形,如图(2),中间恰好空出一个 边长为i 的小正方形(阴影部分),假设长方形的长为 y ,宽为x ,且y x.3的图象上,且x y 2D . y iy 2t1 1 1 1yi 0 t\ \ xx i 0 x 2,则 y i 、y 2 和(第 i4题图) ①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图(2)(1)请你求出图(1)中y与x的函数关系式;(2)求出图(2)中y与X的函数关系式;(3)在图(3)中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;(4)根据以上讨论完成下表,观察X与y的关系,回答:如果给你任意8个相同的长方形, 你能否拼出类似图(1)和图(2)的图形?说出你的理由.图(2)中小正方形边长1234x6y102011中考真题函数及其图像k7.(11 •兵团维吾尔)如图,I1是反比例函数y= -在第一象限的图象,且经过点A(1 ,2) .11X2 2A. y=尹< o)B. y= jx>o)19 . (11 •兵团维吾尔)(8分)已知抛物线y=—x2+ 4x —3与x轴交于A B两点(A点在B 点左侧),顶点为P.(1 )求A B、P三点的坐标;(2 )在直角坐标系中,用列表描点法作出抛物线的图象,并根据图象写出数值大于零;关于X轴对称的图象为|2,那么I 2的函数表达式为第7题图12 . (11 •兵团维吾尔)若关于卜y2一1—J J 1 1 」1丨■-2 -1—1O^1 2 3 4 5 6 x—2L—3一—4——5 1x的一元二次方程x2+2x + a= 0有实数根,则a的取值围是2C y=- x(x< o)x取何值时,函图(1)图(2)(3 )将此抛物线的图象向下平移一个单位,请写出平移后图象的函数表达式.23. (11 •兵团维吾尔)(10分)某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P (个)与每个书包销售价x (元)满足一次函数关系式•当定价为35元时,每天销售30个;定价为37元时,每天销售26个•问:如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?24. (11 •兵团维吾尔)(10分)如图,在等腰梯形ABCD中,AD= 4, BC= 9,/ B= 45° .动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1 )求AB的长;(2)设BP= x,问当x为何值时厶PCQ勺面积最大,并求出最大值;(3)探究:在AB边上是否存在点M使得四边形PCQI为菱形?请说明理由.A DQB CP第24题图2012中考真题函数及其图像& ( 5分)(2012?新疆)甲乙两班进行植树活动,根据提供信息可知:①甲班共植树90棵,乙班共植树129棵;②乙班的人数比甲班的人数多3人;③甲班每人植树数是乙班每人植树数的总•若设甲班人数为4x人,求两班人数分别是多少,正确的方程是()冬129 B.90 3 ^ 129—.zSC. 1)3“ 90 129.-=D 3 90129 F 4 吵3K-34 x 4 K_ 3 z 4 K x+3211. (5分)当x= ____________ 时,二次函数y=x+2x- 2有最小值17. (6分)(2012?新疆)如图,一次函数y=kx - 3的图象与反比例函数尸卫(孟>0)的图象交于P (1,2).(1 )求k,m的值;(2 )根据图象,请写出当x取何值时,一次函数的值小于反比例函数的值.21. ( 8分)(2012?新疆) 某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A,B 两种长方体形状的无盖纸盒•现有正方形纸板140,长方形纸板360,刚好全部用完,问能做成多少个 A 型盒子?多少个 B 型盒子?(1 )根据题意,甲和乙两同学分别列出的方程组如下:甲:x 表示 ______________ , y 表示 ______________ ; 乙: x 表示 ______________ , y 表示 ______________ ;(2) 求出做成的 A 型盒子和B 型盒子分别有多少个(写出完整的解答过程)梨300吨,现将这些香梨运到 C, D 两个冷藏仓库.已知 C 仓库可储存240吨,D 仓库可储存260吨,从A 村运往C, D 两处的费用分别为每吨 40元和45元;从B 村运往C, D 两处的 费用分别为每吨25元和32元.设从A 村运往C 仓库的香梨为x 吨,A , B 两村运香梨往两 仓库的运输费用分别为 y A 元,y B 元.A BC D总计 A x 吨200吨 B300吨 总计 240吨 260吨 500吨(3) 请问怎样调运,才能使两村的运费之和最小?求出最小值24. (12分)(2012?新疆)如图 1,在直角坐标系中,已知△ AOC 勺两个顶点坐标分别为 A (2, 0), C (0, 2).甲:严"询;4i+3y=360乙: 丫4厂丄&04^+-|y=360根据两位同学所列的方程组,请你分别指出未知数 x , y 表示的意义: 库尔勒某乡 A , B 两村盛产香梨 A 村有香梨200吨,B 村有香 个冬型盒)乙(3^)(1)请你以AC的中点为对称中心,画出△ AOC的中心对称图形△ ABC此图与原图组成的四边形OABC勺形状是一_==^,请说明理由;(2)如图2,已知D(-2, 0),过A C, D的抛物线与(1)所得的四边形OABC的边BC2|交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC勺边从A- B -C 向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△ AON 为等腰三角形(只写出判断的条件与对应的结果)?2013中考真题函数及其图像9. (5 分)(2013?新疆)方程x2- 5x=0 的解是()A. X1=0, X2= - 5B. x=5C. X1=0, X2=5D. x=013. (5分)(2013?新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x,则根据题意可列方程为___________215. ____ (5分)(2013?新疆)如果关于x的一元二次方程x - 4x+k=0有实数根,那么k的取值围是____ .16. (5分)(2013?新疆)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系 _______________ .18. (8分)(2013?新疆)如图,已知一次函数y1=kx+b与反比例函数匕弓的图象交于A(2, 4)、B (- 4, n)两点.(1 )分别求出y1和y2的解析式;(2)写出y1=y2时,x的值;(3)写出y1> y2时,x的取值围.24. (12分)(2013?新疆)如图,已知抛物线 y=ax+bx+3与x 轴交于A B 两点,过点 A的直线I 与抛物线交于点 C,其中A 点的坐标是(1 , 0), C 点坐标是(4, 3).(1) 求抛物线的解析式;(2) 在(1)中抛物线的对称轴上是否存在点 。

,使厶BCD 的周长最小?若存在,求出点 D的坐标,若不存在,请说明理由;(3) 若点E 是(1 )中抛物线上的一个动点,且位于直线 AC 的下方,试求△ ACE 的最大面 积及E 点的坐标.2014中考真题函数及其图像__ _______________ 2 . .6. ( 5分)(2014?新疆)对于二次函数 y= (x - 1) +2的图象,下列说确的是( )A.开口向下B.对称轴是x= - 1C.顶点坐标是(1,2)D.与x 轴有两个交点& ( 5分)(2014?新疆)“六?一”儿童节前夕,某超市用 3360元购进A , B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买 A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A.fx+y=120136i+24y=3360C. T36x+24y=120 x+y=33&011. (5分)(2014?新疆)若点 A (1 , y 1)和点B (2, y 2)在反比例函数y 」图象上,则y 1 与y 2的大小关系是:y 1—y 2 (填 或“=”).19. (10分)(2014?新疆)如图,要利用一面墙(墙长为 25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB, BC 各为多少米?B .I 24x+36y=3360D. p4x+36y=120B C22. (11分)(2014?新疆)如图 1所示,在A, B 两地之间有汽车站 C 站,客车由A 地驶往 C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站飞路程y 1.(2)求两小时后,货车离 C 站的路程y 2与行驶时间x 之间的函数关系式; (3 )客、货两车何时相遇?23. (12分)(2014?新疆)如图,直线 y=-里x+8与x 轴交于A 点,与y 轴交于B 点,动点3P 从A 点出发,以每秒2个单位的速度沿 AO 方向向点O 匀速运动,同时动点 Q 从B 点出发, 以每秒1个单位的速度沿 BA 方向向点A 匀速运动,当一个点停止运动,另一个点也随之停 止运动,连接PQ 设运动时间为t (s ) (0 v t w 3). (1) 写出A , B 两点的坐标;(2) 设厶AQP 的面积为S ,试求出S 与t 之间的函数关系式;并求出当 t 为何值时,△ AQP 的面积最大?(3) 当t 为何值时,以点 A , P , Q 为顶点的三角形与△ ABC 相似,并直接写出此时点Q 的2015中考真题函数及其图像D27. (5分)(2015?新疆)抛物线y= (x - 1)+2的顶点坐标是()A . (- 1, 2)B . (- 1,- 2)C. (1,- 2)D . (1, 2)& ( 5分)(2015?新疆)如图,小红居住的小区有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长I与行走的路程S之间的变化关系用图象刻画出来,大致图象是()211. (5分)(2015?新疆)已知k > 0,且关于x的方程3kx+12x+k+1=0有两个相等的实数根,那么k的值等于______________13. (5分)(2015?新疆)若点P1 (- 1, m), P2 ( - 2, n)在反比例函数y幺(k v 0)的图象上,则m ___________ n(填或“=”)19. (9分)(2015?新疆)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W 元.品牌进价/ (元/件)售价/ (元/件)A 50 80B 40 65(1 )求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价-进价)21. (11分)(2015?新疆)如图,在直角坐标系中,矩形OABC勺顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标(4, 2),过点D(0,3)和E(6,0)的直线分别于AB, BC交于点M, N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数y= (x>0)的图象经过点M,求该反比函数的解析式,并通过计算判x断点N是否在该函数的图象上.23. (13分)(2015?新疆)如图,直线y= - 3x+3与x轴、y轴分别交于点A、B.抛物线y=a(x - 2)2+k经过A、B,并与x轴交于另一点C,其顶点为P,(1 )求a, k的值;(2)在图中求一点Q, A B、C为顶点的四边形是平行四边形,请直接写出相应的点Q的坐标;(3)抛物线的对称轴上是否存在一点M,使厶ABM的周长最小?若存在,求△ ABM的周长;若不存在,请说明理由;(4)抛物线的对称轴是上是否存在一点N,使A ABN是以AB为斜边的直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.。

相关文档
最新文档