b型超声成像基本原理
B超原理简介

B超原理简介首先让我们谈谈什么是超声波,大家知道人耳能听到的声音频率为20Hz----20KHz,低于20Hz 的声波为次声波,人耳是听不到的,高于20KHz的声波为超声波,人耳也是听不见的。
超声波之所以被广泛用于医疗领域是因为他有许多奇妙的特点:1.由于超声波频率高、波长短,他可以像光那样沿直线传播,使得我们有可能向某已确定方向上发射超声波,2.声波是纵波,可以顺利地在人体组织里传播。
3. 超声波遇到不同的介质交接面时会产生反射波,这些特点构成了今天超声仪器在医学领域广泛应用的基础。
B超成像的基本原理就是:向人体发射一组超声波,按一定的方向进行扫描。
根据监测其回声的延迟时间,强弱就可以判断脏器的距离及性质。
经过电子电路和计算机的处理, 形成了我们今天的B超图像。
B超的关键部件就是我们所说的超声探头 (probe),其内部有一组超声换能器,是由一组具有压电效应的特殊晶体制成。
这种压电晶体具有特殊的性质,就是在晶体特定方向上加上电压,晶体会发生形变,反过来当晶体发生形变时,对应方向上就会产生电压,实现了电信号与超声波的转换。
一般的B超工作过程为:当探头获得激励脉冲后发射超声波, (同时探头受聚焦延迟电路控制,实现声波的声学聚焦。
)然后经过一段时间延迟后再由探头接受反射回的回声信号,探头接收回来的回声信号经过滤波,对数放大等信号处理。
然后由DSC电路进行数字变换形成数字信号,在CPU控制下进一步进行图像处理, 再同图表形成电路和测量电路一起合成视频信号送给显示器形成我们所熟悉的B超图像,也称二维黑白超声图像。
以上我们谈到了黑白B超,再让我们谈谈彩色B超,即”彩超”。
其实彩超并不是看到了人体组织的真正的颜色,而是在黑白B超图像基础上加上以多普勒效应原理为基础的伪彩而形成的。
那么何谓多普勒效应呢,当我们站在火车站台上听有远处开来的火车笛叫声会比远离我们的火车笛叫声音调要高,也就是说对于静止的观测者来说,向着观测者运动物体发出的声波频率会升高,相反频率会降低,这就是著名的多普勒效应。
第四章超声成像第一节至第四节

B型:帧扫描与声线实际位置严格对应
显示断面图像
辉度调制 声束运动
一、辉度调制式断面图像的形成
5.三种超声成像比较
B超成像原理图
M超、A超成像原理图
二、B型超声成像中的电子扫描
1.电子线性扫描 以电子开关或全数字化系统控制由若干个晶片并联 起来组成的探头阵元组顺序发射来实现。
(1)常规扫描
n个阵元构成阵元组 m个阵元构成线阵 (m一n+1)条扫描线组 成一帧线性扫描图像
d 1 ct
2
脉冲宽度愈小,纵向可辨距离d愈小,轴向分辨率 愈高
四、B超图像及质量评价
轴向可分辨示意图 轴向分辨不清示意图
四、B超图像及质量评价
(3)侧向分辨力 超声换能器长轴方向的分辨力
超声换能器短轴方向的分辨力称为横向分辨力
线阵、面阵及相控阵 换能器有侧向分辨力与横 向分辨力之区别
单晶或环型换能器侧 向分辨力与横向分辨力相 等
(3)取样定理
PRF 2 f d max
(4)脉冲重复频率对血流测量的限制
由
fd
2vcos
c
f0
得Байду номын сангаас
vmax Rmax
c2
8 f0 cos
最大可测流速vmax与最大可测深度Rmax相互制约
d:晶片中心距离;
t:延迟时间; :合成声束偏转角度
t 1 d sin
c
c:人体中的声速
相控阵扇形扫描原理图
二、B型超声成像中的电子扫描
扫描按时差对各晶片接收回波进行时差补偿,然后叠加 获得目标空间位置正确信息,完成相控阵扇形扫描信号 接收。
相控阵接收原理图
三、B型超声成像中的图像处理
b型超声成像原理

b型超声成像原理
B 型超声成像是一种基于超声波的成像技术,它利用超声波在人体组织中的传播和反射来生成图像。
B 型超声成像的原理如下:
1. 发射超声波:B 型超声探头产生高频超声波,并将其发送到人体组织中。
2. 超声波传播:超声波在人体组织中传播,遇到不同密度和弹性的组织时,会发生反射和散射。
3. 接收超声波:B 型超声探头接收反射和散射回来的超声波,并将其转换为电信号。
4. 处理电信号:B 型超声设备对接收的电信号进行处理,包括放大、滤波、数字化等,以生成图像。
5. 显示图像:B 型超声设备将处理后的电信号转换为图像,并在屏幕上显示出来。
图像中的亮点和暗点表示不同密度和弹性的组织,通过对图像的分析,可以诊断疾病。
B 型超声成像的优点是无创、无辐射、操作简单、成本低,可以用于检查腹部、盆腔、心脏、甲状腺、乳腺等部位的疾病。
15-b型超声成像基本原理

B型超声成像基本原理
冀 敏
复旦大学物理系
第一节 第二节 第三节 第四节 第五节 其它:
辉度(Bright)显示
4.切片厚度伪影(或称部分容积效应) 声束宽度较大引起.如胆囊内的”假胆泥”. (识别: 改变体位,假胆泥不会向重力方向移动)
超声伪影
5. 镜面伪影 条件: 在中前深度部位有垂直声束的较大 界面. 6.透镜效应伪影 条件: 声束方向有类似透镜截面的两个 弯曲界面.(在”透镜”下方出现双像) 7.其它 折射伪影,声速失真伪影
图像形成的基本原理
B型超声成像仪基本结构
M型超声显像基本原理 超声多普勒诊断仪简介 图像质量指标和伪影
第一节
辉度(Bright)显示
B型超声显像是将脉冲回声电信号加在 示波管的控制栅极上,利用改变阳极和栅极之 间电压的方法改变单位时间打在荧光屏上的 电子数目,从而改变光屏上光点的辉(亮)度. 即B型显示. 回声电信号强,光点就亮, 回声电信号弱,光点就暗
• 工作原理 • 垂直偏转板加慢扫描(锯齿)电压,水平偏转板加 调制扫描电压.回波电脉冲放大检波后加在显象管 栅极上调制水平扫描线的亮度,即可在光屏上看到 深度方向一组动点的位移随时间的变化图形. • 基本结构? • •
M型超声心动图片
第五节 超声多普勒诊断仪简介
• 一.Doppler效应 • 发声体与接收者有相对运动时,接收者接收到的 频率与发声体发出的频率不同的现象. • 声速方向与运动方向同一直线: • f=(c±v)f0/(c-+u) f0发射频率; f为接收频率. • 声速方向与运动方向有夹角: • f=(c±vcosθ1)f0/(c-ucos θ2) • C:声速 u: 发声体运动速度 • v: 接收者运动速度
B超的使用

B型超声诊断仪的使用实验目的:1.了解B型超声诊断仪的成像原理。
2.学习B型超声诊断仪的使用方法。
3.观察实物声像图,学习测量物体大小。
4.观察人体主要脏器切面声像图。
5.观察M型超声声像图仪器用具:教学用B型超声诊断仪一台,塑料水槽一个,偶合剂,卫生纸及被观察物体。
实验原理:1.B超的结构框架图:B型超声诊断仪是目前超声诊断及介入性手术中应用最多的的一类超声成象装置。
它的原理方块框图如下图所示:2.工作原理;主控振荡器(同步电路)产生同步脉冲去触发高频发生电路和时基电路,使二者同步工作。
每当同步脉冲触发一次,高频发生电路就产生一次持续几个μs、频率为1~5MHz的衰减振荡,即发出一个脉冲式调制波。
调制波重复频率为50~2000Hz。
由于在一个重复周期内发射脉冲的时间很短,静止时期相对较长,故可以在静止时期内完成脉冲在被检体内的传播、反射及探头接收回波并予以显示的诸过程。
B超采用灰度调制,回波信号加在电子枪的控制栅极(或阴极)上,利用回波信号来控制阴极发射电子的数量,从而达到控制显示屏上光点亮度(辉度)的目的。
B超用来表示产生回波的深度是在垂直方向上,即同步扫描电压加在示波管的垂直偏转板上,这样在不同深度界面上产生的回波信号,在荧光屏上显示为自上而下的一系列亮度不同的光点,光点间的距离表示界面间的距离。
B超的水平偏转板上加有一线性偏转电压,此线性电压与探头在体表的运动同步。
这样,当探头作匀速直线运动时,自上而下的光点群也开始运动,由于示波器屏上的荧光物质具有余辉的作用,所以荧光屏上就显示了一幅被探查体的探头运动直线于超声发射方向构成的平面上的两维剖面图像,故B型超声仪也称为超声剖面像仪。
B型超声仪的图像是黑白显示。
要获得高质量的超声图像,一个重要指标就是提高其空间分辨力,即能分辨出组织的细节,解决办法是增加阵列式探头(多元线阵探头)的阵元数。
但对图像的观察不仅仅是看组织边缘的轮廓,也要观察图像的明暗程度即灰度层次。
常用超声分类

超声检查是一种无创性的诊断方法,利用高频声波在人体组织中的反射、散射和衰减等特性,形成图像以观察和评估组织结构和功能。
根据成像原理和技术的不同,超声检查可分为以下几种类型:1. A型超声(A-mode ultrasound):最早发展的超声检查技术,通过在屏幕上显示组织界面反射回来的声波振幅和时间(即波形图)来观察组织结构。
A型超声主要用于测量距离和评估脏器大小,如测量胎儿大小、观察心脏结构等。
2. B型超声(B-mode ultrasound):B型超声又称二维超声,通过计算机处理回声信号,将组织界面反射回来的声波转化为灰度不同的二维图像。
B型超声广泛应用于临床,可用于观察脏器形态、结构和血流,如观察肝脏、胆囊、胰腺、肾脏、脾脏、甲状腺等。
3. M型超声(M-mode ultrasound):M型超声将A型超声显示的连续波形记录在一条直线上,以观察组织界面的运动情况。
M型超声主要用于观察心脏结构和功能,如测量心脏瓣膜活动、评估心脏泵血功能等。
4. 多普勒超声(Doppler ultrasound):多普勒超声利用多普勒效应,即声波在运动中的组织中反射回来的频率与组织运动速度有关,将组织血流信息转化为彩色编码的二维图像或频谱图。
多普勒超声广泛应用于心血管系统、脑血管系统和外周血管系统的血流评估。
5. 三维超声(3D ultrasound):三维超声通过计算机处理大量二维超声图像,重建出立体的三维图像,有助于更直观地观察和评估组织结构,特别是在产科领域,可以用于观察胎儿结构和发育情况。
6. 四维超声(4D ultrasound):四维超声在三维超声的基础上增加了时间维度,形成了动态的三维图像,可以更直观地观察脏器或胎儿的运动情况,如观察胎儿在子宫内的活动、评估心脏功能等。
B超的分类

B超是B型超声波诊断仪的简称。
事实上,超声波诊断仪可分为A、B、C、F四类,其中最常用的是B类。
下面分别简要说明:A型超声波诊断仪是幅度、调制型(amplitude modulated mode)的简称。
A型显示是超声技术应用于医学诊断中最早、最基本的方式。
它主要适用于检查肝、胆、脾、眼及脑等简单解剖结构,测量线度以及获得回波幅度的大小和形状,通过分析回波幅度的分布以获得组织的特征信息。
临床诊断中的应用范围A型超声波诊断仪可用于许多科室,其中最有代表性的应用是脑中线位置的测量。
一般正常人脑中线位置通过颅骨的几何中心,最大偏差≤0.3cm。
用双迹A型诊断仪测量若脑中线偏移>0.3cm,则应考虑有占位性病变。
此法检查无痛苦,准确性高。
展望A型诊断仪是最早应用于临床的超声设备。
由于B型诊断仪的出现,A型诊断仪已经面临被淘汰的边缘,目前只在脑中线测量等方面还在应用。
但是A型诊断仪在组织的判别和确定(或称组织定征)、生物测量和生物组织检查方面都具有很高的准确性和特异性。
目前只有几家国外厂家在生产标准化的A型诊断仪B超是B型超声波诊断仪的简称。
事实上,超声波诊断仪可分为A、B、C、F四类,其中最常用的是B类。
下面分别简要说明:B型超声诊断仪(简称B超)是在A超基础上发展起来的,它的工作原理与A超基本相同,也是利用脉冲回波成像技术。
因此它的基本构成也是由探头、发射电路、接收电路和显示系统组成。
所不同的是:①B超将A超的幅度调制显示改为亮度调制显示;②B超的时基深度扫描时加在显示器垂直方向上,并使声束扫查受检体的过程与在显示器水平方向上的位移扫描相对应;③在回波信号处理与图象处理各环节上,大部分的B超都应用了专门的数字计算机控制数字信号的存储与处理以及整个成像系统的运行,使图象质量大为提高。
从1952年用B型超声成像仪对肝脏标本显像以来,经过10年的不断发展,第一代单探头慢扫描B型断层显像仪在临床上开始应用。
70年代又相继出现了第二代快速机械扫描和高速实时多探头电子扫描超声断层显像仪。
超声诊断仪基本原理和结构

江西中医学院计算机学院08生物医学工程2班黄月丹学号5047超声诊断仪原理及其基本结构超声成像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析处理和显像,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创性检查技术。
超声诊断技术的发展历程20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。
80年代介入性超声逐渐普及,体腔探头和术中探头的应用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的应用使超声诊断又上了一个新台阶。
二.超声诊断仪的种类(一) A型这是一种幅度调制超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图,现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。
(二) B型这是辉度调制型超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代表回声的强弱。
通过扫描电路,最后显示为断层图像,称为声像图。
B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。
矩形声像图和梯形声像图用线阵探头实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头、相控阵探头和凸阵探头均显示扇形声像图。
前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。
(三) M型 M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。
在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
fD=2vf0cosθ/c
•
fD =f-f0
• 设法测出fD,可求出运动速度V
• 三.彩色多普勒超声诊断仪
• 特点: 在B型图像上叠加血流速度信息,流速快 慢向向内;
• 绿色及亮度:表示血流速度分布的分散程度.
• 黄色:流向朝外速度分散
• 青色:流向朝内速度分散
第三节 B型超声显像仪基本结构
• 一.基本组成部分和作用
• 高频脉冲电路: 产生大于20KHz的高频脉冲信号;
• 同步电路: 产生一对正\负脉冲信号;
• 垂直及水平扫描电路:
分别产生垂直扫描信号和水平扫描信号
• 接收电路:对回波脉冲放大,检波,深度补偿及抑制
• 显像管: 显示断面图像 (液晶显示器)
4.切片厚度伪影(或称部分容积效应) 声束宽度较大引起.如胆囊内的”假胆泥”. (识别: 改变体位,假胆泥不会向重力方向移动)
超声伪影
5. 镜面伪影 条件: 在中前深度部位有垂直声束的较大
界面.
6.透镜效应伪影 条件: 声束方向有类似透镜截面的两个
弯曲界面.(在”透镜”下方出现双像) 7.其它 折射伪影,声速失真伪影
• 回波电脉冲经放大,检波,深度补偿后按顺序加 在显象管的栅极,调制光屏上深度扫描线上对应点 的亮度,形成自上而下的光点群,同步脉冲使探头的 发射\深度扫描\栅极回波三信号同步,若扫描线足 够多,帧频足够大,即可在光屏上显示一幅断面图像 .
B超胆囊\肾断面图像
四. 多元线阵电子扫描超声显像仪
五. B型超声成像的图像处理
超声伪影
2. 后方回声增强 前方脏器或病灶声衰减
甚小时,后方回声强于同深 度的周围组织.
但有一个前提: 后方必须有足够的散射 体存在. 例: 囊肿和胆囊等液性结构 易出现后方回 声增强.
超声伪影
3.混响 声束垂直入射时,声束在探头与界面之间来回反射或散射,
出现等距离多条回波. 易发生在表浅部位,如:膀胱,肾脏等部位.
• 声速方向与运动方向同一直线:
•
f=(c±v)f0/(c-+u)
f0发射频率; f为接收频率
.
• 声速方向与运动方向有夹角:
•
f=(c±vcosθ1)f0/(c-ucos θ2)
• C:声速 u: 发声体运动速度
•
v: 接收者运动速度
多普勒效应
频率随波源与观测者运动而改变的现象叫多普勒效应 。
• 二.多普勒频移公式:
1. 像素亮度后处理 灰阶以及窗口技术
2. 空间后处理 图像局部放大, 图像反转
3. 图像冻结 原有图像信号循环输出, 达到冻结显示作用
以便仔细观察和测量等
六. 探测深度与行数及帧频的关系
超声波传播1cm往返所需时间:
13μs
R :帧频
N:扫描线数 h:探测深度
R ·h ·N=77×103 (s-1)-----常数
若R ↑(稳定性提高),则h ,N必须减小;
若h ↑(探测深度增加),则R ,N必须减小;
若N ↑(横向分辨率增加),则 h,N必须减小.
胆囊结石B超图像
第四节 M型超声显像基本原理
特点 • 单个压电晶片, 探头不动,辉度显示.显示深度方向各个
动点的运动位移随时间的变化曲线.用于心脏检查
• 工作原理 • 垂直偏转板加慢扫描(锯齿)电压,水平偏转板加
调制扫描电压.回波电脉冲放大检波后加在显象管 栅极上调制水平扫描线的亮度,即可在光屏上看到 深度方向一组动点的位移随时间的变化图形. • 基本结构?
•
•
M型超声心动图片
第五节 超声多普勒诊断仪简介
• 一.Doppler效应
• 发声体与接收者有相对运动时,接收者接收到的 频率与发声体发出的频率不同的现象.
• 矩形光栅:
• 在示波管垂直偏转板上加扫描电压(波形?),
• 水平偏转板上加被调制的扫描电压(波形?),
• 扫描周期T水平=nT垂直. n为扫描线的条数.
若扫描频率足够大,n足够大,且保持栅极电压不 变,即可得到稳定均匀光栅.(相当一张作图的白纸)
• 扇形光栅: 垂直偏转板加扫描电压,
•
水平偏转板所加电压的形状?
• 配湍流声响
彩色多普勒图像(子宫纵断面)
图像质量指标
• 空间分辨率(横向\纵向) • 对比度(密度)分辨率 • 在低对比度条件下,鉴别软组织类型和分
清细微组织结构的能力. • (与扫描线数,灰阶数,像素数有关). • 图像均匀性 • 提供均匀分布的分辨率和清晰度的能力
.
超声伪影
1. 声影 出现在界面组织声阻抗差较大时.
b型超声成像基本原理
2020年4月21日星期二
第一节 辉度(Bright)显示
第二节 图像形成的基本原理 第三节 B型超声成像仪基本结构 第四节 M型超声显像基本原理 第五节 超声多普勒诊断仪简介 其它: 图像质量指标和伪影
2020年4月21日星期二
第二节 图像形成的基本原理
• 1.均匀光栅形成
• 超声探头: 发出超声脉冲和接收回波信号
• 其它: 探头控制,尺寸测量,模/数转换, 数/模转换
•
图像存储及输出,
二 B超结构框图
三. B型超声显像仪的工作原理
• 由垂直\水平扫描电路发出的信号分别加在显象 管的垂直/水平偏转板上,形成均匀光栅.
• 超高频脉冲信号加在探头上,发出的脉冲超声细 束沿体表直线移动,同时探头接收回波脉冲.
第二节 图像形成的基本原理
• 2.超声束的扫描(或旋转) 超声探头沿皮肤表面的往复直线移动,即超声束扫描.
移动速度与示波屏上光点扫描速度相适应,探头扫描(或旋 转)一程所用时间等于帧周期.
• 3.B超图像形成的基本原理
超声回波电脉冲信号的幅值随媒质改变,把该信号转变 为随探测深度(对应媒质性质)变化的电压,按声束扫描顺序 加在显像管栅极上,调制光屏上对应扫描线的亮度,若在垂 直,水平偏转板上加相应扫描电压,并使超声回波电脉冲序 列的周期与垂直扫描周期相等,且两信号同步,即可在光屏 上显示出超声束扫过的媒质断面的图像.
1.王磊,冀敏.医学物理学[M].北京:人民卫生出 版社,2013
2.陈亚珠,黄耀熊.医学物理学[M].北京:高等教 育出版社,2005
3. 吉强,洪洋.医学成像物理学[M].北京