(完整版)平行四边形复习一对一讲义

合集下载

平行四边形及其性质讲义讲义

平行四边形及其性质讲义讲义

学习必备 欢迎下载辅导讲义平行四边形及其性质1理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.2理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.1平行四边形对角线互相平分的性质,以及性质的应用.3平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.教学内容,基础知识(1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“来表示.如图,在四边形ABCD 中,AB // DC , AD // BC ,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“Q ABCD ,读作 平行四边形ABCD .① ••• AB//DC ,AD//BC ,二四边形ABCD 是平行四边形(判定); ② •••四边形ABCD 是平行四边形••• AB//DC , AD//BC (性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边, 邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角(3)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为 补角.(4)、平行四边形的对边相等、对角相等证明结论:重点、难点2综合运用平行四边形的性质进行有关的论证和计算2.教学目标2、能综合考点及考试要求平行四边形性质,有关的论证和计算A已知:如图口ABCD ,求证:AB = CD , CB = AD , / B = / D, / BAD =/ BCD .分析:作口ABCD的对角线AC,它将平行四边形分成△ ABC和^CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,AB // CD, AD // BC ,/ 1 = / 3,/ 2=/4.又AC = CA ,△ ABC CDA (ASA ).AB = CD, CB = AD , / B = / D .又 / 1 + / 4=/ 2+/3,/ BAD = / BCD .由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1如图,在平行四边形ABCD中,AE=CF, 求证:AF=CE .分析:要证AF=CE,需证△ ADF◎△ CBE,由于四边形ABCD是平行四边形,因此有/ D= / B ,AD=BC , AB=CD,又AE=CF,根据等式性质,可得BE=DF .由“边角边” 可得出所需要的结论.证明:六、随堂练习1. 填空:在口ABCD 中,/ A=50。

八年级数学《平行四边形》章节复习讲义.docx

八年级数学《平行四边形》章节复习讲义.docx

知识点一:平行四边形1.平行四边形与特殊的平•行四边形的关系: 用集合表示为:3.中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.4.直角三角形斜边中线定理:直角三角形斜边的中线等于斜边的一半平行四边形典型例题【例1】(2020秋•灌云县期中)如图,在四边形如%中,ZABC= ZA£>C=9Q° , M、0分别是"、刃的中点,试说明:(1)(2) MNLBD.【例2】(8分)(2019春•镇江期中)如图,点。

是△如C内一点,连接依OC,线段如、OB、OC、血'的中点分别为〃、E、F、G.(1)判断四边形妙。

的形状,并说明理由;(2)若M为EF的中点,做 =2, ZOBC若"OCB互余,求线段及?的长.【例3】(8分)(2020秋•青岛期中)已知:在△4?。

中,CB=CA,点D、E分别是0、如'的中点,连接费并延长交外角伽的平分线GV与点F.(1)求证:AD=CF\(2)连接。

2, AF,当△/庞满足什么条件时,四边形成为正方形?请证明你的结论.变式训练1.(8分)(2020春•武汉期中)如图,在菱形4?%中,AB=6, ZDAB=60°,点E是』〃边的中点,点M 是』3边上一动点(不与点/重合),延长%交射线⑦于点川连接姒,AN.(1)求证:四边形4切V是平行四边形;(2)填空:①当欲的值为时,四边形/姒V是矩形;②当此的值为时,四边形仙如是菱形.2.(10分)(2020春•江阴市期中)如图,在长方形曲,中,AB=4an, BE=5an,点,是也边上的一点,AE,座分别长am、bcm,满足(a-3)2+12a+Z? - 91 =0.动点夕从3点出发,以2c冰s的速度沿BT—D运动,最终到达点D.设运动时间为ts.(1)a= 3 cm, b~— 3 cm\(2):为何值时,/把四边形庞班'的周长平分?(3)另有一点0从点万出发,按照E-AC的路径运动,且速度为lc0/s,若R 0两点同时出发,当其中一点到达终点时,另一点随之停止运动.求匕为何值时,△胪。

龙文一对一四边形综合复习讲义

龙文一对一四边形综合复习讲义

四边形综合知识点:一、平行四边形1、平行四边形(1)平行四边形定义:(2)平行四边形的性质:①②③④对称性(3)平行四边形的判定:①②③④2、菱形(1)菱形定义:(2)菱形的性质:①②③④对称性菱形的面积=(3)菱形的判定:①②③3、矩形(1)矩形定义:(2)矩形的性质:①②③④对称性(3)矩形的判定:①②③4、正方形(1)正方形定义:(2)正方形的性质:①②③④对称性(3)正方形的判定:①②③④二、梯形梯形的分类:(1)等腰梯形定义:(2)等腰梯形性质:①②③④对称性(3)等腰梯形的判定:①GF EDC BAH GF ED C B A② ③ 例题解析:例1、.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形。

②一组对边平行,一组对角相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。

④顺次连结等腰梯形各边中点所得到的四边形是菱形。

其中正确的是( ) (A )①②.(B )①②③.(C )②③④ (D )①②③④。

例2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ;(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.例3、如图,过四边形ABCD 的四个顶点分别作对角线AC 、BD 的平行线,所围成的四边形EFGH 显然是平行四边形.(1)当四边形ABCD 分别是菱形、矩形、等腰梯形时,相应的平行四边形EFGH 一定..是.“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:(2满.足.怎样的条件?例4、如图所示, ABCD 中,AE,AF 是高,∠BAE=30º,BE=2,CF=1,DE 交AF 于G. (1)求 ABCD 的面积;(2)求△ECD 的面积;(3)求证:△AEG 为等边三角形.例5、矩形ABCD 中,AB =2,AD =3.(1)在边CD 上找.一点E ,使EB 平分∠AEC ,并加以说明; (2)若P 为BC 边上一点,且BP =2CP ,连接EP 并延长交AB 的延长线于F . ①求证:点B 平分线段AF ;②△PAE 能否由△PFB 绕P 点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.例6、如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB .(1)求证:① PE=PD ; ② PE ⊥PD ;(2)设AP =x , △PBE 的面积为y .求出y 关于x 的函数关系式例7、如图,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD=CD ,∠ADB=90°,CH ⊥AB 于H ,CH 交AD 于F . (1)求证:CD ∥AB ;(2)求证:△BDE ≌△ACE ;(3)若O 为AB 中点,求证:OF=12BE .A B C P D E例8、如图1,操作:把正方形CGEF 的对角线CE 放在正方形 ABCD 的边BC 的延长线上(CG >BC ),取线段AE 的中点M 。

平行四边形讲义

平行四边形讲义

平行四边形一、知识梳理1.平行四边形:(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形.平行四边形用符号示.平行四边形ABCD记作QLECD,读作平行四边形ABCD.2.平行四边形的性质:(1)平行四辿形的对这平行且相等.(2).平行四边形的对角相等,邻角互补。

(3)平行四边形的对角线互相平分.(4)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交. 点,且这条直线二等分平行四边形的面积.例1. = ABCD中,ZA的平分线分BC成4cm和3cm两条线段,则Q ABCD的周长为.例2.在U7ABCD 中,ZC=6O°,DE1AB 于E,DF丄BC 于F.(1)则ZEDF= __________ ;rt ----------- (-(2)如图,若AE=4, CF=7, //则UABCD周长= _______________ ;/ Y F例3.在平行四边形ABCO中,已知NA=40° ,则NB = 例4.ZZ7ABCD.中,周长为20cm,对角线AC交BD于点O, AOAB比△OBC的周长多4,则边AB =,BC=变式训练•如图,在平行四诊形ABCD中,已知对角线A匚和BD相交于点0, A AOB的周长为15, AB = 6,那么又角线AC 和BD的和是多少?例5、如图,在cABCD^,。

是对角线的交点,过。

的宜线交厶8于£,交DC于F,图中全等三角形共有(A. 2对B. 3对C. 6对D. 8对3.两条平行线间的距离,(1〕定义,两条平行线中,一条宜线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2)两平行线间的距离处处相等.例6、有以下四个说怯;①两点的距离,点;到直线的距离,两条平行线间的距离,都是指某种线段的长.②如果两点的位置固定,那么它们的距离是定值.③如果一点和一条直线的位置固定,那么它们的距离是定值.④两条平行线间的距离不是定值其中正确说法的个数是A. 1B. 2C. 3D. 44-平行四边形的面积:⑴如图①,S^ABCI =BC * AE=CD • AF .① ②(2)同底(等底)同高(等高)的平行四边形面积相等.如图②,必ECD与U7EBCF有公共边BC,则Scwm = SaHRm.例7、如图.四边形ABCD是平行四边形.AB=10, AD=8, AC J. BC.求AC、OA以及平行四边形ABCD的面积变式训练:1、平行四边形两邻边分别是4和6.其中一位上的高是*则平行四苞形的面积是.2、平行四边形的周长为20皿,AE丄BC于E, AF1CD于F, AE=2 cm, AF=3 cm.求平行四边形旭CD的面积。

八年级下册数学平行四边形总复习讲义.doc

八年级下册数学平行四边形总复习讲义.doc

中心对称图形知识点1:平行四边形的定义两组对边分别平行的四边形叫做平行四边形,在四边形ABCD中,AB〃DC, AD〃BC,那么四边形ABCD是平行四边形。

定义的作用:(1)给出一种判定四边形是平行四边形的方法,如果所给四边形的两组对边分别平行,那么它一定是平行四边形;(2)给出了平行四边形的一个重要性质:两组对边分别平行。

知识点2:平行四边形的性质(1)定义性质:平行四边形的两组对边分别平行。

(2)性质:A、平行四边形的对角相等。

B、平行四边形的对边相等。

C、平行四边形的对角线互相平分。

(3)平行四边形是中心对称图形,平行四边形绕英对角线的交点旋转180后,与自身重合,我们说平行四边形是屮心对称图形,对称屮心为对角线的交点。

注意:边:对边平行,对边相等;角:对角相等,邻角互补;对角线:对角线互相平分。

知识点3:平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形形形。

③是中心对称图形又是轴对称图__________________ I 形。

I ______________________________ 题型1:平行四边形的性质与判定例1:如图,oABCD +,ZB、ZC的平分线交于点O , BO和CD的延长线交于E ,求证:BO=OE例2:已知:如图,OABCD的对角线AC、BD相交于点0, EF过点0与AB、CD分別相交于点E、F.求证:OE = OF, AE=CF, BE=DF.例3:如图,CJ ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、. BC的中点,求证:EF和GH互相平分.B H C例4:如图,已知在"BCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC 的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,贝I」(1)中的结论是否成立?(不用说明理由)例5:如图,在口4BCQ中,点E在上,连接BE, DF〃BE交BC予点、F, AF与BE交与点M, CE 与DF交于点、N.求证:四边形MFNE是平行四边形.题型2:矩形性质与判定例1:如图,将矩形纸片ABCD沿对角线AC折柱,使点B落到点B,的位-置,AB与CD交于点E.(1)试找出一个与AAED全等的三角形,并加以证明;(2)若AB=8, DE=3, P为线段AC上的任意一点,PG丄AE于G, PH丄EC于H,试求PG+PH的值,并说明理由.例2:如图,矩形MCD中,AB=2, BC=3,对角线的垂直平分线分别交D, BC于点E、F,连结CE,则CE的长__________A E D例3:已知:如图,D ABCD屮,4C与BD交于0点,ZOAB=ZOBA.(1)求证:四边形ABCD为矩形;(2)作BELAC 于E, CF丄BD 于F,求证:BE=CF.例4:如图,在△初C中,D是3C边上的一点,E是/D的中点,过点力作的平行线交BE的延长线于F,且连结CF.(1)求证:D是3C的中点;(2)如果试猜测四边形ADCF的形状,并证明你的结论A F题型3:菱形性质与判定例1:如图,在菱形ABCD中,E、F分别是M、/C的中点,如果EF=2,那么菱形MCD 的周长是().(A)4 (B)8 (C)12 (D)16例2:如图,在菱形ABCD中,E是的中点,且DE丄4B, AB=4.求:(l)ZMC的度数;(2)菱形的面积.例3:如图,四边形ABCD +,AB//CD, /C 平分ABAD, CE//AD 交4B 于E.(1)求证:四边形AECD是菱形;(2)若点E是力3的中点,试判断MBC的形状,并说明理由.题型4:正方形性质与判定例1:如图,A. B、C三点在同一条直线上,AB二2BC,分别以MB, BC为边做正方形ABEF 和正方形BCMN,联结FN, EC.求证:FN二ECA B C例2:己知:如图,正方形ABCD中,点E、M、N分别在力从BC、/D边上,CE=MN, 乙MCE=35°,求ZANM的度数.。

(完整)平行四边形全部讲义

(完整)平行四边形全部讲义

平行四边形1、平行四边形的性质考点一、平行四边形的概念(1)定义:两组对边分别平行的四边形叫做平行四边形.(2) "表示,平行四边形ABCD ABCD”,读作“平行四边形ABCD”。

平行四边形一定按顺时针或逆时针依次注明各顶点。

(3)平行四边形定义的作用:平行四边形的定义既是判定,又是性质.①由定义知平行四边形两组对边分别平行;②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形就是平行四边形。

(4)平行四边形的基本元素:边、角、对角线。

例1中,EF∥AB,GH∥BC,EF、GH相交于点P,写出图中的平行四边形.A E DG P HB F C考点二、平行四边形的性质(1)边的性质:平行四边形的对边平行且相等。

(2)角的性质:平行四边形的邻角互补,对角相等。

(3)对角线性质:平行四边形的对角线互相平分。

例2中,∠A+∠C=160°,求∠A、∠B、∠C、∠D的度数.A BC D 考点三、平行四边形的对角线的性质(1)平行四边形的对角线互相平分.例3中,对角线AC 、BD 相交于O 点,若AC=14,BD=8,AB=10,则△OAB 的周长为_______。

练习题 一、感受理解1.已知 ABCD 的对角线交点,AC=10cm ,BD=18cm ,AD=•12cm ,•则△BOC•的周长是_______.2的对角线AC,BD 交于点O,△AOB 的面积为2,那么平行四边形ABCD 的面积为_____.3.已知平行四边形的两邻边之比为2:3,周长为20cm ,•则这个平行四边形的两条邻边长分别为___________.4.平行四边形的周长为30,两邻边的差为5,则其较长边是________. 5.平行四边形具有,而一般四边形不具有的性质是( ) A .外角和等于360° B .对角线互相平分 C .内角和等于360° D .有两条对角线6.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1。

(完整word版)平行四边形讲义新打印版

(完整word版)平行四边形讲义新打印版

平边四边形知识点一.知识框架二.知识概念平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线.平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

平行四边形的判别方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两条对角线互相平分的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半.矩形的定义:有一个角是直角的平行四边形叫矩形。

矩形是特殊的平行四边形.矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形.四个角都相等的四边形是矩形。

推论:直角三角形斜边上的中线等于斜边的一半.菱形的定义:一组邻边相等的平行四边形叫做菱形。

菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)或底×高正方形的定义:一组邻边相等的矩形叫做正方形.正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有四条对称轴)正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线互相垂直的矩形;对角线相等的菱形;梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形.梯形常用辅助线:平行四边形的判定及性质巩固练习题1、如图,已知在四边形ABCD 中,AD=BC ,∠D=∠DCE .求证:四边形ABCD•是平行四边形.2、如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由。

平行四边形复习讲义.doc

平行四边形复习讲义.doc

平行四边形一、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

二、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

三、平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行旦相等的四边形是平行四边形。

题型一、平行四边形的角例题1、在平行四边形ABCD中,NB=60° ,那么下列各式中,不能成立的是()A. ND二60°B. ZA=120°C. ZC+ZD=180°D. ZC+ZA=180°【变式一】若一平行四边形的一个角比它相邻的角大27° ,则这个平行四边形最大的内角是 O【变式二】在口ABCD 中,若ZA-ZB-700 , ZA= , ND= 。

题型二、平行四边形的边及对角线例题1、如图,在EIBCD中,AD=3cm, AB=2cm,则口ABCD 的周长为(【变式一】己知平行四边形ABCD的周长为36cm,过D作AB, BC边上的高DE、DF,求平行四边形ABCD的面积.例题2、oABCD的周长是40cm,对角线AC与BD相交于点0, AA0D的周长比AD0C的周长大4cm,则 CD= cm, BC= cm。

【变式】平行四边形的边氏为5,则它的对角线氏可能是()A. 4 和 6B. 2 和 12C. 4 和 8D. 2 和 3例题3、如图,oABCD的对角线相交于点0,过点0任引直线交AD于E,交BC于点F,则 0E ________ 0F (填">” “二”或“V"),说明理由。

[题型拓展】角分线+平行线构造等腰三角形例题4、如图,在口ABCD中,BE平分ZABC,求:(1) uABCD的周长;(2)线段DE的长。

与边AD相交于点E, AB=6cm, BC=10cmo题型三、平行四边形的性质与判定例题1、如图,已知,口ABCD中,AE=CF, M、N分别是DE、BF的中点,求证:四边形MFNE 是平行四边形.例题2、如图所示,MECF的对角线相交于点0, DB经过点0,分别与AE, CF交于B, D.求证:四边形ABCD是平行四边形.【变式】如图,在四边形ABCD中,AB二CD, BF二DE, AE_LBD, CF±BD,垂足分别为E, F.(1)求证:AABE^ACDF;(2)若AC与BD交于点0,求证:A0二CO.[课堂练习]1.己知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有( )A. 1个B. 2个C. 3个D. 4个U 2. ABCD 中,AC 、 BD 相交于点0,则图中共有全等三角形( )A. 1对B. 2对C. 3对D. 4对3、(1)在平行四边形ABCD中,已知NA二40° ,求其它各角的度数;变式:变ZA=40°为匕A+/C=100°(2)在平行四边形ABCD中,已知AB=8,周长为24,求其余三边的长.4.妇图:C7ABCD的对角线AC、BD相交于点0,直线EF过点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册章末复习---平行四边形一、学习目标 复习平行四边形、特殊平行四边形性质与判定,能利用它们进行计算或证明. 二、学习重难点 重点:性质与判定的运用;难点:证明过程的书写。

三、本章知识结构图1.平行四边形是特殊的 ;特殊的平行四边形包括 、 、 。

2.梯形 (是否)特殊平行四边形, (是否)特殊四边形。

3.特殊的梯形包括 梯形和 梯形。

4、本章学过的四边形中,属于轴对称图形的有 ;属于中心对称图形的有 。

四、复习过程 (一)知识要点1:平行四边形的性质与判定1.平行四边形的性质:(1)从边看:对边 ,对边 ; (2)从角看:对角 ,邻角 ; (3)从对角线看:对角线互相 ; (4)从对称性看:平行四边形是 图形。

2、平行四边形的判定:(1)判定1:两组对边分别 的四边形是平行四边形。

(定义)(2)判定2:两组对边分别 的四边形是平行四边形。

(3)判定3:一组对边 且 的四边形是平行四边形。

(4)判定4:两组对角分别 的四边形是平行四边形。

(5)判定5:对角线互相 的四边形是平行四边形。

【基础练习】1.已知□ABCD 中,∠B =70°,则∠A =____,∠C =____,∠D =____.2.已知O 是ABCD 的对角线的交点,AC =38 mm ,BD =24 mm,AD =14 mm ,那么△BOC 的周长等于__ __.3.如图1,ABCD 中,对角线AC 和BD 交于点O ,若AC =8,BD =6,则边AB 长的取值范围是( ). A.1<AB <7 B.2<AB <14 C.6<AB <8 D.3<AB <44.不能判定四边形ABCD 为平行四边形的题设是( ) A.AB=CD,AD=BC B.ABCD C.AB=CD,AD ∥BC D.AB ∥CD,AD ∥BC5.在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,AE=4,AF=6,ABCD 的周长为40,则ABCD 的面积是( ) A 、36 B 、48 C 、 40 D 、24【典型例题】例1、若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长. F DA OA B CDO A BC DDC AB E F M N BE F C AD 例2、 如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。

(1)求证:AF=GB ;(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.【课堂练习】:1、如图,在△ABC 中,AB=AC ,点D 在BC 上,DE ∥AC ,DF ∥AB , (1)求证:FD=FC (2)若AC=6cm ,试求四边形AEDF 的周长。

2、已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,且AE=CF ,(1)试判断BE 、CF 的关系;(2)若E 、F 是平行四边形ABCD 对角线AC 延长线上的两点,上述结论还成立吗?说明理由3、如图,四边形ABCD 为平行四边形,M,N 分别从D 到从B 到C 运动,速度相同,E,F 分别从A 到B ,从C 到D 运动,速度相同,它们之间用绳子连紧。

(1)没有出发时,这两条绳子有何关系? (2)若同时出发,这两条绳子还有(1)中的结论吗?为什么?(二)知识要点2:特殊平行四边形的性质与判定 1.矩形:(1)性质:具有平行四边形的所有性质。

另外具有:四个角都是 ,对角线互相平分而且 ,也是 图形。

(2)判定:从角出发:有 个角是直角的平行四边形或有 个角是直角的四边形。

从对角线出发:对角线 的平行四边形或对角线 且互相 的四边形。

2.菱形:(1)性质:具有平行四边形的所有性质。

另外具有:四条边都 ,对角线互相 且 每一组对角,也是 图形。

(2)判定:FEDCAA B C DE从边出发:一组 边相等的平行四边形或有 条边相等的四边形。

从对角线出发:对角线互相 的平行四边形或对角线互相 且 的四边形。

3.正方形:(1)性质:具有平行四边形、矩形、菱形的所有性质 (2)判定方法步骤:四边形正方形【基础练习】 1、如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD=120,AC=12cm ,则AB 的长__ __ 2、菱形的周长为100 cm ,一条对角线长为14 cm ,它的面积是_____.3、若菱形的周长为16 cm ,一个内角为60°,则菱形的面积为______cm 2。

4、两直角边分别为12和16的直角三角形,斜边上的中线的长是 。

5、下列条件中,能判定四边形是菱形的是( ).A.两组对边分别相等B.两条对角线互相平分且相等C.两条对角线相等且互相垂直D.两条对角线互相垂直平分6、在四边形ABCD 中,对角线AC 、BD 相交于点O ,且AO=CO ,BO=DO ,增加一个条件 可以判定四边形是矩形;增加一个条件 可以判定四边形是菱形。

7、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是( ). A.AO =OC ,OB =OD B.AO =BO =CO =DO ,AC⊥BD C.AO =OC ,OB =OD ,AC⊥BD D.AO =OC =OB =OD8、如图,E 是正方形ABCD 内一点,如果△ABE 为等边三角形,则∠DCE= °.【典型例题】例3:如图,BD ,BE 分别是∠ABC 与它的邻补角∠ABP 的平分线,AE ⊥BE ,AD ⊥BD ,E ,D 为垂足.求证:四边形AEBD 是矩形.例4:正方形ABCD 中,点E 、F 为对角线BD 上两点,DE=BF 。

试解答: (1)四边形AECF 是什么四边形? 为什么?(2)若EF=4cm ,DE=BF=2cm ,求四边形AECF 的周长。

证明 OBC例5:如图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE=CF. AE 与BF 相等吗?为什么? AE 与BF 是否垂直?说明你的理由。

【课堂练习】1、如图,矩形ABCD 中(AD >2),以BE 为折痕将△ABE 向上翻折,点A 正好落在DC 的A ′点,若AE =2,∠ABE =30°,则BC =_________.2.如图2,菱形ABCD 的边长为2,∠ABC=45°,则点D•的坐标为____.1 题图 2题图3、如右上图,正方形ABCD 中,∠︒=25DAF ,AF 交对角线BD 于点E ,那么∠BEC 等于 . 4.在△ABC 中,AD ⊥BC 于D ,E 、F 分别是AB 、AC 的中点,连结DE 、DF ,当△ABC 满足条件_________时,四边形AEDF 是菱形(填写一个你认为恰当的条件即可).5、如图,矩形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于点E 、F ,试说明四边形AFCE 是菱形.6、如图,分别以△ABC 的边AB ,AC 为一边向外画正方形AEDB 和正方形ACFG ,连接CE ,BG .试判断CE 、BG 的关系.G C BE DAF A DEFA B CDOE F练习题:1.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()A.6<AC<10B.6<AC<16C.10<AC<16D.4<AC<162.如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC 边上的点E,使DE=5,这痕为PQ,则PQ的长为()A.12B.13C.14D.153.在ΔABC中D、K分别是AB、AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD是四边形,其周长等于4.如图,在平行四边形ABCD中,AM⊥BC于M,AN⊥CD于N,∠MAN=45°,且AM+AN=20,则平行四边形ABCD的周长是5.如图先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x轴、y轴上(如图①所示),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图②所示),若AB=4,BC=3,则图①中点B 的坐标为_________,点C的坐标为________;图②中,点B的坐标为_________,点C的坐标为________.6.如图,四边形ABCD是矩形,△EAD是等腰直角三角形,△EBC是等边三角形. 已知AE=DE=2,求AB的长.7.如图,ABCD是矩形,把矩形沿直线AC折叠,点B落在E处,连接DE,从E作EH⊥AC交AC于H.(1)判断四边形ACED是什么图形,并加以证明;(2)若AB=8,AD=6,求DE的长;(3)四边形ACED中,比较AE+EC与AC+EH的大小并说明理由。

8.如图,在Rt△ABC中,∠C=90°,D、E分别是边AC、AB的中点,过点B作BF⊥DE,交线段DE的延长线于为点F,过点C作CG⊥AB,交BF于点G,AC=2BC.求证:(1)四边形BCDF是正方形;(2)AB=2CG.9.已知:如图,矩形ABCD,P为矩形外一点,PA PC⊥.求证:PDPB⊥.10.已知:如图,E、F为△ABC的边AB、BC的中点,在AC上取G、H两点,使AG=GH=HC,连结EG、FH,并延长交于D点。

求证:四边形ABCD是平行四边形。

11.如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+CD.⑴求证:点F是CD边的中点;⑵求证:∠MBC=2∠ABE.12.如图,M为正方形ABCD内一点,MA=2,MB=4,∠AMB=135°,计算MC的长。

13.如图,已知:正方形ABCD,BE∥AC,且AE=AC交BC于F,求证CF=CE.14.已知:如图,在△ABC 中,AB=AC ,延长AB 到D ,使BD=AB ,CE 是AB 边上的中线。

求证:CE CD =12.15.在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD ,若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

16.M 、N 为∆ABC 的边AB 、AC 的中点,E 、F 为边AC 的三等分点,延长ME 、NF 交于D 点,连结AD 、DC ,求证:⑴BFDE 是平行四边形, ⑵ABCD 是平行四边形。

17.已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,延长线交BE 于F ,求证:F 是BE 的中点。

相关文档
最新文档