粗糙集理论介绍

合集下载

粗糙集的简单应用解析

粗糙集的简单应用解析
pos (C ?{P }) ( D ) ? {t1, t2 , t3 , t4 , t6 , t8} ? posC (D) pos (C ?{Q}) ( D ) ? {t1 , t2 , t3 , t4 } ? pos C ( D )
pos(C ?{ R}) ( D) ? ? ? pos C (D)
第二十一页,编辑于星期三:二点 三十分。
规则提取
提取决策规则可以得到以下确定性规则:
(购买Q)且(不购买 R)—— (不购买 S) (购买 Q)且(购买 R) ——(购买S)
不确定规则为:
(不购买 Q)且(购买 R) —— (购买 S) ? (不买 Q买R,买 S ) ? 0.5
(不购买Q)且(购买 R)——(不购买 S)
论域, U 中的每个 xi (i ? n) 称为一个对象;
(2)A 是属性的非空有限集合,即 A ? {a1 , a2 ,? , an } , A 中
的每个 a j ( j ? m) 称为一个属性;
(3)V
?
?
a?
A
Va,Va
是属性的值域;
( 4) f :U ? A ? V 称为信息函数,它为每个对象关于每个
i Cij 表示分辨矩阵 中第 行,第 j 列的元素,Cij 被定义为:
C ij
?
??{a ? ? ??
A a ( xi ) ? a ( xj )}, D( xi ) ?
? , D (xi ) ? D( x j )
D(xj )
其中 i, j ? 1,2,? , n; n ? U
定义2.10 区分函数 是从分辨矩阵中构造的。约简算法的方法
定理2 core ( A) ? ? red ( A),其中 red ( A) 表示 A 的所有约简。

《粗糙集理论简介》课件

《粗糙集理论简介》课件

粗糙集理论的基本概念
1 等价关系
用于将数据分类为等价类别,从而进行分类 和推理。
2 下近似集
表示数据集的最小粗糙近似。
3 上近似集
表示数据集的最大精确近似。
4 决策规则
基于等价关系和近似集提供对数据进行决策 的方法。
粗糙集理论的应用领域
数据挖掘
粗糙集理论可用于特征选择、 数据降维和模式发现等领域。
人工智能
粗糙集理论可应用于机器学习、 模式识别和决策支持系统。
风险分析
粗糙集理论可用于风险评估和 决策风险分析等领域。
粗糙集理论的基本原理
1
等价关系
通过将数据划分为等价类别来进行数据分析。
2
ห้องสมุดไป่ตู้
近似集
使用上近似集和下近似集来描述数据的精确和粗糙性。
3
决策规则
利用近似集和等价关系进行决策分析和推理。
粗糙集理论的优点和局限性
优点
适用于不完整和不确定的数据
结合领域知识进行灵活分析
局限性
计算复杂性较高,对大数据 集处理困难
粗糙集理论在数据挖掘中的应用
数据预处理
粗糙集可用于数据清洗和特征选 择。
模式挖掘
粗糙集可用于发现数据中的隐含 模式。
决策支持
粗糙集可用于提供决策支持和分 析。
结论和总结
通过本课程,我们了解了粗糙集理论的定义、起源和基本概念。我们探讨了其在不同领域的应用,并分析了其 优点和局限性。最后,我们介绍了粗糙集理论在数据挖掘中的具体应用。希望本课程能够帮助大家更好地理解 和应用粗糙集理论。
粗糙集理论简介
欢迎各位来到今天的演讲,本课程将介绍粗糙集理论的定义、起源以及应用 领域,同时分析其基本原理和优点局限性,最后探讨其在数据挖掘中的应用。

粗糙集理论的基本原理与模型构建

粗糙集理论的基本原理与模型构建

粗糙集理论的基本原理与模型构建粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它在信息科学、数据挖掘和人工智能等领域具有广泛的应用。

本文将介绍粗糙集理论的基本原理和模型构建方法。

一、粗糙集理论的基本原理粗糙集理论最早由波兰学者Pawlak于1982年提出,它是基于集合论和近似推理的一种数学模型。

粗糙集理论的核心思想是通过对数据集进行分析,找出数据之间的关联和规律,从而进行决策和推理。

粗糙集理论的基本原理包括下近似和上近似。

下近似是指在给定条件下,能够包含所有满足条件的对象的最小集合;上近似是指在给定条件下,能够包含所有满足条件的对象的最大集合。

通过下近似和上近似的计算,可以得到粗糙集的边界区域,进而进行数据分类、决策和模式识别等任务。

二、粗糙集模型的构建方法粗糙集模型的构建方法主要包括属性约简和决策规则提取两个步骤。

属性约简是指从原始数据集中选择出最具代表性和决策能力的属性子集。

属性约简的目标是减少属性的数量,同时保持原始数据集的决策能力。

常用的属性约简方法包括正域约简、核约简和快速约简等。

这些方法通过计算属性的重要性和相关性,从而选择出最优的属性子集。

决策规则提取是指从属性约简后的数据集中提取出具有决策能力的规则。

决策规则是一种描述数据之间关系的形式化表示,它可以用于数据分类、决策和模式识别等任务。

决策规则提取的方法包括基于规则的决策树、基于规则的神经网络和基于规则的关联规则等。

三、粗糙集理论的应用领域粗糙集理论在信息科学、数据挖掘和人工智能等领域具有广泛的应用。

它可以用于数据预处理、特征选择、数据分类和模式识别等任务。

在数据预处理方面,粗糙集理论可以帮助我们对原始数据进行清洗和转换,从而提高数据的质量和可用性。

通过对数据集进行属性约简和决策规则提取,可以减少数据集的维度和复杂度,提高数据挖掘和决策分析的效率和准确性。

在特征选择方面,粗糙集理论可以帮助我们选择出最具代表性和决策能力的属性子集。

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它的提出源于20世纪80年代初期的波兰学者Zdzisław Pawlak。

粗糙集理论的核心思想是通过将数据划分成不同的等价类,来描述和处理不完全和不确知的信息。

本文将介绍粗糙集理论的基本概念与原理。

1. 粗糙集的定义与等价关系粗糙集是指将一个数据集划分成若干个等价类,其中每个等价类称为一个粗糙集。

在粗糙集理论中,等价关系是一个重要的概念。

等价关系是指具有自反性、对称性和传递性的关系。

在粗糙集理论中,等价关系用来描述数据中的相似性和差异性。

2. 上近似集与下近似集上近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素相似的元素。

下近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素不相似的元素。

上近似集和下近似集是粗糙集理论中的两个重要概念,它们用来描述数据的粗糙性和不确定性。

3. 约简与精确度约简是粗糙集理论中的一个重要操作,它的目的是通过删除一些不必要的属性或条件,从而减少数据集的复杂性,提高数据的处理效率。

约简可以通过删除一些不重要或不相关的属性来实现。

精确度是用来评估数据集的质量和可靠性的指标,粗糙集理论通过约简来提高数据集的精确度。

4. 粗糙集与模糊集粗糙集理论与模糊集理论有一些相似之处,但也存在一些差异。

模糊集理论是一种用来处理模糊和不确定性问题的数学工具,它通过给每个元素赋予一个隶属度来描述元素的模糊性。

而粗糙集理论是一种用来处理不完全和不确知信息的数学工具,它通过将数据划分成不同的等价类来描述数据的粗糙性。

5. 粗糙集的应用领域粗糙集理论在许多领域中都有广泛的应用。

在数据挖掘领域,粗糙集理论可以用来处理不完全和不确定的数据。

在人工智能领域,粗糙集理论可以用来处理模糊和不确定性问题。

在决策支持系统领域,粗糙集理论可以用来辅助决策过程。

在模式识别领域,粗糙集理论可以用来提取和分类模式。

总结:粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它通过将数据划分成不同的等价类来描述和处理不完全和不确知的信息。

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰学者Pawlak于1982年提出。

粗糙集理论的核心思想是通过对数据进行粗糙化处理,将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括:粗糙集、等价关系、下近似集和上近似集。

首先,粗糙集是指在不完全信息条件下,通过将数据进行粗糙化处理得到的集合。

粗糙集可以看作是原始数据的一个近似描述,它包含了原始数据的一部分信息。

粗糙集的构建是通过等价关系来实现的。

其次,等价关系是粗糙集理论中的一个重要概念。

等价关系是指在给定的数据集中,将数据划分为若干等价类的关系。

等价关系的划分可以通过相似性度量来实现,相似性度量可以是欧氏距离、余弦相似度等。

等价关系的划分可以将原始数据进行分类,从而构建粗糙集。

下面,我们来介绍下近似集和上近似集。

下近似集是指在给定的粗糙集中,对于某个特定的属性或条件,能够确定的元素的集合。

换句话说,下近似集是能够满足某个条件的元素的集合,它是粗糙集的一个子集。

而上近似集是指在给定的粗糙集中,对于某个特定的属性或条件,可能满足的元素的集合。

上近似集是包含下近似集的最小集合,它是粗糙集的一个超集。

粗糙集理论的应用非常广泛,特别是在数据挖掘和模式识别领域。

通过粗糙集理论,可以对大量的数据进行处理和分析,从中发现隐藏的规律和模式。

粗糙集理论可以用于特征选择、属性约简、数据分类等任务,为决策提供有力支持。

总结起来,粗糙集理论是一种处理不确定性和模糊性问题的数学工具。

它通过粗糙化处理将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括粗糙集、等价关系、下近似集和上近似集。

粗糙集理论在数据挖掘和模式识别领域有着广泛的应用,可以用于特征选择、属性约简、数据分类等任务。

通过粗糙集理论,我们可以更好地理解和处理不确定性和模糊性问题,为决策提供有力支持。

粗糙集

粗糙集

粗糙集(Rough Set)理论是由波兰数学家Pawlak在1982年提出的一种数据分析理论,常用于处理模糊和不精确的问题。

RS可以从大量的数据中挖掘潜在的、有利用价值的知识,它与概率方法、模糊集方法和证据理论方法等其他处理不确定性问题理论的最显著的区别在于:它无需提供问题所需处理的数据集合之外的任何先验信息(即无需指定隶属度或隶属函数)。

粗糙集是提供了严格的数学理论方法。

它把知识理解为对对象的分类能力。

它包含了知识的一种形式模型,这种模型将知识定义为不可区分关系的一个族集。

在信息检索过程中,由于文档中存在大量的多义和近义现象,导致不确定性出现,这将影响检索的性能。

为此采用基于互信息的粗糙集理论来处理这类不确定性问题。

动态约简技术探讨:利用标准的粗糙集方法来产生约简,即直接在原决策表的基础上计算所有的约简集,然后利用这些约简计算决策规则集合来分类未知对象。

这种方法对于未知对象的分类不总是足够充分的,因为该方法没有考虑到约简集的属性部分可能是混乱、不规则的。

动态约简是来自于在决策表的众多随机采样的子表中具有最大的出现频率的约简,在此意义上来说,利用动态约简来分类位置对象是最为稳定、可靠的。

经典粗糙集理论是建立在对象空间的等价类之上,采用上近似、下近似和边界的概念来分析对象的空间中不能由等价关系定义的子集的性质,是一种利用三值逻辑处理不精确或不完全信息的形式化方法。

有“智慧”,实际上是它们将外部环境和内部状态的传感信号分类,得出可能的情况,并由此支配行动,知识直接与真实或抽象世界有关的不同分类模式联系在一起。

因此,任何一个物种都是由一些知识来描述,对物种可以产生不同的分类。

从而如何在知识库中进行本质特征提取,发现最简决策表及最简分类规则集成为知识描述的关键。

从理论上看,智能信息处理的重要任务就是要从大量观察和实验数据中获取知识、表达知识、推理决策规则,特别是对于不精确、不完整的知识。

RS是处理不精确信息的有力工具。

经典粗糙集理论

经典粗糙集理论
粗糙集理论能够处理不确定性和模糊性,而神经网络则能够通过学习过 程找到数据中的模式。将粗糙集与神经网络结合,可以利用粗糙集对数 据的不确定性进行建模,并通过神经网络进行分类或预测。
粗糙集可以用于提取数据中的决策规则,这些规则可以作为神经网络的 训练样本。通过训练,神经网络可以学习到决策规则,并用于分类或预 测。
边界区域
近似集合中的不确定性区 域,即既不属于正域也不 属于负域的元素集合。
粗糙集的度量
精确度
描述了集合中元素被近似集合 包含的程度,即属于近似集合
的元素比例。
覆盖度
描述了近似集合能够覆盖的元 素数量,即近似集合的大小。
粗糙度
描述了集合被近似程度,是精 确度和覆盖度的综合反映。
知识的不确定性
描述了知识表达系统中属性值 的不确定性程度,与粗糙度相
经典粗糙集理论
目录
• 粗糙集理论概述 • 粗糙集的基本概念 • 粗糙集的运算与性质 • 粗糙集的决策分析 • 粗糙集与其他方法的结合 • 经典粗糙集理论案例研究
01 粗糙集理论概述
定义与特点
定义
粗糙集理论是一种处理不确定性和模 糊性的数学工具,通过集合近似的方 式描述知识的不完全性和不确定性。
粗糙集理论中的属性约简可以用于简化神经网络的输入特征,降低输入 维度,提高分类或预测的准确率。
粗糙集与遗传算法
01
遗传算法是一种全局优化算法,能够通过模拟自然界的进化过程来寻找最优解 。将粗糙集与遗传算法结合,可以利用粗糙集对数据的分类能力,结合遗传算 法的全局搜索能力,寻找最优的分类规则或决策规则。
02
粗糙集可以用于生成初始的分类规则或决策规则,然后利用遗传算法对这些规 则进行优化,通过选择、交叉、变异等操作,寻找最优的规则组合。

粗糙集理论简介及应用介绍

粗糙集理论简介及应用介绍

粗糙集理论简介及应用介绍引言:在现代信息时代,数据的快速增长和复杂性给决策和问题解决带来了挑战。

为了更好地理解和分析数据,人们提出了许多数据挖掘和分析方法。

其中,粗糙集理论作为一种有效的数据处理方法,被广泛应用于各个领域。

本文将简要介绍粗糙集理论的基本概念以及其在实际应用中的一些案例。

一、粗糙集理论的基本概念粗糙集理论是由波兰学者Pawlak在20世纪80年代初提出的。

它是一种基于近似和不确定性的数学工具,用于处理不完全和不确定的信息。

粗糙集理论的核心思想是通过将数据划分为等价类来对数据进行描述和分析。

在这种划分中,数据被分为确定和不确定的部分,从而实现了对数据的粗糙描述。

1.1 粗糙集的等价关系粗糙集的等价关系是粗糙集理论的基础。

在粗糙集中,等价关系是指具有相同属性值的数据实例之间的关系。

通过等价关系,我们可以将数据实例划分为不同的等价类,从而实现对数据的刻画和分析。

1.2 下近似集和上近似集在粗糙集中,下近似集和上近似集是对数据的进一步描述。

下近似集是指具有最小确定性的数据实例的集合,而上近似集是指具有最大确定性的数据实例的集合。

通过下近似集和上近似集,我们可以更好地理解数据的不确定性和不完整性。

二、粗糙集理论的应用案例粗糙集理论在实际应用中具有广泛的应用价值。

以下将介绍一些典型的应用案例。

2.1 数据挖掘粗糙集理论在数据挖掘中被广泛应用。

通过粗糙集理论,我们可以对大量的数据进行分类和聚类。

例如,在医学领域,研究人员可以利用粗糙集理论对医疗数据进行分类,从而实现对疾病的诊断和治疗。

2.2 特征选择特征选择是数据挖掘和机器学习中的一个重要问题。

通过粗糙集理论,我们可以对数据中的特征进行选择,从而减少数据的维度和复杂性。

例如,在图像识别中,研究人员可以利用粗糙集理论选择最具代表性的图像特征,从而提高图像识别的准确性和效率。

2.3 决策支持系统粗糙集理论在决策支持系统中的应用也非常广泛。

通过粗糙集理论,我们可以对决策问题进行建模和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粗糙集理论介绍
问题的提出:知识的含糊性
术语的模糊性,如高矮 数据的不确定性,如噪声 知识自身的不确定性,如规则的前后件间的 依赖关系不完全可靠 不完备性,数据缺失
由此,提出了包括
概率与统计、证据理论:理论上还难以令人信服,
不能处理模糊和不完整的数据
模糊集合理论:能处理模糊类数据,但要提供隶属
函数(先验知识)
so
例2: (表2)
R1(颜色) R2(形状) R3(体积) class
X1

圆形

1
X2

方形

1
X3

三角形

1
X4

三角形

1
X5

圆形

2
X6

方形

2
X7

三角形

2
X8

三角形

2
等价类IND(R1)={{x1,x3,x7}, {x2,x4}, {x5,x6,x8}}
X={X1,X2,X3,X4}
Step2. 针对各个属性下的初等集合寻找下近似和上近似。
以“头疼+肌肉痛+体温”为例,设集合X为患流感的 人的集合,I为3个属性构成的一个等效关系: {p1},{p2,p5},{p3},{p4},{p6}, 则
X={P1,P2,P3,P6} I={{p1},{p2,p5},{p3},{p4},{p6}}
粗糙集在数据挖掘中的应用 基于粗糙集的数据约简
返回
1. 粗糙集在数据挖掘中的应用
粗糙集对不精确概念的描述是通过上、下近似这两 个精确概念来表示的。
粗糙集理论的的数学基础:假定所研 究的每一个对象都涉及到一些信息(数据、 知识),如果对象由相同的信息描述,那 么它们就是相似的或不可区分的。
Example 例3 含6个流感病例的表
对于任何一个属性集合P,不可分辨关系用IND表 示,定义如下: IND(P)={(x,y) U×U:f(x,a)=f(y,a), aP}
不可分辨关系就是U上的等价关系
基本集:由论域中相互间不可区分的对象组成的 集合,是组成论域知识的颗粒。
返回
例1 一玩具积木的集合如下表描述(表1)
R1(颜色) R2(形状) R3(体积)
311100 402111 512101 610100
正区域为:{4},{5,7} So, POSC(D)= POS{A1,A2}({A5})={4,5,7}
712211 800211
γQ(P)=3/8=0.375
返回
属性的重要性
不同属性对于决定条件属性和决策属性之间的依 赖关系起着不同的作用
属性a加入C,对于分类U/IND(D)的重要程度定义为: SGF(a, C, D)=γC(D)-γC-{a}(D)
下近似得到的:
RULE1:IF (头疼=否)and(肌肉痛=是)and(体温=高) THEN 患有流感 RULE2:IF (头疼=是)and(肌肉痛=是)and(体温=很高) THEN 患有流 感 RULE3:IF (头疼=否)and(肌肉痛=是)and(体温=很高) THEN 患有流 感 负区得到的: RULE4:IF (头疼=否)and(肌肉痛=是)and(体温=正常) THEN 没患流 感 边界区得到的: RULE5:IF (头疼=是)and(肌肉痛=否)and(体温=高) THEN 可能
if a=A1,then γC-{a}(D)= γ{A2}(D)=3/8 if a=A2,then γC-{a}(D)= γ{A1}(D)=0
SO,
SGF(A1, C, D)=0 SGF(A2, C, D)=3/8 说明属性A2比属性A1更重要
返回
冗余属性
对于属性集D和R,属性a属于R,如果 POSR(D)= POSR-{a}(D),
粗糙度与粗糙隶属函数
vague(粗糙度):用来描述集合,指集合的 边界不清楚
uncertainty(粗糙隶属函数):描述元素,指 某个元素是否属于某集合是不确定的。
返回
粗糙集理论的基本概念 粗糙集理论的应用(规则挖掘和属性约简) 其他
粗糙集的应用
是一种刻划不完整性和不确定性的数学工具, 能有效地分析不精确,不一致,不完整等各种不完 备的信息, 还可以对数据进行分析和推理, 从中 发现隐含的知识, 揭示潜在的规律
例2的粗糙度 =2/5
返回
基本概念(6)粗糙隶属函数 (Rough membership function)
含糊集合没有清晰的边界,即,根据论域中现有知识无法判定某 些元素是否属于该集合。在RS中,不确定(uncertainty)这个概 念是针对元素隶属于集合的程度而言。
例2中,I为属性{R1}上构成的等价关系时,x1对 集合X的粗糙隶属函数为:2/3
集合X的下近似为 I*(X)=POS(X)={p1,p3,p6} 集合X的上近似为 I*(X)={p1,p2,p3,p5,p6} 集合X的负区为 NEG(X)={p4} 集合X的边界区为 BND(X)= {p2,p5}
Step3. 获取规则
根据上面的分析可得出关于属性“头疼+肌肉痛+体温”的规则:
论域中相互间不可分辨的对象组成的集合。是组成知识 的颗粒(granule)。知识是有粒度的. 粒度越小, 能精确 表达的概念越多. 粒度的形式表示:不可分辨关系/等价类. 粒度是知识的最小单位。
返回
基本概念(3)不可分辨关系与基本集
不可分辨关系IND(P)/等价关系:分类过程中,相差不大
的个体被归于同一类,他们的关系就是不可区分关系。
ห้องสมุดไป่ตู้
Outline:
粗糙集理论的基本概念 粗糙集理论的应用(规则挖掘和属性约简) 其他
基本概念
1 信息系统,决策表 2 知识 3 等价关系,不可分辨关系与基本集 4 下、上近似
正区域,负区域,边界域 5 粗糙度 6 粗糙隶属函数
基本概念(1) 信息系统
信息系统是四元组(U,Q,V,f). 其中 U是对象集合 Q是属性集合(包括条件属性C和决策属性 D), V是属性的值域 f是一种映射,反应对象集合之间的值
以“肌肉痛+体温”为例:
X={P1,P2,P3,P6} I={{p1},{p2,p5},{p3,p6},{p4}}
RULE1:IF (肌肉痛=是)and(体温=高) THEN 患有流感 RULE2:IF (肌肉痛=是)and(体温=很高) THEN 患有流 感 RULE3:IF (肌肉痛=是)and(体温=正常) THEN 没患流 感 RULE4:IF (肌肉痛=否)and(体温=高) THEN 可能
粗糙集理论的历史
20世纪70 年代, 波兰数学家Z. Pawlak 和一些 波兰科学院,波兰华沙大学的逻辑学家们,一起 从事关于信息系统逻辑特性的研究. 1982. Z.Pawlak发表论文“Rough Set”.宣告 RS的诞生 1991. Z.Pawlak出版著作“Rough Sets: Theoretical Aspects of Reasoning about Data ” 1992. 召开首次国际研讨会,应用专集. 之后得到飞速发展, 在数据挖掘, 模式识别, 粗 糙逻辑等方面取得较大进展.
X1

圆形

X2

方形

X3

三角形

X4

三角形

X5

圆形

X6

方形

X7

三角形

X8

三角形

取不同的属性组合,可得不同的等价关系(粒度)为: IND(R1)={{x1,x3,x7}, {x2,x4}, {x5,x6,x8}} IND(R1,R2)={{x1}, {x2}, {x3,x7}, {x4}, {x5}, {x6}, {x8}}
粗糙集理论:能处理具有不精确性和不确定性的知

等各种理论和方法
模糊集和基于概率方法,有时需要一些数据的 附加信息或先验知识, 如模糊隶属函数,基本概 率指派函数和有关统计概率分布等, 而这些信 息有时并不容易得到
粗糙集无需提供问题所需处理的数据集合之外 的任何先验信息, 所以对问题的不确定性的描 述或处理可以说是比较客观的
(表4-3)
病 头 肌肉 体 流 例 疼 疼 温感
P1 否 是 高 是
P2 是 否 高 是
P3 是

很 高

Step1. 寻找不可分辨关系: “头疼”:{p2,p3,p5},{p1,p4,p6} “肌肉痛”:{p1,p3,p4,p6},{p2,p5} “体温”:{p1,p2,p5},{p3,p6},{p4} “头疼+肌肉痛”:
粗糙集理论的基本观点
粗糙集理论是建立在分类机制的基础上的, 它将分类理解为在特定空间上的等价关系,而等 价关系构成了对该空间的划分。粗糙集理论将知 识理解为对数据的划分,每一被划分的集合称为 概念。
粗糙集理论的主要思想是利用已知的知识库, 将不精确或不确定的知识用已知的知识库中的知 识来(近似) 刻画。

C
(
D)

|
POS C |U
( |
D)
|
POSc(D)是属性集C在U/IND(D)中的正区域。 example
例4. 属性依赖度的计算 令C={A1,A2}, D={A5}
U A1 A2 A3 A4 A5 依据属性A1、A2,可得到
100100
U/IND(D):
210211
{{1,8},{2,6},{3},{4},{5,7}}
基本概念(4) 集合的上近似、下近似和边界区
一个对象a是否属于集合X根据现有知识来 判断,可分为三种情况:
相关文档
最新文档