粗糙集理论
《粗糙集理论简介》课件

粗糙集理论的基本概念
1 等价关系
用于将数据分类为等价类别,从而进行分类 和推理。
2 下近似集
表示数据集的最小粗糙近似。
3 上近似集
表示数据集的最大精确近似。
4 决策规则
基于等价关系和近似集提供对数据进行决策 的方法。
粗糙集理论的应用领域
数据挖掘
粗糙集理论可用于特征选择、 数据降维和模式发现等领域。
人工智能
粗糙集理论可应用于机器学习、 模式识别和决策支持系统。
风险分析
粗糙集理论可用于风险评估和 决策风险分析等领域。
粗糙集理论的基本原理
1
等价关系
通过将数据划分为等价类别来进行数据分析。
2
ห้องสมุดไป่ตู้
近似集
使用上近似集和下近似集来描述数据的精确和粗糙性。
3
决策规则
利用近似集和等价关系进行决策分析和推理。
粗糙集理论的优点和局限性
优点
适用于不完整和不确定的数据
结合领域知识进行灵活分析
局限性
计算复杂性较高,对大数据 集处理困难
粗糙集理论在数据挖掘中的应用
数据预处理
粗糙集可用于数据清洗和特征选 择。
模式挖掘
粗糙集可用于发现数据中的隐含 模式。
决策支持
粗糙集可用于提供决策支持和分 析。
结论和总结
通过本课程,我们了解了粗糙集理论的定义、起源和基本概念。我们探讨了其在不同领域的应用,并分析了其 优点和局限性。最后,我们介绍了粗糙集理论在数据挖掘中的具体应用。希望本课程能够帮助大家更好地理解 和应用粗糙集理论。
粗糙集理论简介
欢迎各位来到今天的演讲,本课程将介绍粗糙集理论的定义、起源以及应用 领域,同时分析其基本原理和优点局限性,最后探讨其在数据挖掘中的应用。
粗糙集理论——精选推荐

粗糙集理论
粗糙集理论
1 粗糙集的基本概念
在粗糙集理论中,我们把知识看做是⼀种能被⽤于分类对象的能⼒。
其中对象可以代表现实世界中的任意事物,包括物品、属性、概念等。
即:知识需要同现实世界中特定环境的确定对象相关联,这⼀集合称为论域。
知识与概念
令U为包含若⼲对象的⾮空有限集,也即论域,在论域中,称任意集合为⼀个概念或范畴。
特别地,我们把空集也视为⼀个概念,称之为空概念。
⽽由任意个这样的X组成的⼦集簇形成了U中抽象知识,简称为知识。
知识库
在给定论域中,任意选择⼀个等价关系集R,我们可以得到⼀个⼆元组K=<U,R>,称这样的⼆元组视为⼀个知识库(近似空间)。
在论域中,任何等价关系都能导出⼀个对论域的划分,从⽽形成了⼀个知识库。
由此,每个知识库就能够与论域中的某个等价类⼀⼀对应。
不可分辨(不可区分/不分明)关系
在给定的论域U上,任意选择⼀个等价关系集R和R的⼦集,且,则P中所有等价关系的交集依然是论域U中的等价关系,称该等价关系为P 的不可分辨关系,记作IND(P)。
并且
:表⽰⾮空⼦族集所产⽣的不分明关系IND(P)的所有等价类关系的集合,⼜称该知识为知识库K=<U,R>中关于P-基本知识(P-基本集)集合的上下近似
上近似包含了所有那些可能是属于X的元素,下近似包含了所有使⽤知识R可确切分类到X的元素。
在给定的知识库K=<U,R>中,任意选择集合,可以定于X关于知识R的上下近似。
粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它的提出源于20世纪80年代初期的波兰学者Zdzisław Pawlak。
粗糙集理论的核心思想是通过将数据划分成不同的等价类,来描述和处理不完全和不确知的信息。
本文将介绍粗糙集理论的基本概念与原理。
1. 粗糙集的定义与等价关系粗糙集是指将一个数据集划分成若干个等价类,其中每个等价类称为一个粗糙集。
在粗糙集理论中,等价关系是一个重要的概念。
等价关系是指具有自反性、对称性和传递性的关系。
在粗糙集理论中,等价关系用来描述数据中的相似性和差异性。
2. 上近似集与下近似集上近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素相似的元素。
下近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素不相似的元素。
上近似集和下近似集是粗糙集理论中的两个重要概念,它们用来描述数据的粗糙性和不确定性。
3. 约简与精确度约简是粗糙集理论中的一个重要操作,它的目的是通过删除一些不必要的属性或条件,从而减少数据集的复杂性,提高数据的处理效率。
约简可以通过删除一些不重要或不相关的属性来实现。
精确度是用来评估数据集的质量和可靠性的指标,粗糙集理论通过约简来提高数据集的精确度。
4. 粗糙集与模糊集粗糙集理论与模糊集理论有一些相似之处,但也存在一些差异。
模糊集理论是一种用来处理模糊和不确定性问题的数学工具,它通过给每个元素赋予一个隶属度来描述元素的模糊性。
而粗糙集理论是一种用来处理不完全和不确知信息的数学工具,它通过将数据划分成不同的等价类来描述数据的粗糙性。
5. 粗糙集的应用领域粗糙集理论在许多领域中都有广泛的应用。
在数据挖掘领域,粗糙集理论可以用来处理不完全和不确定的数据。
在人工智能领域,粗糙集理论可以用来处理模糊和不确定性问题。
在决策支持系统领域,粗糙集理论可以用来辅助决策过程。
在模式识别领域,粗糙集理论可以用来提取和分类模式。
总结:粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它通过将数据划分成不同的等价类来描述和处理不完全和不确知的信息。
粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰学者Pawlak于1982年提出。
粗糙集理论的核心思想是通过对数据进行粗糙化处理,将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。
粗糙集理论的基本概念包括:粗糙集、等价关系、下近似集和上近似集。
首先,粗糙集是指在不完全信息条件下,通过将数据进行粗糙化处理得到的集合。
粗糙集可以看作是原始数据的一个近似描述,它包含了原始数据的一部分信息。
粗糙集的构建是通过等价关系来实现的。
其次,等价关系是粗糙集理论中的一个重要概念。
等价关系是指在给定的数据集中,将数据划分为若干等价类的关系。
等价关系的划分可以通过相似性度量来实现,相似性度量可以是欧氏距离、余弦相似度等。
等价关系的划分可以将原始数据进行分类,从而构建粗糙集。
下面,我们来介绍下近似集和上近似集。
下近似集是指在给定的粗糙集中,对于某个特定的属性或条件,能够确定的元素的集合。
换句话说,下近似集是能够满足某个条件的元素的集合,它是粗糙集的一个子集。
而上近似集是指在给定的粗糙集中,对于某个特定的属性或条件,可能满足的元素的集合。
上近似集是包含下近似集的最小集合,它是粗糙集的一个超集。
粗糙集理论的应用非常广泛,特别是在数据挖掘和模式识别领域。
通过粗糙集理论,可以对大量的数据进行处理和分析,从中发现隐藏的规律和模式。
粗糙集理论可以用于特征选择、属性约简、数据分类等任务,为决策提供有力支持。
总结起来,粗糙集理论是一种处理不确定性和模糊性问题的数学工具。
它通过粗糙化处理将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。
粗糙集理论的基本概念包括粗糙集、等价关系、下近似集和上近似集。
粗糙集理论在数据挖掘和模式识别领域有着广泛的应用,可以用于特征选择、属性约简、数据分类等任务。
通过粗糙集理论,我们可以更好地理解和处理不确定性和模糊性问题,为决策提供有力支持。
粗糙集理论的使用方法与步骤详解

粗糙集理论的使用方法与步骤详解引言:粗糙集理论是一种用来处理不确定性和模糊性问题的数学工具,它在数据分析和决策支持系统中得到了广泛的应用。
本文将详细介绍粗糙集理论的使用方法与步骤,帮助读者更好地理解和应用这一理论。
一、粗糙集理论概述粗糙集理论是由波兰学者Pawlak于1982年提出的,它是一种基于近似和粗糙程度的数学理论。
粗糙集理论的核心思想是通过对属性间的关系进行分析,识别出数据集中的重要特征和规律。
它主要包括近似集、正域、决策表等概念。
二、粗糙集理论的使用方法1. 数据预处理在使用粗糙集理论之前,首先需要对原始数据进行预处理。
这包括数据清洗、数据变换和数据归一化等步骤,以确保数据的准确性和一致性。
2. 构建决策表决策表是粗糙集理论中的重要概念,它由属性和决策构成。
构建决策表时,需要确定属性集和决策集,并将其表示为一个矩阵。
属性集包括原始数据中的各个属性,而决策集则是属性的决策结果。
3. 确定正域正域是指满足某一条件的样本集合,它是粗糙集理论中的关键概念。
通过对决策表进行分析,可以确定正域,即满足给定条件的样本集合。
正域的确定可以通过计算属性的约简度或者使用启发式算法等方法。
4. 近似集的计算近似集是粗糙集理论中的核心概念,它是指属性集在正域中的近似表示。
通过计算属性集在正域中的近似集,可以确定属性之间的关系和重要程度。
近似集的计算可以使用不同的算法,如基于粒计算、基于覆盖算法等。
5. 属性约简属性约简是粗糙集理论中的一个重要问题,它是指从属性集中选择出最小的子集,保持属性集在正域中的近似表示不变。
属性约简的目标是减少属性集的复杂性,提高数据分析和决策的效率。
属性约简可以通过计算属性的重要度、使用启发式算法或者遗传算法等方法实现。
6. 决策规则的提取决策规则是粗糙集理论中的重要结果,它是从决策表中提取出来的一组条件和决策的组合。
决策规则可以帮助我们理解数据集中的规律和特征,从而做出更好的决策。
经典粗糙集理论

粗糙集可以用于提取数据中的决策规则,这些规则可以作为神经网络的 训练样本。通过训练,神经网络可以学习到决策规则,并用于分类或预 测。
边界区域
近似集合中的不确定性区 域,即既不属于正域也不 属于负域的元素集合。
粗糙集的度量
精确度
描述了集合中元素被近似集合 包含的程度,即属于近似集合
的元素比例。
覆盖度
描述了近似集合能够覆盖的元 素数量,即近似集合的大小。
粗糙度
描述了集合被近似程度,是精 确度和覆盖度的综合反映。
知识的不确定性
描述了知识表达系统中属性值 的不确定性程度,与粗糙度相
经典粗糙集理论
目录
• 粗糙集理论概述 • 粗糙集的基本概念 • 粗糙集的运算与性质 • 粗糙集的决策分析 • 粗糙集与其他方法的结合 • 经典粗糙集理论案例研究
01 粗糙集理论概述
定义与特点
定义
粗糙集理论是一种处理不确定性和模 糊性的数学工具,通过集合近似的方 式描述知识的不完全性和不确定性。
粗糙集理论中的属性约简可以用于简化神经网络的输入特征,降低输入 维度,提高分类或预测的准确率。
粗糙集与遗传算法
01
遗传算法是一种全局优化算法,能够通过模拟自然界的进化过程来寻找最优解 。将粗糙集与遗传算法结合,可以利用粗糙集对数据的分类能力,结合遗传算 法的全局搜索能力,寻找最优的分类规则或决策规则。
02
粗糙集可以用于生成初始的分类规则或决策规则,然后利用遗传算法对这些规 则进行优化,通过选择、交叉、变异等操作,寻找最优的规则组合。
粗糙集理论简介及应用介绍

粗糙集理论简介及应用介绍引言:在现代信息时代,数据的快速增长和复杂性给决策和问题解决带来了挑战。
为了更好地理解和分析数据,人们提出了许多数据挖掘和分析方法。
其中,粗糙集理论作为一种有效的数据处理方法,被广泛应用于各个领域。
本文将简要介绍粗糙集理论的基本概念以及其在实际应用中的一些案例。
一、粗糙集理论的基本概念粗糙集理论是由波兰学者Pawlak在20世纪80年代初提出的。
它是一种基于近似和不确定性的数学工具,用于处理不完全和不确定的信息。
粗糙集理论的核心思想是通过将数据划分为等价类来对数据进行描述和分析。
在这种划分中,数据被分为确定和不确定的部分,从而实现了对数据的粗糙描述。
1.1 粗糙集的等价关系粗糙集的等价关系是粗糙集理论的基础。
在粗糙集中,等价关系是指具有相同属性值的数据实例之间的关系。
通过等价关系,我们可以将数据实例划分为不同的等价类,从而实现对数据的刻画和分析。
1.2 下近似集和上近似集在粗糙集中,下近似集和上近似集是对数据的进一步描述。
下近似集是指具有最小确定性的数据实例的集合,而上近似集是指具有最大确定性的数据实例的集合。
通过下近似集和上近似集,我们可以更好地理解数据的不确定性和不完整性。
二、粗糙集理论的应用案例粗糙集理论在实际应用中具有广泛的应用价值。
以下将介绍一些典型的应用案例。
2.1 数据挖掘粗糙集理论在数据挖掘中被广泛应用。
通过粗糙集理论,我们可以对大量的数据进行分类和聚类。
例如,在医学领域,研究人员可以利用粗糙集理论对医疗数据进行分类,从而实现对疾病的诊断和治疗。
2.2 特征选择特征选择是数据挖掘和机器学习中的一个重要问题。
通过粗糙集理论,我们可以对数据中的特征进行选择,从而减少数据的维度和复杂性。
例如,在图像识别中,研究人员可以利用粗糙集理论选择最具代表性的图像特征,从而提高图像识别的准确性和效率。
2.3 决策支持系统粗糙集理论在决策支持系统中的应用也非常广泛。
通过粗糙集理论,我们可以对决策问题进行建模和分析。
粗糙集理论

BX { x1 , x 3 , x 4 , x 5 , x 8 , x 9 }
; }=
BN B ( X )
=
BX BX
x1 , x 3 , x 4 , x 5 , x 8 , x 9
}-{
x1 , x 3 , x 4 , x 9
{ x 5 , x 8 }。因为 BX 义的。
BX
,即 BN
4
5
从表 4 可见,当去掉属性 a2 或 a3 时,基本集个数减少, 而去掉属性 a1 时,基本集数目不变。说明属性 a1 是冗 余的,而属性 a 2 和 a3 则是独立的。所以,仅仅使用属 性 a 2 和 a3 ,便可以区分出 5 个基本集,可获得于原始 信息系统相同的信息系统。
2012-5-29
a 1 2 2 1 1
2
a
3
3 1 3 4 2
9
2012-5-29
例 3 : 如果仅考虑表 1 所示信息系统的属性子集
B { a 1 , a 2 }, 则
B 所对应的不可辨识关系 Ind ( B ) 导
出的等价类 U / Ind ( B ) 如表 3 所示。其中的每一行是一 个 B 的基本集。
表 3:关于属性子集 B { a 1 , a 2 } 的基本集 U B a
1
a2
{ { { {
x1 , x 3 , x 9 }
x 2 , x 7 , x 10 }
x4 }
2 3 2 1
1 2 2 1
x5 , x6 , x8
}
2012-5-29
10
下近似和上近似
上、下近似(Low er and U pper approxi ati m ons)是用 粗糙集理论进行数据分析的两个关键概念。设信息系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粗糙集理论与应用研究综述王国胤1Yiyu Yao2 于洪1,2(1重庆邮电大学计算机科学与技术研究所重庆400065)(2Department of Computer Science, University of Regina, Regina, Canada S4S 0A2){wanggy, yuhong}@, yyao@cs.uregina.ca摘要本文在阐释粗糙集理论基本体系结构的基础上,从多个角度探讨粗糙集模型的研究思路,分析粗糙集理论与模糊集、证据理论、粒计算、形式概念分析、知识空间等其他理论之间的联系,介绍国内外关于粗糙集理论研究的主要方向和发展状况,讨论当前粗糙集理论研究的热点研究领域,以及将来需要重点研究的主要问题。
关键词粗糙集,模糊集,粒计算,形式概念分析,知识空间,智能信息处理A Survey on Rough Set Theory and Its ApplicationWang Guo-Yin1Yao Yi-Yu2 Yu Hong1,21 Institute of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 4000652 Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2Abstract This paper introduces the basic ideas and framework of rough set theory and the different views of knowledge representation in rough set theory, and then discusses the relations between the rough set theory and the other theories, such as fuzzy set, evidence theory, granular computing, formal concept analyzing, knowledge space, etc. Furthermore, the paper reviews the recent studies for this theory and a survey on its applications is also given. The future development trend of rough set theory is also discussed.Keywords rough set, fuzzy set, granular computing, formal concept analyzing, knowledge space, intelligent information processing1 引言智能信息处理是当前信息科学理论和应用研究中的一个热点领域。
由于计算机科学与技术的发展,特别是计算机网络的发展,每日每时为人们提供了大量的信息,信息量的不断增长,对信息分析工具的要求也越来越高,人们希望自动地从数据中获取其潜在的知识。
特别是近20年间,知识发现(规则提取、数据挖掘、机器学习)受到人工智能学界的广泛重视,知识发现的各种不同方法应运而生。
粗糙集(Rough Set,有时也称Rough集、粗集)理论是Pawlak教授于1982年提出的一种能够定量分析处理不精确、不一致、不完整信息与知识的数学工具[1]。
粗糙集理论最初的原型来源于比较简单的信息模型,它的基本思想是通过关系数据库分类归纳形成概念和规则,通过等价关系的分类以及分类对于目标的近似实现知识发现。
由于粗糙集理论思想新颖、方法独特,粗糙集理论已成为一种重要的智能信息处理技术[2-4],该理论已经在机器学习与知识发现、数据挖掘、决策支持与分析等方面得到广泛应用。
目前,有三个有关粗糙集的系列国际会议,即:RSCTC、RSFDGrC和RSKT。
中国学者在这方面也取得了很大的成果,从2001年开始每年召开中国粗糙集与软计算学术会议;RSFDGRC2003、IEEE GrC2005、RSKT2006、IFKT2008、RSKT2008、IEEE GrC2008等一系列国际学术会议在中国召开。
粗糙集理论与应用的核心基础是从近似空间导出的一对近似算子,即上近似算子和下近似算子(又称上、下近似集)。
经典Pawlak模型中的不分明关系是一种等价关系,要求很高,限制了粗糙集模型的应用。
因此,如何推广定义近似算子成为了粗糙集理论研究的一个重点。
目前,常见的关于推广粗糙集理论的研究方法有两种,即:构造化方法和公理化方法。
构造化方法是以论域上的二元关系、划分、覆盖、邻域系统、布尔子代数等作为基本要素,进而定义粗糙近似算子,从而导出粗糙集代数系统。
公理化方法的基本要素是一对满足某些公理的一元集合算子,近似算子的某些公理能保证有一些特殊类型的二元关系的存在;反过来, 由二元关系通过构造性方法导出的近似算子一定满足某些公理。
事实上,有两种形式来描述粗糙集,一个是从集合的观点来进行,一个是从算子的观点来进行。
那么,从不同观点采用不同的研究方法就得到粗糙集的各种扩展模型。
扩展模型的研究以及基于其上的应用研究已经成为新的研究热点。
粗糙集理论与其他处理不确定和不精确问题理论的最显著的区别是它无需提供问题所需处理的数据集合之外的任何先验信息, 所以对问题的不确定性的描述或处理可以说是比较客观的, 由于这个理论未能包含处理不精确或不确定原始数据的机制, 所以这个理论与概率论, 模糊数学和证据理论等其他处理不确定或不精确问题的理论有很强的互补性。
因此,研究粗糙集理论和其他理论的关系也是粗糙集理论研究的重点之一。
基于粗糙集理论的应用研究主要集中在属性约简、规则获取、基于粗糙集的计算智能算法研究等方面。
由于属性约简是一个NP-Hard问题,许多学者进行了系统的研究。
基于粗糙集的约简理论发展为数据挖掘提供了许多有效的新方法。
比如,针对不同的信息系统(协调的和不协调的、完备的和不完备的),结合信息论、概念格、群体智能算法技术等都有了相应的研究成果。
基于粗糙集理论的应用也涌现在各行各业。
许多学者将粗糙集理论应用到了工业控制[5-8]、医学卫生及生物科学[9-11]、交通运输[12-14]、农业科学[15-16]、环境科学与环境保护管理[17]、安全科学[18]、社会科学[19]、航空、航天和军事等领域[20-21]。
粗糙集理论发展二十余年来,无论在理论研究还是应用研究上都取得了很多成果。
从认知科学的角度讲,我们如果要学习一个新的学科,就必须建立它的系统体系结构,同时学习思维及计算方法,这样我们就能从已知的结果推到未知的结果。
本文将在总结已有的这些研究成果的基础上,帮助读者建立起一个这样的系统体系结构,同时指出进一步的研究方向。
我们将这个理论目前的研究状况介绍给信息科学工作者, 希望进一步推动并促进我国在这一领域的研究工作。
本文组织结构如下:第二部分介绍粗糙集理论基础;第三部分介绍粗糙集模型研究,将从构造化方法和公理化方法、面向集合的观点和面向算子的观点来阐述;第四部分将探讨粗糙集理论和证据理论、模糊集、形式概念分析、知识空间等的关系;第五部分是基于粗糙集的研究以及应用。
最后是总结和展望。
2 粗糙集理论基础本节在回顾粗糙集基础概念的基础上,说明常见的两种研究粗糙集的方法:构造化方法和公理化方法。
并且,从集合观点和算子观点来解释粗糙集。
2.1 概念、可定义集为了对知识进行描述,首先需要知道什么是概念。
从经典的角度来看,每个概念都包含其内涵和外延。
为了给出概念内涵和外延的具体描述,我们考虑一个简单的知识表达系统,即信息表。
信息表就是一组对象的集合,对象通过一组属性来描述。
表1就是一个信息表的例子。
信息表M可以形式化地表达为四元组(,,{|},{|})a aM U At V a At I a At=∈∈。
表1中,126{,,...,}U x x x=是有限非空对象的集合,也称为论域,At={头疼,肌肉疼,体温,流感}是有限非空的属性集合。
aV表示属性a At∈的属性值的范围,即属性a的值域,:a aI U V→是一个信息函数。
如果A At⊆,则()AI x表示U中对象x在属性A上的属性值。
表1 信息表实例为了形式化地定义概念的内涵,可以采用决策逻辑语言[22]来分析信息表。
我们定义和讨论的决策逻辑语言L由原子公式组成,公式是一种(属性,数据)对,用命题联词:与、或、非等通过标准的方法构成复合公式。
公式是用来描述论域中对象的工具,可以用来描述论域中具有某些性质的对象的子集。
例如在原子公式中,有序对(头疼,是)解释为在属性―a=头疼‖上值为―v=是‖的所有对象的描述。
当φ为信息表M中的一个公式时,集合(){,|}Mm x U xφφ=∈=称为M中公式φ的含义。
含义()mφ的自变量是语言的公式,其值是信息表中对象集合的子集。
()mφ就是那些具有公式φ的性质的对象的全体。
换句话说,公式φ可以描述对象子集()mφ。
这样,就建立起了公式φ和论域U的子集之间的关系。
利用决策逻辑语言L,可以给出概念的形式描述:信息表M中的概念就是(,())mφφ,其中φ∈L。
概念(,())mφφ的内涵是φ,表示M中对对象子集()mφ的描述;概念(,())mφφ的外延是()mφ,其含义是满足公式φ的所有对象的全体。
在粗糙集理论的很多应用中,经常考虑的只是一个属性子集A At⊆,即在决策逻辑语言中只考虑A中的属性。
我们用符号()AL表示由属性子集A定义的语言。
将前面讨论中出现的L用()AL来代替,相应的结论也都成立。
考虑属性子集A At⊆及其相应的语言()AL,可定义集的形式化定义[23]如下。
定义1 在信息表M中,如果称子集X U⊆是可被属性子集A At⊆定义的,当且仅当在语言()AL中存在一个公式φ使得()X mφ=。
否则,X称为不可定义的。
值得注意的是,这里谈到的可定义,是指在属性子集A上是可定义的。
例如,表1中,我们考虑属性子集A ={头疼,肌肉疼},子集1123{,,}X x x x U ⊆=,公式1:φ(头疼=是)∧(肌肉疼=是)。
那么在语言()A L 中,显然有11()X m φ=,子集123{,,}x x x 是可定义集。
而且,子集X 2={x 4, x 6}、X 3={x 5}也是可定义集,满足的公式分别是:2:φ(头疼=否)∧(肌肉疼=是);3:φ(头疼=否)∧(肌肉疼=否)。