第七章粗糙集理论

合集下载

粗糙集理论优质获奖课件

粗糙集理论优质获奖课件
点之
若rij=1, 且 i≠j, 则rji=0
对M2中1所 在位置,M 中相应位置 都是1
假如两 假如顶
点之
点xi
间有边, 到xj有边,
一定
xj
13
4、等价关系
等价关系旳定义:设R是非空集合A上旳关系,假如满足 ⑴ R是自反旳; ⑵ R是对称旳; ⑶ R是传递旳; 则称R是A上旳等价关系。
21
内容提要
一、概述 二、知识分类 三、知识旳约简 四、决策表旳约简 五、粗糙集旳扩展模型 六、粗糙集旳试验系统 七、粒度计算简介
22
一、 概述
现实生活中有许多模糊现象并不能简朴地 用真、假值来表达﹐怎样表达和处理这些现 象就成为一种研究领域。早在1923年谓词逻 辑旳创始人G.Frege就提出了模糊(Vague)一 词,他把它归结到边界线上,也就是说在全 域上存在某些个体既不能在其某个子集上分 类,也不能在该子集旳补集上分类。
自反性 反自反性 对称性 反对称性 传递性
12
关系性质旳三种等价条件
体 现 式
关系 矩阵
关系图
自反性 IAR
主对角 线元素 全是1
每个顶 点都有 环
反自反性 R∩IA=
主对角线 元素全是 0
每个顶点 都没有环
对称性 R=R1
反对称性 R∩R1 IA
传递性 RRR
矩阵是对称 矩阵
假如 两个 顶
定义 假如一种集合满足下列条件之一: (1)集合非空, 且它旳元素都是有序对 (2)集合是空集 则称该集合为一种二元关系, 简称为关系,记作R. 如<x,y>∈R, 可记作 xRy;假如<x,y>R, 则记作xRy
实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}. R是二元关系, 当a, b不是有序对时,S不是二元关系 根据上面旳记法,能够写1R2, aRb, aSb等.

粗糙集理论

粗糙集理论

粗糙集理论与应用研究综述王国胤1Yiyu Yao2 于洪1,2(1重庆邮电大学计算机科学与技术研究所重庆400065)(2Department of Computer Science, University of Regina, Regina, Canada S4S 0A2){wanggy, yuhong}@, yyao@cs.uregina.ca摘要本文在阐释粗糙集理论基本体系结构的基础上,从多个角度探讨粗糙集模型的研究思路,分析粗糙集理论与模糊集、证据理论、粒计算、形式概念分析、知识空间等其他理论之间的联系,介绍国内外关于粗糙集理论研究的主要方向和发展状况,讨论当前粗糙集理论研究的热点研究领域,以及将来需要重点研究的主要问题。

关键词粗糙集,模糊集,粒计算,形式概念分析,知识空间,智能信息处理A Survey on Rough Set Theory and Its ApplicationWang Guo-Yin1Yao Yi-Yu2 Yu Hong1,21 Institute of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 4000652 Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2Abstract This paper introduces the basic ideas and framework of rough set theory and the different views of knowledge representation in rough set theory, and then discusses the relations between the rough set theory and the other theories, such as fuzzy set, evidence theory, granular computing, formal concept analyzing, knowledge space, etc. Furthermore, the paper reviews the recent studies for this theory and a survey on its applications is also given. The future development trend of rough set theory is also discussed.Keywords rough set, fuzzy set, granular computing, formal concept analyzing, knowledge space, intelligent information processing1 引言智能信息处理是当前信息科学理论和应用研究中的一个热点领域。

粗糙集的简单应用解析

粗糙集的简单应用解析
pos (C ?{P }) ( D ) ? {t1, t2 , t3 , t4 , t6 , t8} ? posC (D) pos (C ?{Q}) ( D ) ? {t1 , t2 , t3 , t4 } ? pos C ( D )
pos(C ?{ R}) ( D) ? ? ? pos C (D)
第二十一页,编辑于星期三:二点 三十分。
规则提取
提取决策规则可以得到以下确定性规则:
(购买Q)且(不购买 R)—— (不购买 S) (购买 Q)且(购买 R) ——(购买S)
不确定规则为:
(不购买 Q)且(购买 R) —— (购买 S) ? (不买 Q买R,买 S ) ? 0.5
(不购买Q)且(购买 R)——(不购买 S)
论域, U 中的每个 xi (i ? n) 称为一个对象;
(2)A 是属性的非空有限集合,即 A ? {a1 , a2 ,? , an } , A 中
的每个 a j ( j ? m) 称为一个属性;
(3)V
?
?
a?
A
Va,Va
是属性的值域;
( 4) f :U ? A ? V 称为信息函数,它为每个对象关于每个
i Cij 表示分辨矩阵 中第 行,第 j 列的元素,Cij 被定义为:
C ij
?
??{a ? ? ??
A a ( xi ) ? a ( xj )}, D( xi ) ?
? , D (xi ) ? D( x j )
D(xj )
其中 i, j ? 1,2,? , n; n ? U
定义2.10 区分函数 是从分辨矩阵中构造的。约简算法的方法
定理2 core ( A) ? ? red ( A),其中 red ( A) 表示 A 的所有约简。

粗糙集

粗糙集


对于上表来说,U中有四个对象(概念),而现 在条件集合中只有一个属性,对于U1和U2来说, 它们的p不同所以可以通过p来区分,即u1,u2在p 下可区分;而U2和U3虽然是不同的对象但是在P 下却是相同的,即在p下不可区分,就成为不可 区分
粗糙集:
一个集合若恰好等于基本集的任意并集称为一个清晰 (crisp)集(精确集),否则称为粗糙(rough)集(不 精确集)。 解释:都可区分的是清晰集,有不可区分的对象为粗糙 集 主要特点:以不完全信息或知识去处理一些不分明现象的 能力,或依据观察、度量到的某些不精确的结果而进行分 类数据的能力. 粗糙集体现了集合中元素间的不可区分性. 主要优势:它不需要提供问题所需处理的数据集合之外的 任何先验知识,而且与处理其它不确定性问题的理论有很 强的互补性.
粗糙集理论所处理的问题
•不确定或不精确知识的表达; •经验学习并从经验中获取知识; •不一致信息的分析; •根据不确定,不完整的知识进行推理; •在保留信息的前提下进行数据化简; •近似模式分类; •识别并评估数据之间的依赖关系
三、粗糙集的应用
粗糙集理论在许多领域得到了应用: ①临床医疗诊断;
②电力系统和其他工业过程故障诊断;
3. 如果P中的任何一条属性都是不 可简约的,那么就称P是独立的 解释:P是独立的说明P中的任何一个属性都是必 不可少的,它独立的表达一个系统分类的特征。
属性约简的算法分析:
初始状态:所有数据已存入数据库(以下为模拟数据)
u 1 2 3 4 5 6
a 1 1 0 1 1 2
b 0 0 0 1 1 1
集合O 的下逼近(即正区) 为 I 3 (O ) = PO S (O ) = {刘保,赵 凯} 集合O 的负区为 N EG (O ) = {李得} 集合O 的边界区为 BND (O ) = {王治, 马丽} 集合O 的上逼近为 I 3 (O ) = PO S (O ) + BND (O ) = {刘保,赵凯,王治,马 丽} 根据表1, 可以归纳出下面几条规则, 揭示了教育程度与 是否能找到好工作之间的关 RUL E 1: IF (教育程度= 大学) OR (教育程度= 博士) THEN (可以找到好工作) RUL E 2: IF (教育程度= 小学) THEN (找不到好工作) RUL E 3: IF (教育程度= 高中) THEN (可能找到好工作)

粗糙集理论介绍

粗糙集理论介绍
粗糙集理论介绍
问题的提出:知识的含糊性
术语的模糊性,如高矮 数据的不确定性,如噪声 知识自身的不确定性,如规则的前后件间的 依赖关系不完全可靠 不完备性,数据缺失
由此,提出了包括
概率与统计、证据理论:理论上还难以令人信服,
不能处理模糊和不完整的数据
模糊集合理论:能处理模糊类数据,但要提供隶属
函数(先验知识)
so
例2: (表2)
R1(颜色) R2(形状) R3(体积) class
X1

圆形

1
X2

方形

1
X3

三角形

1
X4

三角形

1
X5

圆形

2
X6

方形

2
X7

三角形

2
X8

三角形

2
等价类IND(R1)={{x1,x3,x7}, {x2,x4}, {x5,x6,x8}}
X={X1,X2,X3,X4}
Step2. 针对各个属性下的初等集合寻找下近似和上近似。
以“头疼+肌肉痛+体温”为例,设集合X为患流感的 人的集合,I为3个属性构成的一个等效关系: {p1},{p2,p5},{p3},{p4},{p6}, 则
X={P1,P2,P3,P6} I={{p1},{p2,p5},{p3},{p4},{p6}}
粗糙集在数据挖掘中的应用 基于粗糙集的数据约简
返回
1. 粗糙集在数据挖掘中的应用
粗糙集对不精确概念的描述是通过上、下近似这两 个精确概念来表示的。
粗糙集理论的的数学基础:假定所研 究的每一个对象都涉及到一些信息(数据、 知识),如果对象由相同的信息描述,那 么它们就是相似的或不可区分的。

粗糙集理论及其应用研究

粗糙集理论及其应用研究

粗糙集理论及其应用研究一、粗糙集理论概述粗糙集是一种用于解决不确定性问题的数学工具。

粗糙集理论中知识被理解为对事物进行区分的能力,在形式上表现为对论域的划分,因而通过论域上的等价关系表示。

粗糙集通过一对上、下近似算子来刻画事物,它不需要数据以外的任何先验知识,因此具有很高的客观性。

目前,粗糙集被广泛用于决策分析、机器学习、数据挖掘等领域[1~6]。

二、粗糙集中的基本概念[7]定义1 论域、概念。

设U是所需研究的对象组成的非空有限集合,称为一个论域,即论域U。

论域U的任意一个子集XU,称为论域U的一个概念。

论域U中任意一个子集簇称为关于U的知识。

定义2 知识库。

给定一个论域U和U上的一簇等价关系S,称二元组K=(U,S)是关于论域U的知识库或近似空间。

定义3 不可分辨关系。

给定一个论域U和U上的一簇等价关系S,若PS,且P≠?,则∩P仍然是论域U上的一个等价关系,称为P上的不可分辨关系,记做IND(P)。

称划分U/IND(P)为知识库K=(U,S)中关于论域U的P-基本知识。

定义4 上近似、下近似。

设有知识库K=(U,S)。

其中U为论域,S为U 上的一簇等价关系。

对于X∈U和论域U上的一个等价关系R∈IND(K),则X关于R的下近似和上近似分别为:下近似R(X)=∪{Y∈U/R|YX}上近似R(X)=∪{Y∈U/R|Y∩X=?}集合的上近似和下近似是粗糙集中最核心的概念,粗糙集的数字特征以及拓扑特征都是由它们来描述和刻画的。

当R=(X)时,称X是R-精确集;当R(X)≠(X)时,称X是R-粗糙集,即X是粗糙集。

三、粗糙集理论的优势随着人们对粗糙集理论的不断研究,它的应用领域在不断扩大,粗糙集理论的优势在于:1)他不需要专家的经验知识,而仅利用现实实例数据本身提供的信息;2)能搜索数据的最小集合,能从实例数据中获取易于证实的规则知识,最后,它同时允许使用定性和定量的数据。

近年来,粗糙集理论应用到了许多领域。

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它的提出源于20世纪80年代初期的波兰学者Zdzisław Pawlak。

粗糙集理论的核心思想是通过将数据划分成不同的等价类,来描述和处理不完全和不确知的信息。

本文将介绍粗糙集理论的基本概念与原理。

1. 粗糙集的定义与等价关系粗糙集是指将一个数据集划分成若干个等价类,其中每个等价类称为一个粗糙集。

在粗糙集理论中,等价关系是一个重要的概念。

等价关系是指具有自反性、对称性和传递性的关系。

在粗糙集理论中,等价关系用来描述数据中的相似性和差异性。

2. 上近似集与下近似集上近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素相似的元素。

下近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素不相似的元素。

上近似集和下近似集是粗糙集理论中的两个重要概念,它们用来描述数据的粗糙性和不确定性。

3. 约简与精确度约简是粗糙集理论中的一个重要操作,它的目的是通过删除一些不必要的属性或条件,从而减少数据集的复杂性,提高数据的处理效率。

约简可以通过删除一些不重要或不相关的属性来实现。

精确度是用来评估数据集的质量和可靠性的指标,粗糙集理论通过约简来提高数据集的精确度。

4. 粗糙集与模糊集粗糙集理论与模糊集理论有一些相似之处,但也存在一些差异。

模糊集理论是一种用来处理模糊和不确定性问题的数学工具,它通过给每个元素赋予一个隶属度来描述元素的模糊性。

而粗糙集理论是一种用来处理不完全和不确知信息的数学工具,它通过将数据划分成不同的等价类来描述数据的粗糙性。

5. 粗糙集的应用领域粗糙集理论在许多领域中都有广泛的应用。

在数据挖掘领域,粗糙集理论可以用来处理不完全和不确定的数据。

在人工智能领域,粗糙集理论可以用来处理模糊和不确定性问题。

在决策支持系统领域,粗糙集理论可以用来辅助决策过程。

在模式识别领域,粗糙集理论可以用来提取和分类模式。

总结:粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它通过将数据划分成不同的等价类来描述和处理不完全和不确知的信息。

粗糙集 (ppt)

粗糙集 (ppt)
一、概述 二、知识分类 三、知识的约简 四、决策表的约简 五、粗糙集的扩展模型 六、粗糙集的实验系统 七、粒度计算简介
2
一、 概述
现实生活中有许多含糊现象并不能简单 地用真、假值来表示﹐如何表示和处理这些 现象就成为一个研究领域。早在1904年谓词 逻辑的创始人G.Frege就提出了含糊(Vague) 一词,他把它归结到边界线上,也就是说在 全域上存在一些个体既不能在其某个子集上 分类,也不能在该子集的补集上分类。
12
Issues in the Decision Table
• The same or indiscernible objects may be represented several times. • Some of the attributes may be superfluous.
13
不可区分性Indiscernibility
二、 知识分类
为数学处理方便起见,在下面的定义中用等价关系 来代替分类。 一个近似空间(approximate space)(或知识库)定义 为一个关系系统(或二元组)
K=(U,R)
其中U(为空集)是一个被称为全域或论域(universe) 的所有要讨论的个体的集合,R是U上等价关系的一 个族集。
7
二、 知识分类
设PR,且P ,P中所有等价关系的交集称为P上 的一种不可区分关系(indiscernbility relation) 记作IND(P),即
[x]IND(p)= ∩[x]R RP 注意,IND(P)也是等价关系且是唯一的。
8
二、 知识分类
给定近似空间K=(U, R),子集XU称为U上的一个概念 (concept),形式上,空集也视为一个概念;非空子族集 PR所产生的不可区分关系IND(P)的所有等价类关系的集合 即U/IND(P),称为基本知识(basic knowledge),相应的等 价类称为基本概念(basic concept);特别地,若关系QR, 则关系Q就称为初等知识(elementary knowledge),相应的 等价类就称为初等概念(elementary concept)。 根据上述定义可知,概念即对象的集合,概念的族集(分类) 就是U上的知识,U上分类的族集可以认为是U上的一个知识 库,或说知识库即是分类方法的集合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
属性 对象 x1 x2 x3 x4 x5 x6 头疼r1 是 是 是 否 否 否 条件属性C 肌肉疼r2 是 是 是 是 否 是 体温r3 正常 高 很高 正常 高 很高 决策属性D 流感 否 是 是 否 否 是
12
• (3)不可分辨关系
– 在粗糙集中,论域U中的对象可用多种信息(知识)来描述。当两个不同 的对象由相同的属性来描述时,这两个对象在该系统中被归于同一类, 它们的关系称之为不可分辨关系。即对于任一属性子集 B⊆R ,如果对象 xi,xj∊U ,∀ r∊B ,当且仅当 f(xi,r)=f(xj,r) 时,xi 和xj 是不可分辨的,简 记为Ind(B)。不可分辨关系称为等价关系。 – 例如:只用黑白两种颜色把空间中的一些物体划分成两类: { 黑色物体} 、 { 白色物体},那么同为黑色的物体就是不可分辨的,因为描述它们特征 属性的信息是相同的,都是黑色。如果引入方、圆的属性,可将物体进 一步划分为4 类:{黑色方物体}、{黑色圆物体}、{白色方物体}、{白色 圆物体}。这时,如果有两个同为黑色方物体,则它们还是不可分辨的。 – 不可分辨关系这一概念在 RS 中十分重要,它反映了我们对世界观察的不 精确性。 – 另一方面,不可分辨关系反映了论域知识的颗粒性。知识库中的知识越 多,知识的颗粒度就越小,随着新知识不断加入到知识库中,粒度会不 断减小,直致将每个对象区分开来。但知识库中的知识粒度越小,则导 致信息量增大,存储知识库的费用越高。
第八届中国粗糙集与软计算学术会议 , 2008 年 8 月 22 5 日至 8 月 24日在河南省新乡市召开中国
粗糙集的理论及应用的文章 主要发表在以下杂志
国际: 1.Information Sciences 2.Fuzzy sets and systems 3.International Journal of Computer and Information Sciences 4.Communication of the ACM 5.Computational Intelligence 6.Journal of computer and system sciences 国内: 1.模式识别与人工智能 2.软件学报 3.科学通报 4.计算机科学 5.计算机学报 6.模糊系统与数学 7.计算机应用与软件 8.计算机研究与发展 9.计算技术与自动化
BUN(X )
H(Xபைடு நூலகம்)
NEG (
X)
X 的边界线
16

(7)粗糙度(近似精确度)
– 对于知识R(即属性子集),样本子集X的不确定程度可以用粗糙度α R(X)来表示为 Card R X R X Card R X
8
(2)经典集合、模糊集合、粗糙集的关系
– 经典集合认为一个集合完全有其元素所决定,一个元素要么属于这个集合,要么 不属于这个集合。其隶属函数μ X(x)∊{0,1}是二值逻辑。 – 模糊集合认为事物具有中介过渡性质,而非突然改变,集合中每一个元素的隶属 函数μ X(x)∊[0,1],即在闭区间[0,1]可以任意取值,隶属函数可以是连续光滑的, 因此模糊集合对不确定信息的刻划是精细而充分的。但隶属函数不可计算,凭人 的主观经验给定。 – 粗糙集合把用于分类的知识引入集合。一个元素x是否属于集合X,需要根据现有 知识来判定,可分为三个情况:①x肯定不属于X;②x肯定属于X;③x可能属于 也可能不属于 X 。到达属于哪种情况依赖于我们所掌握的关于论域的知识。粗糙 集的隶属函数为阶梯状,对不确定性信息的描述是粗糙的, 1.0 但粗糙隶属函数是可计算的。粗糙集主 0.8 要用于对信息系统进行约简和分类。
7. AI Magazine 8. AI Communications 9. European Journal of Operational Research 10.International Journal of Approximate Reasoning 11.Theoretical computer sciences 12.Decision support Systems 13.International Journal of Man-Machine studies 14.Fundamenta Informaticae 15.Intelligent Automation Sciences
4
1998年,国际信息科学杂志(Information Sciences)为粗糙集理论的研究出了一期专辑[2,3]。
第一届中国RS理论与软计算学术研讨会,于2001年5月 在重庆举行。
第二届中国RS理论与软计算学术研讨会,于2002年10月 在苏州大学举行。 第三届中国RS理论与软计算学术研讨会,于2003年8月 在重庆举行。 第四届中国RS理论与软计算学术研讨会,将于2004年在 舟山举行。
11
(2)知识表达系统
– 一个知识表达系统或信息系统S可以表示为有序四元组 S={U,R,V,f} 其中,U={x1,x2,…,xn}为论域,它是全体样本的集合; R=C∪D 为属性集合,其中子集C是条件属性集,反映对象的特征,D为决策属性集, 反映对象的类别; V Vr 为属性值的集合,V 表示属性r的取值范围; r rR f:U×R→V 为一个信息函数,用于确定U中每一个对象x的属性值,即任一xi∊U,r∊R, 则f(xi,r)=Vr
0.6 0.4 0.2 0.0
0.2
0.4
0.6
0.8
1.0
9
2、 粗糙集的基本理论与方法
1
粗糙集的基本概念
2
粗糙集的基本思想
3
粗糙集的基本特点
10
1)粗糙集的基本概念
(1)知识与分类
– 在粗糙集理论中,知识被认为是一种分类能力。 人们的行为基本是分辨现实的或抽象的对象的 能力。 – 假定我们起初对论域内的对象(或称元素、样 本、个体)已具有必要的信息或知识,通过这 些知识能够将其划分到不同的类别。若我们对 两个对象具有相同的信息,则它们是不可区分 的,即根据已有的信息不能将其划分开。 – 粗糙集理论的核心是等价关系,通常用等价关 系替代分类,根据这个等价关系划分样本集合 为等价类。 基本思想:从知识库的观点看,每个等价类被称 为一个概念,即一条知识(规则)。即,每个等 价类唯一地表示了一个概念,属于一个等价类 的不同对象对该概念是不可区分的。
–随机性:因为事物的因果关系不确定,从而导致事件发生的结果不确 定性。用概率来度量。概率表示事件发生可能性的大小。概率论的运 用是从随机性中去把握广义的因果律——概率规律。 –模糊性:因为事件在质上没有明确的含义,在量上没有明确的界限, 导致事件呈现“亦此亦彼”的性态,是事物类属的不确定性,用隶属 度来度量。隶属度表示事物多大程度属于某个分类。模糊集合论的运 用从模糊性中去确立广义的排中律——隶属规律。 –粗糙性:因为描述事件的知识(或信息)不充分、不完全,导致事件 间的不可分辨性。粗糙集把那些不可分辨的事件都归属一个边界域。 因此,粗糙集中的不确定性是基于一种边界的概念,当边界域为一空 集时,则问题变为确定性的。
13
(4)基本集合
– 由论域中相互不可分辨的对象组成的集合称之为基本集合,它是组成论域知识的 颗粒。 决策属 属性 条件属性C 性D – 例如:考虑条件属性:头疼和 对象 头疼r1 肌肉疼r2 体温r3 流感 肌肉疼。对于x1,x2,x3这三个 x1 是 是 正常 否 对象是不可分辨的。x4,x6在这 x2 是 是 高 是 两个属性上也是不可分辨的。 x3 是 是 很高 是 由此构成的不可分辨集{x1,x2, x4 否 是 正常 否 x3},{x4,x6},{x5}被称为基本 x5 否 否 高 否 x6 否 是 很高 是 集合。 – 设论域U为有限集,R是U的等价关系簇,则K={U,R}称为知识库,知识库的知识粒 度由不可分辨关系Ind(R)的等价类反映。
优点:除数据集之外,无需任何先验知识(或信息) 对不确定性的描述与处理相对客观
……
【说明】:Bayes理论、模糊集理论、证据理论等都需要先验知识,具有很大的主 观性。
7
1、不确定性理论
• 自然界和人类的社会活动的各种现象:确定性现象和不确定性 现象。 • 确定性现象:在一定条件下必然会出现的现象。 (1)不确定性的分类:
人工智能
Artificial Intelligence
粗糙集理论与应用
董春游(Chunyou Dong) PhD,Professor
Email:chunyoudong@
研究生学院
1
第十七讲 粗糙集与数据约简
1 2
不确定性理论
粗糙集的基本理论与方法
3
4 5 6
知识的约简
决策表的约简
粗糙集数据约简的具体实现与应用
15
(6)正域、负域和边界域 – 正域: Pos(X)=R-(X) ,即根据知识 R , U中能完全确定地归入集合X的元素的 集合。 – 负域: Neg(X)=U-R-(X) ,即根据知识 R , U 中不能确定一定属于集合 X 的元 素的集,它们是属于X的补集。 – 边界域: Bnd(X)= R-(X) - R-(X) , 图 6.1 粗糙集概念示意图 边界域是某种意义上论域的不确定域, 根据知识R,U中既不是肯定归入集合 其中, H ( X ) = H ( X ) +BUN ( X ); U 为整个方框区域。 X ,又不能肯定归入集合 ~X ,的元素 构成的集合。 – 边界域为集合 X 的上近似与下近似之 差,如果 Bnd(X) 是空集,则称集合 X 关于 R 是清晰的;反之,如果 Bnd(X) 不是空集,则称集合X为关于R的粗糙 集。因此,粗糙集中的“粗糙”(不 确定性)主要体现在边界域的存在。 集合 X 的边界域越大,其确定性程度 就越小。
粗糙集的研究现状与展望
2
概论:粗糙集理论的提出及发展
粗糙集(Rough Sets)是波兰数学家Z. Pawlak于1982年提 出的[1](为开发自动规则生成系统及研究软计算问题而引入)。 由于最初关于粗糙集理论的研究大部分是用波兰语发表的,因此 当时没有引起国际计算机学界和数学界的重视。研究地域也局限 在东欧一些国家,直到80年代末才引起各国学者的注意。九十年 代初,人们才逐渐认识到它的意义。 1992年在波兰Kiekrz召开了第一届国际RS研讨会。这次会议 着重讨论了集合近似定义的基本思想及应用,其中RS环境下的机 器学习基础研究是这次会议的四个专题之一。
相关文档
最新文档