粗糙集理论及其应用42页PPT

合集下载

粗糙集理论优质获奖课件

粗糙集理论优质获奖课件
点之
若rij=1, 且 i≠j, 则rji=0
对M2中1所 在位置,M 中相应位置 都是1
假如两 假如顶
点之
点xi
间有边, 到xj有边,
一定
xj
13
4、等价关系
等价关系旳定义:设R是非空集合A上旳关系,假如满足 ⑴ R是自反旳; ⑵ R是对称旳; ⑶ R是传递旳; 则称R是A上旳等价关系。
21
内容提要
一、概述 二、知识分类 三、知识旳约简 四、决策表旳约简 五、粗糙集旳扩展模型 六、粗糙集旳试验系统 七、粒度计算简介
22
一、 概述
现实生活中有许多模糊现象并不能简朴地 用真、假值来表达﹐怎样表达和处理这些现 象就成为一种研究领域。早在1923年谓词逻 辑旳创始人G.Frege就提出了模糊(Vague)一 词,他把它归结到边界线上,也就是说在全 域上存在某些个体既不能在其某个子集上分 类,也不能在该子集旳补集上分类。
自反性 反自反性 对称性 反对称性 传递性
12
关系性质旳三种等价条件
体 现 式
关系 矩阵
关系图
自反性 IAR
主对角 线元素 全是1
每个顶 点都有 环
反自反性 R∩IA=
主对角线 元素全是 0
每个顶点 都没有环
对称性 R=R1
反对称性 R∩R1 IA
传递性 RRR
矩阵是对称 矩阵
假如 两个 顶
定义 假如一种集合满足下列条件之一: (1)集合非空, 且它旳元素都是有序对 (2)集合是空集 则称该集合为一种二元关系, 简称为关系,记作R. 如<x,y>∈R, 可记作 xRy;假如<x,y>R, 则记作xRy
实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}. R是二元关系, 当a, b不是有序对时,S不是二元关系 根据上面旳记法,能够写1R2, aRb, aSb等.

粗糙集理论及其应用研究

粗糙集理论及其应用研究

粗糙集理论的核心内容
知识的约简与核
知识的约简: 通过删除不重 要的知识,保 留关键信息
核的概念:核 是知识的最小 表示,包含所 有必要信息
核的性质:核 具有独立性、 完备性和最小 性
核的求取方法: 基于信息熵、 信息增益等方 法进行求取
0
0
0
0
1
2
3
4
决策表的简化
决策表:用于描述决策问题的表格 简化目标:减少决策表的规模,提高决策效率 简化方法:合并条件属性,删除冗余属性 简化效果:提高决策表的可读性和可理解性,降低决策复杂度
粗糙集理论在聚类分析中的应用:利用粗糙集理论处理不确定和不完整的数据,提高聚类 分析的准确性和效率。
聚类分析在数据挖掘中的应用:可以帮助发现数据中的模式和趋势,为决策提供支持。
粗糙集理论在其他领域的应用
决策支持系统
粗糙集理论可以帮助决策者 处理不确定性和模糊性
粗糙集理论在决策支持系统 中的应用
粗糙集理论可以提高决策支 持系统的准确性和效率
粗糙集理论在决策支持系统 中的实际应用案例分析
智能控制
粗糙集理论在模糊控制中的 应用
粗糙集理论在智能控制中的 应用
粗糙集理论在神经网络控制 中的应用
粗糙集理论在自适应控制中 的应用
模式识别
粗糙集理论在模式 识别中的应用
粗糙集理论在图像 识别中的应用
粗糙集理论在语音 识别中的应用
粗糙集理论在生物 信息学中的应用
添加标题
添加标题
ห้องสมุดไป่ตู้添加标题
添加标题
机器学习
粗糙集理论在机器学习中的应用 粗糙集理论在数据挖掘中的应用 粗糙集理论在模式识别中的应用 粗糙集理论在自然语言处理中的应用

第9章 粗糙集理论

第9章 粗糙集理论
1992年,在波兰召开了第一届国际粗糙集理论研讨会, 有15篇论文发表在1993年第18卷的 《Foundation of computingand decision sciences》上。 1995年,Z.Pawlak等人在《ACM Communications》上 发表“Rough sets”,极大地扩大了该理论的国际影响。 1996~1999年,分别在日本、美国、美国、日本召开了 第4~7届粗糙集理论国际研讨会。
由R=R1·R2,可求出: U/R=U/{R1,R2}={{1,2},{3,4},{5},{6,7,8}} 因为X无法用U/R的等价类并集精确表示,所以X关于R是U上的 一个粗糙集。 X的下近似集为: R_(X)={6,7,8} X的上近似集为: R-(X)={1,2}∪{3,4}∪{6,7,8}={1,2,3,4,6,7,8} X的边界域: BNR(X)= R-(X)-R_(X)={1,2,3,4} X的负区域: NEGR(X)=U-R-(X)={5}
定义9.13 设K=(U,R)是一个知识库,对于U中的两 个集合X和Y,当R_(X)= R_(Y)时,称集合X、Y为R下相等; 当R-(X)= R-(Y)时,称集合X、Y为R上相等。 粗相等关系拓展了传统的相等关系,描述了任何不可分
定义9.12 设K=(U,R)是一个知识库,对于一个集合 XU,则:
集合X的R下近似(集)定义为:R_(X)=∪{yiU/R | yiX} 集合X的R上近似(集)定义为:R-(X)=∪{yiU/R | yi∩X≠Φ} 集合X的R边界域:BNR(X)= R-(X)-R_(X) 集合X的R正域:POSR(X)=R_(X) 集合X的R负域:NEGR(X)=U-R-(X) 集合X是R精确的,当且仅当R-(X)=R_(X)。集合X是R粗 糙的,当且仅当R-(X)≠R_(X)。

粗糙集基本知识PPT课件

粗糙集基本知识PPT课件
p i,j {c C :c(,x i) d c(x x ij) () } d d (x ,x ji)) (d (x j)
21
差别矩阵
U\A a b c d e u1 1 0 2 1 0 u2 0 0 1 2 1 u3 2 0 2 1 0 u4 0 0 2 2 2 u5 1 1 2 1 0
u1 u2 u3 u4 u5
3
Y
Y
Y
NY
8,9,15
N
N
N
Y
NY N
4
Y
Y
Y
NY
10,11,12,14
N
N
Y
Y
YY N
5
Y
Y
Y
NY
YY
13
N
N
Y
N
N
6
Y
Y
Y
NY
YY
16
Y
N
N
Y
N
7
N
Y
Y
NY
NY
17
Y
N
Y
N
N
8
N
N
N
YY
NN
9
N
N
N
YY
YN
实例集 10 群居 N 会飞 N 产卵 Y 肺呼吸NY 鸟类Y N
肺呼吸 热血动物 食物 鸟类
13
约简理论
主要思想:保持分类能力不变的条件下, 删除冗余的、不必要的属性或属性值,达 到知识简化的目的。
14
示例:一种动物是否是鸟类
实例集 群居 会飞 产卵 肺哺呼乳吸 会游鸟泳类
实例集
群居 会飞 产卵 肺呼吸 鸟类
1
N
Y
Y
NY

粗糙集理论方法及其应用ppt课件

粗糙集理论方法及其应用ppt课件
具有相同或相似信息的 对象不能被识别。
粗糙集概念示意图
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
2 粗粗糙糙集集理理论论思思想想
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
2.3 粗糙近似
定义 给定一个知识表示系统 S (U, A,V, f ) , P A,X U ,x U ,集合 X 关于 I 的下近似、 上近似、负区及边界区分别为
apr (X ) {x U : I(x) X} p
aprP (X ) {x U : I(x) X }
neg p ( X ) {x U : I (x) X }
2.2 不可分辨关系 (Indiscribility relation)
❖ 不可分辨关系是一个等 价关系(自反 的、对称 的、传递的)。
❖ 包含对象x的等价类 记为I(x)。等价类与知 识粒度的表达相对应, 它是粗糙集主要概念, 如近似、依赖及约简等, 定义的基础
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
决策属性(D)
U
a1
a2
a3
d
n1
High
Low
Low
Low
n2
Medium
High
Low
High
n3
High
High
High
High
粗糙集理论方法及其应用 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程

粗糙集理论与算法初步.ppt

粗糙集理论与算法初步.ppt

PQk
posPQ
U
PX
XUQ
U
第一节
粗糙集理论
3、R0.5理论
粗糙集的近似集R0.5的提出
集合的相似度 A,B是论域U上的两个子集定义从U×U→[0,1]
的映射(A,B)→s(A,B),称s(A,B)为A,B的相似 度,如果满足如下条件: 1)任意U中的集合 A,B,s(A,B)有界; 2)对称性,即s(A,B)=s(B,A); 3)s(A,A)=1,且s(A,B)=0的充要条件是A∩B为 空集。
系族PS,对于任意P中的R,若 IND(P)≠IND(P-{R})成立,称R为P中必要的。 独立性
如果对每一个P中R,R都是P中必要的, 称P是独立的,否则称P是依赖的。 显然,若P独立,则其任何子集G都是独立的。
知识约简
知识的约简 知识库K和其上的一族等价关系PS,对
任意的GP,若: 1)G是独立的 2)IND(G)=IND(P) 称G是P的一个约简,记作G∈RED(P)。
注:知识表达系统主要有两种类型,信息 系统以及决策系统。
知识表达系统的知识约简
信息系统中知识约简的一般步骤 Step 1:删除表中重复对象 Step 2:删除冗余的条件属性 Step 3:删除每个对象的冗余属性值 Step 4:求出其约减
决策表中知识约简的一般步骤 Step 5:根据约简,求出决策规则
的一组或单个系统参数。U中任意的概念X 以及独立于系统参数R的划分,有
参数R的重要度 sigRXUbU nRX
划分关于系统参数R的重要度 n UbnRXi sigR(U) i1 nU
粗糙集的数值特征
知识的依赖度 知识库K=(U,S),以及任意P,QIND(K),
定义知识Q依赖于知识P的依赖度:

粗糙集理论及其应用 共43页PPT资料共45页

粗糙集理论及其应用 共43页PPT资料共45页
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 Байду номын сангаас界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
粗糙集理论及其应用 共43页 PPT资料
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

《粗糙集理论简介》课件

《粗糙集理论简介》课件

05
粗糙集的应用实例
数据挖掘中的粗糙集应用
分类
利用粗糙集理论对数据进行分类,通过确定数据的属性重要性和 类别关系,实现高效准确的分类。
聚类
通过粗糙集理论,可以发现数据中的相似性和差异性,从而将数 据分成不同的聚类。
关联规则挖掘
利用粗糙集理论,可以发现数据集中项之间的有趣关系和关联规 则。
机器学习中的粗糙集应用
粗糙集的补运算
总结词
粗糙集的补运算是指求一个集合的所有 可能补集的运算。
VS
详细描述
补运算在粗糙集理论中用于确定一个集合 的所有可能补集。补集是指不属于该集合 的所有元素组成的集合。通过补运算,我 们可以了解一个集合之外的所有可能性, 这在处理不确定性和模糊性时非常重要。
04
粗糙集的扩展理论
决策粗糙集
多维粗糙集
多维粗糙集是粗糙集理论在多维空间下的扩展,它考虑了多个属性或特征对数据 分类的影响。多维粗糙集可以更准确地描述多维数据的分类和聚类问题,因此在 处理多特征和多属性问题时具有更大的优势。
多维粗糙集的主要概念包括多维下近似、多维上近似、多维边界等,通过这些概 念可以度量多维数据的不确定性,从而为多维分类和聚类提供支持。
决策分析
粗糙集理论可以用于决策支持系 统,通过建立决策模型来分析不 确定性和模糊性条件下的最优决 策。
知识获取
粗糙集理论可以用于从数据中提 取隐含的知识和规则,尤其在处 理不完整和不精确信息时具有显 著效果。
02
粗糙集的基本概念
知识的分类
知识表达
通过数据表中的属性值来表达知识,将对象进 行分类。
概率粗糙集
概率粗糙集是粗糙集理论在概率框架下的扩展,它引入了 概率测度的概念,用于描述数据的不确定性。概率粗糙集 可以更准确地描述数据的不确定性和随机性,因此在处理 不确定性和随机性问题时具有更大的灵活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档