1.1 热力学基本概念、热、功介绍
热力学基本概念和公式

第一章热力学基本概念一、基本概念热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。
工质:实现热能与机械能相互转换的媒介物质即称为工质。
热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。
边界:系统与外界得分界面。
外界:边界以外的物体。
开口系统:与外界有物质交换的系统,控制体(控制容积)。
闭口系统:与外界没有物质的交换,控制质量。
绝热系统:与外界没有热量的交换。
孤立系统:与外界没有任何形式的物质和能量的交换的系统。
状态:系统中某瞬间表现的工质热力性质的总状况。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。
状态参数:温度、压力、比容(密度)、内能、熵、焓。
强度性参数:与系统内物质的数量无关,没有可加性。
广延性参数:与系统同内物质的数量有关,具有可加性。
准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。
可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。
膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。
(对外做功为正,外界对系统做功为负)。
热量:通过系统边界向外传递的热量。
热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。
二、基本公式⎰⎰=-=02112dx x x dx理想气体状态方程式:RT pV m =循环热效率1q w nett =η 制冷系数netw q 2=ε 第二章 热力学第一定律一、基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。
热力学能:储存在系统内部的能量(内能、热能) 外储存能:宏观动能和重力位能。
热力学知识:热力学中热力学的基本概念和热力学的法则

热力学知识:热力学中热力学的基本概念和热力学的法则热力学是研究热和能量转移的学科,应用广泛,涉及到机械工程、化学工程、环境科学、生物学等领域。
本文将从热力学的基本概念和热力学的法则两个方面进行解析。
一、热力学的基本概念1.热:是物质内部分子的运动状态的表现,是能量的形式之一。
2.温度:是物质内部分子运动状态的一种量化描述,是热的量度单位。
3.热量:是在物体之间传递的能量。
4.功:是物体克服外部阻力所做的能量转移工作。
5.内能:物体中分子的运动状态的总和,包括分子的动能和势能。
6.热力学第一定律:能量守恒定律,能量在系统内可以相互转化,但总能量不变。
7.热力学第二定律:热量只能从高温物体向低温物体传递,不可能实现温度无限制提高或降低的过程。
同时,系统中的熵量增加,在孤立系统中不可逆过程的熵增加定律,表明自然界趋向于混沌无序的趋势。
二、热力学的法则1.热力学第一定律热力学第一定律又称为能量守恒定律,表明在任何物理或化学变化中,能量都必须得到守恒。
能够实现一个系统的内部能量的增加或减少,但能量不会被消失或产生。
因此,热力学第一定律是所有热力学问题的基础。
2.热力学第二定律热力学第二定律又称为热力学不可能定律,是热力学领域最基本的性质之一。
这个定律表明,热会自然地从高温物体流向低温物体,而不会自然地从低温物体流向高温物体。
这就是为什么人们需要用加热器加热房间,在使用机器的内部需要用冷却器来降温的原因。
这个定律还表明,任何热量转换为功的过程都是不完美的,因为它们都会产生一些热量。
3.熵增定律热力学第二定律中提出的熵增定律是热力学的基本法则之一。
熵是一种物理量,表示系统的混乱程度。
热力学第二定律表明,系统内的熵总是增加,系统始终趋向于混沌无序。
例如,一杯水细心地倒入一匀净的玻璃杯中,水会保持有序结构,但是把水撒到桌子上,水会漫无目的地散云化开来,这就是熵增的过程。
总之,热力学是一个研究热和能量转移的学科,这些热力学的基本概念和热力学的法则是全球科学研究和工业实践的基础。
物化知识点

1.1热力学基本概念1. 系统和环境系统(system),是热力学研究的对象。
包括指定的物质和空间。
可分为:(1)敞开系统(2)封闭系统(3)隔离系统环境是指系统以外的物质和空间。
2. 广度性质(n, V, U, H, A, G)和强度性质(T, p, H m等)3. 热和功热Q, 系统得到热量时,Q>0,Q sy =-Q su体积功W V,系统得到体积功(被压缩)时,W V>04. 相和相变只要物质的存在形式有任何一种物理或化学性质不同,它们便属于不同的相。
相变,是指物质从一种聚集形态转变为另一种聚集形态,包括液体的气化(vaporization),气体的液化(liquefaction),液体的凝固(freezing),固体的熔化(fusion),固体的升华(sublimation),气体的凝华,固体不同晶型间的转化(crystal form transition)等。
5. 液体的正常沸点和标准沸点液体在正常压力(101.325 kPa)下的沸点称为该液体的正常沸点;在标准压力(100 kPa)下的沸点称为该液体的标准沸点。
6. 状态函数和过程函数状态函数的特点是,其改变量只取决于系统的始态和终态,而与系统变化的途径无关。
过程函数的特点是,其正负和大小是和过程直接相关的。
7. 系统的典型变化过程:(1)定温过程:T1=T2=T su。
(2)定压过程:p1=p2=p su。
(3)定容过程:d V= 0。
系统体积始终保持恒定。
(4)绝热过程:Q = 0。
(5)对抗恒外压过程:p su=常数。
气体向真空的膨胀过程属于对抗恒外压过程. (6)循环过程:系统经多次变化后又回到原来的始态,即系统的终态和始态是同一状态。
对于循环过程,所有状态函数的改变值一定为0。
1.2体积功的计算几种典型过程的体积功:(1)定容过程:(2)对抗恒定外压膨胀过程:3)气体自由膨胀过程:(4)定温准静态膨胀过程(p=p su):给出了体积功计算实例两个:(1)有状态方程的(2)化学反应的1.4可逆途径与可逆过程多个相继的过程称为途径。
热力学基本概念

热力学基本概念热力学是研究热能与其他形式能量之间转化和传递规律的科学学科。
它涉及到一系列基本概念和定律,这些概念和定律是理解和应用热力学的基础。
本文将介绍热力学中的几个基本概念,包括热、温度、功、热容和熵。
一、热热是一种能量传递方式,当物体与外界存在温度差时,热就会从高温物体传递到低温物体。
热是热力学系统与外界之间的能量交换形式之一。
热的单位是焦耳(J)。
二、温度温度是表征物体热状态的物理量,它反映了物体中分子的平均热运动程度。
温度用开尔文(K)作为单位,也可以使用摄氏度(℃)或华氏度(℉)进行表示。
热力学中的零绝对温标是绝对零度,对应着开尔文的0K。
三、功功是热力学系统与外界相互作用过程中的能量传递形式之一。
当一个物体受到外力作用,同时沿着力的方向发生位移时,就会进行功的交换。
功的单位也是焦耳(J)。
四、热容热容描述了物体受热后温度变化的程度。
它是指单位质量物体温度升高1K(或1℃)所需要吸收或放出的热量。
热容的单位可以是焦耳/开尔文(J/K)、焦耳/摄氏度(J/℃)或卡路里/开尔文(cal/K)。
五、熵熵是用来描述系统无序程度的物理量。
它是热力学第二定律的核心概念,表示系统的混乱程度或无序程度。
熵的增加代表着系统趋于混乱,反之则代表着系统趋于有序。
熵的单位是焦耳/开尔文(J/K)。
在热力学中,这些基本概念相互联系、相互影响,通过热力学定律加以描述和解释。
例如,热力学第一定律表示能量守恒,即能量可以从一种形式转化为另一种形式,但总能量的数量保持不变。
热力学第二定律则说明了在孤立系统中热流只会从高温物体流向低温物体,并且系统的熵将不断增加。
通过对这些基本概念的理解和应用,我们可以更好地理解和研究能量的转化和传递过程。
热力学在能源、化学、物理等领域都有广泛的应用,并对相关工程和技术的发展起到了重要的推动作用。
总结起来,热力学基本概念包括热、温度、功、热容和熵。
这些概念相互联系、相互作用,通过热力学定律来描述和解释。
物理化学1.1-热力学基本概念

●在确定条件下,变化是自发还是非自发?变化的 限度?从确定的自发变化可以获得多少功?要实现 确定的非自发变化,必须注入多少功?
三峡大坝 发电机组
化学电池 化学激光 ……
农田灌溉
电解反应 光化学反应 ……
§1.1 热力学基本概念
1.系统和环境
系统(system) ——热力学研究的对象,包括指定的物质和空间。
非均相系统(多相系统)
(heterogeneous system)
CaCO3 (s) =CaO(s)+CO2(g) NH4HCO3 (s) = NH3(g) + H2O(g) + CO2(g)
相变(phase transformation)
——物质从一种聚集形态转变为另一种聚集形态。
气体
液化
升华
√
封闭系统(Closed system) ×
√
隔离系统(Isolated system) ×
×
2.描述系统状态的热力学函数
抽开插板
n,p,V,T
n, p,V,T
Sy(I)
Sy(II)
强度性质函数(intensive properties) 数值大小与系统中所含物质的量无关, 无加和性(如 p,T);
p、V、T 变化过程 相变化过程 化学变化过程
典型p、V、T变化过程
① 定温过程:T1=T2=Tsu ② 定压过程: p1= p2= psu ③ 定容过程: V1=V2 ④ 绝热过程: Q = 0 ⑤ 对抗恒外压过程:psu=常数(包括0)
p1,T1 psu
⑥ 循环过程 :系统的始态和终态为同一状态。
1、苯的正常沸点为80.1 ℃。你知道苯在80.1 ℃ 的饱和蒸汽压吗?
第01章-热力学基本定律1-资料

[例题]:
在等压下,一定量理想气体B由10 dm3膨胀到16 dm3,并吸热700J,求W与ΔU ? 解: 初态,p 10 dm3 等 压 过 Q 程 7 0J, 0终态, p 16 dm3
Wp(V2V 1)[10136215 03]J60J8
themegallery
3. 准静态过程
定义:在过程进行中的任何时刻系统都处于平衡态 的过程。
4. 可逆过程
定义:由一系列非常接近于平衡的状态所组成 的,中间每一步都可以向相反的方向进行而不在环 境中任何痕迹的过程称为可逆过程。
themegallery
特点: ①可逆过程是由一系列非常接近于平衡的状态所 组成. ②过程中的任何一个中间态都可以从正、逆两个方 向到达。 ③经历可逆过程后,当系统复原时,环境也完全 复原而没有留下任何影响和痕迹。
1. 热力学第一定律表述: 热力学第一定律即能量守恒与转化定律:自然界 的一切物质都具有能量,能量有各种不同的形式, 能够从一种形式转化为另一种形式,在转化中, 能量的总值保持不变。 经验表述:第一类永动机是造不成的。
themegallery
2. 热力学第一定律的数学表达式
ΔU = Q + W 对一微小表化,
例题:教材第10页
在298.15K 下1mol C2H6 完全燃烧时,过程所 作的功是多少(反应系统中的气体视为理想气 体)?
解: C2H6 (g) + 3.5O2 (g) = 2CO2 (g) + 3H2O (l)
WRT B(g)= [- (2 - 3.5 - 1)×8.314×298.15]J
欢迎
第一章 热力学基本定律
1.1 热力学基本概念 1.2 热力学第一定律 与内能、焓、功、热 1.3 气体系统典型过程分析 与可逆过程、热机效率 1.4 热力学第二定律与熵、熵判据 1.5 熵变的计算与应用:典型可逆过程和可逆途径的设计 1.6 自由能函数与自由能判据:普遍规律与具体条件的结合 1.7 封闭系统热力学函数间的关系:4个基本方程 1.8 自由能函数改变值的计算及应用:可逆途径的设计
工程热力学(讲义)

1 课程学习1.1 热力学基本定律1.1.1 热力学基本概念及定义第一节热力系热力系:由界面包围着的作为研究对象的物体的总和。
按热力系与外界进行物质交换的情况可将热力系分为:闭口系(或闭系)--与外界无物质交换,为控制质量(c.m.);开口系(或开系)--与外界之间有物质交换,把研究对象规划在一定的空间范围内,称控制容积(c.v.)。
按热力系与外界进行能量交换的情况将热力系分为:简单热力系--与外界只交换热量及一种形式的准静功;绝热系--与外界无热交换;孤立系--与外界既无能量交换又无物质交换。
按热力系内部状况将热力系分为:单元系--只包含一种化学成分的物质;多元系--包含两种以上化学成分的物质;均匀系--热力系各部分具有相同的性质;均匀系--热力系各部分具有不同的性质。
工程热力学中讨论的热力系:简单可压缩系--热力系与外界只有准静功的交换,且由压缩流体构成。
第二节热力系的描述热力系的状态、平衡状态及状态参数*热力系的状态:热力系在某一瞬间所呈现的宏观物理状况。
在热力学中我们一般取设备中的流体工质作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。
*平衡状态:在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。
处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。
而温差是驱动热流的不平衡势,温差的消失是系统建立平衡的必要条件。
对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。
各种不平衡势的消失是系统建立起平衡状态的必要条件。
*状态参数:用来描述热力系平衡态的物理量。
处于平衡态的热力系其状态参数具有确定的值,而非平衡热力系的状态参数是不确定的。
状态参数的特性描述热力系状态的物理量可分为两类:强度量和尺度量(1)强度量与系统中所含物质无关,在热力系中任一点具有确定的数值的物理量。
热力学统计物理简明教程

热力学统计物理简明教程第一章:热力学基本概念1.1 热力学系统:定义热力学系统为与外界相互作用的物质集合,可以是一个孤立系统、封闭系统或开放系统。
1.2 热平衡:当一个系统与外界无能量交换时,系统达到热平衡。
系统内各部分的温度、压力等宏观性质保持恒定。
1.3 状态函数:热力学基本量,与系统的当前状态有关而与历史路径无关,如内能、熵、压力、温度等。
第二章:热力学定律2.1 第一定律:能量守恒原理,能量既不能被创造也不能被毁灭,只能转化形式或在系统间传递。
2.2 第二定律:熵的增加原理,自然界中熵总是趋向增加的方向进行变化,热量只能自高温物体流向低温物体。
2.3 第三定律:绝对零度不可达到,任何物体都无法降至绝对零度(零开尔文)。
3.1 宏观态与微观态:一个宏观系统对应于多个微观系统可能的状态,微观态是描述微观粒子的位置和动量等的状态。
3.2 统计平均:宏观量可以通过对大量微观状态进行统计平均来获得。
3.3 热力学极限:当系统粒子数足够大时,微观态的统计平均值可以近似为宏观量。
第四章:分布函数与统计热力学4.1 统计系综:包括正则系综、巨正则系综和平均系综等,用于描述与热平衡态相关的情况。
4.2 分布函数:用于描述系统处于不同状态的概率分布,如能级分布函数、玻尔兹曼分布等。
4.3 统计热力学量:基于分布函数和统计平均,可以推导出各种统计热力学量的表达式,如配分函数、自由能、熵等。
第五章:应用与实例5.1 理想气体模型:通过应用统计物理理论,可以推导出理想气体的各种性质,如压力、内能和熵等。
5.2 凝聚态物质:应用统计物理理论可以解释凝聚态物质的相变,如固体到液体的熔化和液体到气体的汽化等。
5.3 热力学函数的应用:通过计算热力学函数,可以推导出一些与实际系统相关的性质,如化学反应平衡条件和热电材料的热电效应等。
以上是热力学统计物理简明教程的大致内容,希望能够帮助你对热力学统计物理有初步的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题
1-1 在一绝热容器中盛有水,其 中浸有电热丝,通电加热。将不 同的对象看作系统,则给出Q和 W(与0比较)。 (1)以电热丝为系统 (2)以水为系统 Q < 0, W > 0 Q > 0, W = 0
(3)以容器内所有物质为系统 Q = 0, W > 0 (4)将容器内所有物质以及电 源和其它一切有影响的物 质看作系统 Q = 0, W= 0
14 / 37
过程。
气体 (T,p) 汽化 液体 液化 凝固 熔化 (T,p)
15 / 37
(T,p) 升华 凝华 固体(α) 晶型转化 (T,p) 固体(β)
饱和蒸气压:
在一定温度下,当液(或固) 体与其蒸汽达成液(或固) 汽两相平衡时,汽相的压力 称为该液(或固)体在该温 度下的饱和蒸气压。
11 / 37
问题:一金属棒分别与两个恒温热源相接触, 经过一定时间后,金属棒上各指定点的温度不 再随时间而变化,此时金属棒是否处于热力学 平衡态?
T2
T1
12 / 37
7. 系统的变化过程:
过程:在一定条件下,系统由始态变化到终 态的经过。 pVT变化过程、相变化过程、化学变化过程 几种主要的p,V,T变化过程 (1) 定温过程:T1 = T2 =Tsu =const. 定温变化:T1 = T2 (2) 定压过程:p1=p2=psu =const. 定压变化:p1 = p2 (3) 定容过程:V =const.
5.均相系统和非均相系统
相:系统中物理性质及化学性质均匀的 部分。 均相系统:系统中只含有一个相; 非均相系统:系统中含有一个以上的相。
非均相系统
均相系统
10 / 37
6.热力学平衡态
定义:系统在一定环境条件下,经足够长的时间, 其各部分可观测到的宏观性质都不随时间而变,此后将 系统隔离,系统的宏观性质仍不改变,此时系统所处的 状态叫热力学平衡态。 必须同时满足: 1) 热平衡:系统各部分T 相等;若不绝热,则T= Tex 2) 力平衡:系统各部分p 相等;边界不相对位移。 3) 相平衡:系统各相长时间共存,组成和数量不随时 间而变。 4) 化学平衡:系统组成不随时间改变。
状态函数的改变量只决定于系统的始态和终态, 而与变化的过程或途径无关。 状态函数的改变量 =系统终态的函数值-系统始态的函数值。 如: ΔT = T2 -T1, ΔV= V2-V1 V = f (p,T )
9 / 37
状态函数在数学上具有全微分的性质。 如,n 一定的封闭体系
∂V dV = ∂p ∂V dp + ∂ T dT p T
第一章 化学热力学基础
I 热力学基本概念、热、功 II 热力学第一定律 III 热力学第二定律 IV 热力学第三定律 V 亥姆霍兹函数与吉布斯函数 VI 热力学函数的基本关系式 VII 多组分系统热力学
1/ 35 1 /37
I
热力学基本概念、热、功
第一节 热力学基本概念 第二节 热、功 第三节 可逆过程、可逆过程的体积功
(1)
(2)
(3)
4 / 37
2.热和功
热由于系统与环境间温度差的存在而引起的 能量传递形式。用符号Q 表示。
Q >0 环境对系统放热(系统从环境接受能量) 功 由于系统与环境间压力差或其它机电“力” 的存在引起的能量传递形式。 用符号W 表示。 W >0 环境对系统作功(系统从环境接受能量) 5/
6/ 35 6 / 37
3.系统的宏观性质
由大量微粒组成的宏观集合体所表现的集体 行为。如 p, V, T, U, H, S, A, G 等叫热力学系统 的宏观性质(热力学性质)。 宏观性质分为两类: 广度性质:与系统中所含物质的量有关, 有加和性 (如 m,n, V 等); 强度性质:与系统中所含物质的量无关, 无加和性 (如 p, T,ρ等)
dξ
def
ν dnB
−1 B
Δξ =1mol,叫反应发生了1mol反应进度。
应用反应进度时,必须指明相应的计量方程式。 如:
1 3 N 2 + H 2 = NH 3 2 2
7 / 37
一种广度性质 V m = 强度性质, 如Vm = ,ρ = 等 另一种广度性质 n V
4.系统的状态和状态函数
系统的状态:系统所处的样子。系统的状态 用宏观性质描述。宏观性质也称为系统的 状态函数。 状态函数: p, V, T , U, H, S, A, G
8 / 37
状态函数的特性:
∑ (−ν
R
R
R) = ∑ν P P
P
可简写成 0 = ΣνB B
B的化学计量数 量纲一的量 单位为1
νA=-a, νB=-b, νY= y, νZ= z
17 / 37
反应进度 (ξ):
nB,0 :反应前(ξ =0) B的物质的量 nB : 反应后(ξ = ξ ) B的物质的量
nB-nB,0=νB ξ ∆nB = vB • ∆ ξ d nB = νB • dξ
g l
p*(T )
(相平衡)
沸点: 蒸气压等于外压时的温度
正常沸点: 101.325 kPa下的沸点; 标准沸点: 100 kPa下的沸点 如: 水 正常沸点: 100℃
液体的饱和蒸气压
标准沸点: 99.67℃
16 / 37
16 / 35
化学变化过程与反应进度 化学反应 aA + bB = yY + zZ
13 / 37
(4) 绝热过程:Q = 0 仅可能有功的能量传递形式。 (5) 循环过程:系统经一连串过程又回到始态。 Δp=0,ΔT=0 (6) 对抗恒定外压过程: psu=常数
p1, T1 psu
图1-1气体向真空膨胀 (自由膨胀)
状态2 状态1 循环过程
气体
真空
(7) 自由膨胀过程:(向真空膨胀过程) psu=0
2 /37
第一节 热力学基本概念
1.系统和环境
系统: 热力学研究的对象(微粒组成的宏观集合体)。 环境: 与系统通过物理界面(或假想的界面)相 隔开并与系统密切相关的周围部分。 环境 系统
3 / 37
系统类型 敞开系统 封闭系统 隔离系统
系统与环境之间 物质的质量传递 有 无 无
能量的传递(以 热和功的形式) 有 有 无