高一数学必修二最新练习题
高一数学必修二2.1.3 2.1.4 直线与平面 平面与平面之间的位置关系练习题(解析版)

2.1.3 空间中直线与平面之间的位置关系2.1.4 空间中平面与平面之间的位置关系一、选择题1.若a ∥α,b ∥α,则直线b a ,的位置关系是 ( )A.平行B.相交C.异面D.A 、B 、C 、均有可能2.直线与平面平行式指 ( )A.直线与平面内的无数条直线都无公共点B.直线上的两点到直线的距离相等C.直线与平面无公共点D.直线不在平面内3.有下列命题:①若直线在平面外,则这条直线与平面没有公共点②若直线与一个平面平行,则这条直线与平面内的任何一条直线都平行③若直线a 与平面α的一条直线平行,则直线a 与平面α也平行④两个平面有无数个公共点,则这两个平面的位置关系为相交或重合则正确命题的个数为 ( )A.0B.1C.2D.34.若三个平面两两相交,则它们交线的条数 ( )A .1条 B.2条 C.3条 D.1条或3条5.过平面外一条直线作与平面的平行平面 ( )A.必定可以且只能作一个B.至少可以作一个C.至多可以作一个D.一定不能作6.给出下列命题:①垂直于同一条直线的两条直线互相平行②垂直于同一个平面的两个平面互相平行③若直线b a ,与同一个平面所成的角相等,则b a ,互相平行④若直线b a ,是异面直线,则与b a ,都相交的两条直线是异面直线其中假命题的个数是 ( )A.1B.2C.3D.4二、填空题7.面α∥面β,直线α⊂a ,则直线a 与平面β的位置关系是______8.两直线a ,b 相互平行,且a ∥α,则b 与α的位置关系是______9.若平面α和这个平面外的一条直线m 同时垂直于直线n ,则直线m 与面α的位置关系是 _______10.一个平面内有无数条直线平行于另外一个平面,那么两个平面的位置关系为_____三、解答题11.用符号语言表述语句:“直线l 经过平面α内一定点P,但l 在平面α外”,并画图12.a a ,α⊄已知∥a b b 求证:,,α⊂∥α13.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.答案2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系1.D2.C3.A4.D5.C6.D7.β//a 8.αα⊂b b 或// 9.平行 10.平行或相交11.略 12.略 13.略 14.略2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定1.C2.A3.A4.C5.D6.C7.相交与或ααb b ,// 8.平行或相交 9.无数 110.M D BM M A A ACE BD 111,,,//连接中点取平面证明:CE BM BMEC ME BC ////为平行四边形,故,则易证= ACE BM MD AE 平面即同理//,//1M MD BM ACE MD =11// ,又平面111,//BMD BD ACE BMD 平面又平面故平面⊂ACE BD 平面所以//111.证明:连接AC C A ,11,,,,11O BD AC Q P EF MN C A 于交于分别交设 OQ AP ACC A OQ AP //,,11中,易证在矩形连接 1111//,//,//D B EF D B MN EFDB AP 又平面从而 MN EF //所以EFDB MN 平面所以//EFDB AMN 平面所以平面//12.略13.证明:如图所示,作相交两平面分别与γβα,,相交 f b e a //,////∴γαd b c a f de c //,////,//∴同理ββ//,//b a ∴βα//∴14.略。
人教版高一数学必修2 空间直线的垂直关系练习题(含答案详解)

必修2 空间中的垂直关系基础知识点一、选择题:1.若斜线段AB是它在平面α上的射影的长的2倍,则AB与平面α所成的角是( ).A.60°B.45°C.30°D.120°2.直线l⊥平面α,直线m⊂α,则( ).A.l⊥mB.l∥mC.l,m异面D.l,m相交而不垂直3.如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的线段有( ).A.1条B.2条C.3条D.4条4.若平面α⊥平面β,平面β⊥平面γ,则( ).A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能5.已知长方体ABCDA1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则( ).A.ME⊥平面ACB.ME ⊂平面ACC.ME∥平面ACD.以上都有可能6.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( ).A.平面PAB与平面PBC、平面PAD都垂直B.它们两两垂直C.平面PAB与平面PBC垂直,与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直二、填空题:7.在正方体A1B1C1D1ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O的关系是________.8.若a,b表示直线,α表示平面,下列命题中正确的有________个.①a⊥α,b∥α⇒a⊥b; ②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.9.α、β是两个不同的平面,m、n是平面α及β外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③m⊥α;④n⊥β.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题________.10.如图,正方体ABCDA1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1ABC的大小为________.三、解答题:11.如图所示,在Rt △AOB 中,∠ABO=π6,斜边AB=4,Rt △AOC 可以通过Rt △AOB 以直线AO 为轴旋转得到,且二面角BAOC 是直二面角,D 是AB 的中点.求证:平面COD ⊥平面AOB.12.如图,在四棱锥P ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F.(1)求证:PA ∥平面EDB ;(2)求证:PB ⊥平面EFD.综合提高1.已知l ,m ,n 为两两垂直的三条异面直线,过l 作平面α与直线m 垂直,则直线n 与平面α的关系是( ).A.n ∥αB.n ∥α或n ⊂αC.n ⊂α或n 与α不平行D.n ⊂α2.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ).A.AB ∥mB.AC ⊥mC.AB ∥βD.AC ⊥β3.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角( ).A.相等B.互补C.相等或互补D.关系无法确定4.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现在沿SE,SF,EF 把这个正方形折成一个四面体,使G1、G2、G3重合,重合后的点记为G.给出下列关系:①SG⊥平面EFG;②SE⊥平面EFG;③GF⊥SE;④EF⊥平面SEG.其中成立的有( ).A.①②B.①③C.②③D.③④5.如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的________心.6.已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,若A1在底面ABC内的射影为△ABC的中心,则AB1与ABC底面所成的角的正弦值等于________.7.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD 所成的角为60°.其中真命题的编号是________(写出所有真命题的编号).8.如图,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,则CD=________.9.如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD所在的平面,过点A且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB,AG⊥SD.10.如图,在四棱锥P-ABCD中,PO⊥面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC.(2)求点A到平面PBC的距离.11.如图,已知平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.12.(创新拓展)已知△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD ,∠ADB=60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AF AD=λ(0<λ<1). (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(2)当λ为何值时,平面BEF ⊥平面ACD?参考答案基础篇1.答案 A ;解析 斜线段、垂线段以及射影构成直角三角形.如图所示,∠ABO即是斜线AB 与平面α所成的角,又AB=2BO ,所以cos ∠ABO=OB AB =12.所以∠ABO=60°.故选A.2.答案 A ;解析 无论l 与m 是异面,还是相交,都有l ⊥m ,考查线面垂直的定义,故选A.3.答案 D ;解析 ∵PO ⊥平面ABC ,∴PO ⊥AC ,又∵AC ⊥BO ,∴AC ⊥平面PBD , ∴平面PBD 中的4条线段PB ,PD ,PO ,BD 与AC 垂直.4.答案 D ;解析 以正方体为模型:相邻两侧面都与底面垂直;相对的两侧面都与底面垂直;一侧面和一对角面都与底面垂直,故选D.5.答案 A ;解析 由于ME ⊂平面AB 1,平面AB 1∩平面AC=AB ,且平面AB 1⊥平面AC ,ME ⊥AB ,则ME ⊥平面AC.6.答案A;解析∵PA⊥平面ABCD,∴PA⊥BC.又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵BC⊂平面PBC,∴平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A,得AD⊥平面PAB.∵AD⊂平面PAD,∴平面PAD ⊥平面PAB.由已知易得平面PBC与平面PAD不垂直,故选A.7.答案垂直;解析由正方体性质知AC⊥BD,BB1⊥AC,∵E,F是棱AB,BC 的中点,∴EF∥AC,∴EF⊥BD,EF⊥BB1,∴EF⊥平面BB1O.8.答案2;解析由线面垂直的性质定理知①④正确.9.答案①③④⇒②或②③④⇒①;解析如图,PA⊥α,PB⊥β,垂足分别为A、B,α∩β=l,l∩平面PAB=O,连接OA、OB,可证明∠AOB为二面角αlβ的平面角,则∠AOB=90°⇔PA⊥PB.10.答案45°;解析∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1ABC的平面角,大小为45°.11.证明:由题意:CO⊥AO,BO⊥AO,∴∠BOC是二面角BAOC的平面角,又∵二面角BAOC是直二面角,∴CO⊥BO,又∵AO∩BO=O,∴CO⊥平面AOB,∵CO⊂平面COD,∴平面COD⊥平面AOB.12.证明:(1)连接AC,AC交BD于点O.连接EO,如图.∵底面ABCD是正方形,∴点O是AC的中点.在△PAC中,EO是中位线,∴PA∥EO.而EO⊂平面EDB且PA⊄平面EDB.所以PA∥平面EDB.(2)∵PD⊥底面ABCD且DC⊂底面ABCD.∴PD⊥DC.∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.综合提高1.答案A;解析∵l⊂α,且l与n异面,∴n⊄α,又∵m⊥α,n⊥m,∴n ∥α.2.答案D;解析如图,AB∥l∥m,AC⊥l,m∥l⇒AC⊥m,AB∥l⇒AB∥β.故选D.3.答案D;解析如图所示,平面EFDG⊥平面ABC,当平面HDG绕DG转动时,平面HDG始终与平面BCD垂直,所以两个二面角的大小关系不确定,因为二面角HDGF 的大小不确定.4.答案B;解析由SG⊥GE,SG⊥GF,得SG⊥平面EFG,排除C、D;若SE⊥平面EFG,则SG∥SE,这与SG∩SE=S矛盾,排除A,故选B.5.答案垂;解析三棱锥的三个侧面两两相互垂直,则三条交线两两互相垂直,可证投影是底面三角形的垂心.6.答案:23;解析由题意知,三棱锥A1ABC为正四面体(各棱长都相等的三棱锥),设棱长为a ,则AB 1=3a ,棱柱的高A 1O=63a(即点B 1到底面ABC 的距离),故AB 1与底面ABC 所成的角的正弦值为A 1O AB 1=23.' 7.答案 ①②④;解析 本题主要考查了空间直线与直线、直线与平面的夹角.8.答案 2;解析 取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB.当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC=AB ,所以DE ⊥平面ABC.又CE ⊂平面ABC 可知DE ⊥CE. 由已知可得DE=3,EC=1,在Rt △DEC 中,CD=DE 2+CE 2=2.9.证明 因为SA ⊥平面ABCD ,所以SA ⊥BC.又BC ⊥AB ,SA ∩AB=A ,所以BC ⊥平面SAB ,又AE ⊂平面SAB ,所以BC ⊥AE.因为SC ⊥平面AEFG ,所以SC ⊥AE.又BC ∩SC=C ,所以AE ⊥平面SBC ,所以AE ⊥SB.同理可证AG ⊥SD.10.(1)证明 因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC.因为∠BCD=90°,所以BC ⊥CD.又PD ∩CD=D ,所以BC ⊥平面PCD.而PC ⊂平面PCD ,所以PC ⊥BC.(2)解 如图,过点A 作BC 的平行线交CD 的延长线于E ,过点E 作PC 的垂线,垂足为F ,则有AE ∥平面PBC ,所以点A 到平面PBC 的距离等于点E 到平面PBC 的距离.又EF ⊥PC ,BC ⊥平面PCD ,则EF ⊥BC.BC ∩PC=C ,所以EF ⊥平面PBC.EF 即为E 到平面PBC 的距离.又因为AE ∥BC ,AB ∥CD ,所以四边形ABCE 为平行四边形.所以CE=AB=2. 又PD=CD=1,PD ⊥平面ABCD ,CD ⊂平面ABCD.所以PD ⊥CD ,∠PCD=45°. 所以EF= 2.即点A 到平面PBC 的距离为 2.11.证明 (1)在平面ABC 内取一点D ,作DF ⊥AC 于F ,∵平面PAC ⊥平面ABC ,且交线为AC ,∴DF ⊥平面PAC.又∵PA ⊂平面PAC ,∴DF ⊥PA.作DG ⊥AB 于G ,同理可证DG ⊥PA.∵DG ∩DF=D ,∴PA ⊥平面ABC.(2)连接BE 并延长交PC 于H.∵E 是△PBC 的垂心,∴PC ⊥BH ,又AE ⊥平面PBC ,故AE ⊥PC ,且AE ∩BE=E ,∴PC ⊥平面ABE.∴PC ⊥AB.又∵PA ⊥平面ABC ,∴PA ⊥AB ,且PA ∩PC=P ,∴AB ⊥平面PAC ,∴AB ⊥AC ,即△ABC 是直角三角形. 12.(1)证明 ∵AB ⊥平面BCD ,∴AB ⊥CD.∵CD ⊥BC 且AB ∩BC=B ,∴CD ⊥平面ABC.又∵AE AC =AF AD=λ(0<λ<1),∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC. 又EF ⊂平面BEF ,∴不论λ为何值恒有平面BEF ⊥平面ABC.(2)解 由(1)知,EF ⊥BE ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°,AB ⊥平面BCD ,∴BD=2,AB=2tan 60°= 6.AC=AB 2+BC 2=7, 由AB 2=AE ·AC 得AE=67,∴λ=AE AC =67,故当λ=67时,平面BEF ⊥平面ACD.。
高一数学必修二 立体几何点线面 专项练习(含答案)

(3)求直线与平面所成角的正切值.
15. (本题13分)在几何体ABCDE中, ∠BAC= , DC⊥平面ABC, EB⊥平面ABC, F是BC的中点, AB=AC=BE=2, CD=1.
(1)求证: DC∥平面ABE;
(2)求证: AF⊥平面BCDE;
(3)求几何体ABCDE的体积.
16. 如图, 在正三棱柱ABC—A1B1C1中, 底面边长及侧棱长均为2, D是棱AB的中点,
(1)求证 ;
(2)求异面直线AC1与B1C所成角的余弦值.
17.如图,在正方体中,为底面的中心,是的中点,设是上的中点,求证:(1);
(2)平面 ∥平面 .
18. (14分)如图, 在直三棱柱中, , 点是的中点.
(Ⅰ)求证: ;
(Ⅱ)求证: 平面 ;
(Ⅲ)求异面直线 与 所成角的余弦值.
参考答案
Hale Waihona Puke 1.D2.D3.C
4.D
5.B
6.②④
7.平行或相交(直线在平面外)
8.1, 2, 3
9.
10. ②④⑤
11. (1)见解析(2)见解析
12. 见解析。
13. (Ⅰ)见解析;(Ⅱ)见解析。
14. (1)证明: 见解析;(2)证明: 见解析;(3)
二、填空题:
6.设是三个不重合的平面,是直线,给出下列四个命题:
①若
②若
③若
④若
其中正确的命题序号是
7. 已知两条相交直线, , ∥平面, 则与的位置关系是 .
8.如图, 空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点, 那么
①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面
高一数学必修2习题(答案详解)

高一数学必修2习题(答案详解)高一数学必修2习题(答案详解)一、选择题1. 题目:已知集合A={1, 2, 3, 4},集合B={3, 4, 5, 6},则A∩B的最小值是()选项:A. 0B. 1C. 2D. 3解析:集合A和集合B的交集即为A∩B。
在这里,A和B的交集为{3, 4},共有两个元素。
因此,答案为C. 2。
2. 题目:若sinθ=1/2,θ∈(0, π),则cosθ的值为()选项:A. 1/2B. -1/2C. √3/2D. -√3/2解析:根据三角函数的定义,sinθ=对边/斜边。
在这里,sinθ=1/2,代表一个直角三角形中,对边的长度是斜边长度的一半。
根据勾股定理,可知另外一个边的长度为√3/2。
因此,cosθ=邻边/斜边=√3/2。
答案为C. √3/2。
二、填空题1. 题目:已知事件A的概率为0.6,事件B的概率为0.4,事件A 和事件B同时发生的概率为0.3,则事件A和事件B互不独立。
事件A的补事件的概率是()。
解析:事件A的概率为0.6,补事件即为事件A不发生的概率,即1-0.6=0.4。
2. 题目:已知函数y=2x-1,若x=3,则y的值为()。
解析:将x=3代入函数中,得到y=2*3-1=5。
三、计算题1. 题目:已知函数y=2x+3,求当x=1时,y的值。
解析:将x=1代入函数中,得到y=2*1+3=5。
2. 题目:已知函数y=3x^2-2x+1,求当x=2时,y的值。
解析:将x=2代入函数中,得到y=3*2^2-2*2+1=13。
四、解答题1. 题目:求解方程2x-5=7。
解析:将方程两边都加上5,得到2x=12。
再将方程两边都除以2,得到x=6。
因此,方程的解为x=6。
2. 题目:求解方程3x^2-5=0。
解析:将方程两边都加上5,得到3x^2=5。
再将方程两边都除以3,得到x^2=5/3。
对方程两边取平方根,得到x=±√(5/3)。
因此,方程的解为x=±√(5/3)。
高一数学必修2测试题及答案全套

(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示;这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5;且它的8个顶点都在 同一球面上;则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.2:D35.在△ABC 中;02, 1.5,120AB BC ABC ==∠=;若使绕直线BC 旋转一周;则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长 分别是9和15;则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点; 顶点最少的一个棱台有 ________条侧棱。
主视图 左视图 俯视图2.若三个球的表面积之比是1:2:3;则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中;O 是上底面ABCD 中心;若正方体的棱长为a ; 则三棱锥11O AB D -的体积为_____________。
4.如图;,E F 分别为正方体的面11A ADD 、面11B BCC 的中心;则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6;这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15;则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12M ;高4M ;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
高一数学(必修二)棱柱、棱锥、棱台的表面积和体积练习题及答案

高一数学(必修二)棱柱、棱锥、棱台的表面积和体积练习题及答案一、单选题1.已知斜三棱柱的一个侧面的面积为10,该侧面与其相对侧棱的距离为3,则此斜三棱柱的体积为( ) A .30B .15C .10D .602.一件刚出土的珍费文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积为0.5立方米,其底部是直径为0.9米的圆(如图),要求文物底部与玻璃罩底边间隔0.3米,文物顶部与玻璃罩上底面间隔0.2米,气体每立方米1000元,则气体费用为( )A .4500元B .4000元C .2880元D .2380元3.过棱长为2的正方体的三个顶点作一截面,此截面恰好切去一个三棱锥,则该正方体剩余几何体的体积为( ) A .4B .6C .203D .1634.已知用斜二测画法画梯形OABC 的直观图O A B C ''''如图所示,3O A C B ''''=,C E O A ''''⊥,8OABC S =四边形,//C D y '''轴,2C E ''=,D 为O A ''的三等分点,则四边形OABC 绕y 轴旋转一周形成的空间几何体的体积为( )A .152π3B .48πC .38π3D .12π5.已知四棱台的上、下底面分别是边长为2和4的正方形,侧面均为腰长为4的等腰梯形,则该四棱台的表面积为( )A .1015+B .34C .201215+D .686.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是( )A .258B .234C .222D .2107.在棱长为1的正方体的表面上任取4个点构成一个三棱锥,则这个三棱锥体积的取值范围是( ) A .1(0,]6B .1(0,]3C .1(0,]2D .(0,1)8.2,则以该正方体各个面的中心为顶点的凸多面体的表面积为( ) A 2B .23C 3D 2 二、多选题9.有一个三棱锥,其中一个面为边长为2的正三角形,有两个面为等腰直角三角形,则该几何体的体积可能是( ) A 3B 2C 22D 2310.“堑堵”“阳马”和“鳖臑”是我国古代对一些特殊几何体的称谓.《九章算术·商功》有如下叙述:“斜解立方,得两堑堵,斜解堑堵.其一为阳马,其一为鳖臑”.意思是说:将一个长方体沿对角面斜截(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜截(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V ,由该长方体斜截所得到的堑堵、阳马和鳖臑的体积分别为123,,V V V ,则下列选项不正确...的是( )A .123V V V V ++=B .122V V =C .232V V =D .36V V =11.如图,直三棱柱111ABC A B C 中,12AA =,1AB BC ==,90ABC ︒∠=,侧面11AAC C 中心为O ,点E 是侧棱1BB 上的一个动点,有下列判断,正确的是( )A .直三棱柱侧面积是422+B .直三棱柱体积是13C .三棱锥1E AAO -的体积为定值 D .1AE EC +的最小值为212.如图,已知四棱锥P ABCD -中,PO ⊥底面,//ABCD AB CD ,,O M 分别是,CD PC 的中点,且PO OD DA AB BC ====,记三棱锥,,P OBM M OBC M PAB ---的体积分别为123,,V V V ,则( )A .12V V =B .212V V =C .13B OMPD V V -= D .12323P ABCD V V V V -=++三、填空题13.已知平行六面体各棱长均为4,在由顶点P 出发的三条棱上,取1PA =,2PB =,3PC =,则棱锥-P ABC 的体积是该平行六面体体积的______.14.某正三棱台的各顶点之间的距离构成的集合为{}3,2,则该棱台的体积为______. 15.如图,直四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD ,四边形ABCD 为梯形,AD BC ∥,且2AD BC =,过1A ,C ,D 三点的平面记为α,1BB 与平面α的交点为Q .则此四棱柱被平面α分成上、下两部分的体积之比为__.16.给定依次排列的四个相互平行的平面1α,2α,3α,4α,其中每相邻两个平面间的距离为1,若一个1234A A A A 的四个顶点满足:i i A α∈(1i =,2,3,4),则该正四面体1234A A A A 的体积为_________.四、解答题17.如图所示,正六棱锥被过棱锥高PO 的中点O '且平行于底面的平面所截,得到正六棱台OO '和较小的棱锥PO '.(1)求大棱锥,小棱锥,棱台的侧面面积之比;(2)若大棱锥PO 的侧棱长为12cm ,小棱锥的底面边长为4cm ,求截得的棱台的侧面面积和表面积.18.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.19.如图,四棱台1111ABCD A B C D -,上、下底面均是正方形,且侧面是全等的等腰梯形,且5AB =,113A B =,110AA =(1)求四棱台1111ABCD A B C D -的侧面积; (2)求四棱台1111ABCD A B C D -的体积.20.正三棱柱侧面展开图是边长为2和4的矩形,求它的表面积.21.棱锥是生活中最常见的空间图形之一,譬如我们熟悉的埃及金字塔,它的形状可视为一个正四棱锥.我国数学家很早就开始研究棱锥问题,公元一世纪左右成书的《九章算术》第五章中的第十二题,计算了正方锥、直方锥(阳马)、直三角锥(鳖臑)的体积,并给出了通用公式.公元三世纪中叶,数学家刘徽在给《九章算术》作的注中,运用极限思想证明了棱锥的体积公式.请你使用学过的相关知识,解决下列问题:如图,正三棱锥S ABC -中,三条侧棱SA ,SB ,SC 两两垂直,侧棱长是3,底面ABC 内一点P 到侧面,,SAB SBC SAC 的距离分别为x ,y ,z .(1)求证:3x y z ++=;(2)若1113x y z++=,试确定点P 在底面ABC 内的位置.22.正四棱台1111ABCD A B C D -的下底边长3AB =3.(1)求正四棱台的表面积S 表;(2)求1AB 与底面ABCD 所成角的正弦值.参考答案1--8BBCBC CBB9.BCD 10.ACD 11.ACD 12.ACD 13.164147215.117165517.(1)设小棱锥的底面边长为a ,斜高为h ,则大棱锥的底面边长为2a ,斜高为2h , 所以大棱锥的侧面积为1622122a h ah ⨯⨯⨯=,小棱锥的侧面积为1632a h ah ⨯⨯⨯=, 棱台的侧面积为1239ah ah ah -=,所以大棱锥,小棱锥,棱台的侧面积之比12:3:94:1:3ah ah ah =. (2)因为小棱锥的底面边长为4cm ,所以大棱锥的底面边长为8cm , 因为大棱锥的侧棱长为12cm 1441682-=, 所以大棱锥的侧面积为2168821922cm 2⨯⨯⨯=, 所以棱台的侧面积为2321442cm 4=, 棱台的上,下底面的面积和为22233646824331203cm +==, 所以棱台的表面积为(231442cm .18.解:(1)如图所示:PO ⊥平面ABCD ,侧棱所在直线与上、下底面正方形中心的连线所成的角为45︒, 45PAO ∴∠=︒,2PO OA ∴=,1112PO O A =. 分别取AB ,11A B 的中点E ,1E ,连接OE ,11O E . 则2223()()22b PE b +,22123()()22a PE a +=. ∴斜高113)EE PE PE b a =-=-.∴棱台的侧面积()))2213432S a b b a b a =⨯+-=-侧;(2)棱台的侧面积等于两底面面积之和,∴22114()2a b EE a b ⨯+⨯=+,2212()a b EE a b +∴=+. 222222111()[]()2()2a b b a abOO EE EO E O a b a b+-∴=---++. 19.(1)设棱台1111ABCD A B C D -是由棱锥P ABCD -截出的,如图,棱台的侧面是全等的等腰梯形,则棱锥P ABCD -的侧面是全等的等腰三角形,显然侧棱都相等, 设M 是底面ABCD 上AC 与BD 的交点,则M 是AC 的中点也是BD 中点,所以PM AC ⊥,PM BD ⊥,则PM ⊥平面ABCD ,M 正方形ABCD 中心,因此P ABCD -是正棱锥,棱台1111ABCD A B C D -是正棱台,在侧面11BB C C 内过1B 作1B H BC ⊥于点H ,则22153(10)()32B H -=-=, 棱台的侧面积为S 侧=14(35)3482⨯+⨯=;(2)设N 是1111D C B A 的中心,显然N PM ∈,1MNB B 是直角梯形,2525BM ==,132B N高225232(10)()2222MN =--= 棱台的体积为221982(5533)223V =+⨯+⨯ 20.因为正三棱柱的侧面展开图是边长分别为2和4的矩形, 所以有以下两种情况:当2是下底面的周长,4是正三棱柱的高时,正三棱柱的表面积为=+2=S S S 表侧底21232324+223⎛⎫⨯⨯⨯ ⎪⎝⎭当4是下底面的周长,2是正三棱柱的高时,正三棱柱的表面积为=+2=S S S 表侧底21438342+223⎛⎫⨯⨯⨯ ⎪⎝⎭故答案为:238321.(1)在正三棱锥S ABC -中,SA ,SB ,SC 两两垂直且AB =BC =CA ,P 为底面ABC 内的一点,连接PA ,PB ,PC ,PS ,如图,可将原三棱锥分成三个三棱锥P SAB P SBC P SAC ---,,, 它们的高分别为,,x y z ,由S ABC C SAB P SAB P SBC P SAC V V V V V -----==++, 即2111133(333333)3232x y z ⨯⨯⨯=⨯⨯⨯+⨯+⨯, 得 3.x y z ++=(2)由31113x y z x y z ++=⎧⎪⎨++=⎪⎩,得1116x y z x y z +++++=.又0,0,0x y z >>>,∴1112,2,2x y z x y z +≥+≥+≥,∴1116x y z x y z +++++≥, 当且仅当1x y z ===时取等号.故当1113x y z ++=时,点P 为正三角形ABC 的中心. 22.(1)如图,做该正棱台的轴截面,GNE 中,3,33,90o GN NE GNE ==∠= , 所以6,30o GE GEN =∠= ,根据对称性,30o QEG ∠= , 故60,120,o o QEN MPQ ∠=∠= 所以60o MPG ∠= ,3,3,GM MP =∴=正四棱台上底面是一个边长为23的正方形,2222113[(23)(63)(23)(63)]33S ⋅=+⋅表 即111210812108=120+36=40+125233S =+⨯=表()() (2)正四棱台中,上下底面均为正方形,且侧棱长相等,1B 在底面的射影为M , 所以1B M ABCD ⊥面 , 1AB 与底面ABCD 所成角为1B AM ∠ ,1123,6,43MQ B M BQ ==∴=43AQ =146AB =16sin 46B AM ∠=。
人教版高一数学必修2练习题

高一数学必修2练习题一、选择题(3×10=30分)1.图I 是由下列哪个平面图旋转得到的( A )2.下图所示的是一个立体图形的三视图,请说出立体图形的名称为( C )A .圆柱;B .棱锥;C .长方体;D .棱台;3.设有不同的直线a,b 和不同的平面γβα,,,给出下列三个命题:○1若;b //a ,//b ,//a 则αα ○2若;//,//a ,//a βαβα则 ○3若;//,,βαγ⊥βγ⊥α则其中正确的个数是( ) A .0; B .1; C .2; D .3;4.长方体一个顶点上的三条棱长分别是3,4,5,若它的八个顶点都在同一个球面上,则这个球的表面积是( ) A .;220π B .;225π C .;50π D .;200π 5.若0x 2<<-π,则经过两点P1(0,cosx),P2(sinx,0)的直线的倾斜角为(C )A .x;B .-x;C .2π+x; D .π+x;6.平行于直线2x-y+1=0且与圆x 2+y 2=5相切的直线的方程是( D ) A .2x -y+5=0; B .2x -y -5=0;C .2x +y+5=0或2x +y -5=0;D .2x -y+5=0或2x -y -5=0; 7.若实数x,y 满足1y 4x 22=+,则x+y 的最大值是( A )A .;5B .2+;5C .;3D .;28.直线xcos θ+ysin θ+a=0与圆x 2+y 2=a 2交点的个数是( B )A .0;B .1;C .2;D .随θ的变化而变化;ABCD正视图 侧视图9.以等腰直角三角形ABC 斜边BC 上的高AD 为折痕,将∆ABC 折成二面角C —AD —B 等于( )时,在折成的图形中,∆ABC 为等边三角形。
A .90o ;B .60o ;C .45o ;D .30o;10.若圆满足:○1截y 轴所得弦长为2;○2被x 轴分成两段圆弧,其弧长的比为3:1,在满足 条件○1○2的所有圆中,圆心到直线L:x -2y=0的距离最小的圆的方程为( B ) A .x 2+y 2+12x -16y -3=0; B .x 2+y 2-12x -16y -3=0; C .x 2+y 2-12x+16y -3=0; D .x 2+y 2-12x -16y+3=0; 二、填空题(3×4=12分)11.两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是 12.线段AB 两端点到平面α的距离都等于2,那么线段AB 所在直线与平面α的位置关系是 。
(完整版)高一数学必修2第二章测试题及答案解析,推荐文档

c 可以平行,可以相交,也可以异面,故④错误.
7[答案] D [解析] 如图所示.由于 AA1⊥平面 A1B1C1D1,EF⊂平面 A1B1C1D1,则 EF⊥AA1,所以①正确;当 E,F 分别是线段 A1B1,B1C1 的中点时,EF∥A1C1,又 AC∥A1C1,则 EF∥AC,所以 ③不正确;当 E,F 分别不是线段 A1B1,B1C1 的中点时,EF 与 AC 异面,所以②不正确;由于平面 A1B1C1D1∥平面 ABCD,EF⊂平面 A1B1C1D1,所以 EF∥平面 ABCD,所以④正确.
14.正方体 ABCD-A1B1C1D1 中,二面角 C1-AB-C 的平面角等于 ________. 15.设平面 α∥平面 β,A,C∈α,B,D∈β,直线 AB 与 CD 交于点 S,且点 S 位于平面 α,β 之间,AS=8,BS=6,CS=12,则 SD=________. 16.将正方形 ABCD 沿对角线 BD 折成直二面角 A-BD-C,有如下 四个结论: ①AC⊥BD;②△ACD 是等边三角形;③AB 与平面 BCD 成 60°的角; ④AB 与 CD 所成的角是 60°.其中正确结论的序号是________.
4.长方体 ABCD-A1B1C1D1 中,异面直线 AB,A1D1 所成的角等于( ) A.30° B.45° C.60° D.90°
5.对两条不相交的空间直线 a 与 b,必存在平面 α,使得( ) A.a⊂α,b⊂α B.a⊂α,b∥α C.a⊥α,b⊥α D.a⊂α,b⊥α
6.下面四个命题: ①若直线 a,b 异面,b,c 异面,则 a,c 异面; ②若直线 a,b 相交,b,c 相交,则 a,c 相交; ③若 a∥b,则 a,b 与 c 所成的角相等; ④若 a⊥b,b⊥c,则 a∥c.其中真命题的个数为( ) A.4 B.3 C.2 D.1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图、直观图、公里练习
1、下列说法正确的是()
A. 有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥
B. 有两个面平行且相似,其余各面都是梯形的多面体是棱台
C. 如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥
D. 有两个相邻侧面是矩形的棱柱是直棱柱
2、在正方体ABCD﹣A1B1C1D1中,O、O1分别为底面ABCD和A1B1C1D1的中心,以OO1所在直线为轴旋转线段BC1形成的几何体的正视图为()
A. B. C. D.
3、已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC的面积为( )
A. a2
B. a2
C. a2
D.
4、将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为 ( )
A. B. C. D.
5、一个正方体被过其中三个顶点的平面割去一个角余下的几何
体如图所示,则它的正视图应为()
6、已知正三角形的边长为1,那么的平面直观图的面积为()
3366
A.
7、如图所示为一个简单几何体的三视图,则其对应的实物是()
A. B. C. D.
8、如图是一正方体被过棱的中点M、N和顶点A、D、C1的两个截面截去两个角后所得的几何体,则该几何体的正视图为()
9、如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱
平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()
A. 该三棱柱主视图的投影不发生变化;
B. 该三棱柱左视图的投影不发生变化;
C. 该三棱柱俯视图的投影不发生变化;
D. 该三棱柱三个视图的投影都不发生变化.
10. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是().
A.三棱锥B.三棱柱C.四棱锥D.四棱柱
11.用一个平面去截一个正方体,截面可能是________.
①三角形;②四边形;③五边形;④六边形.
12.【2017课标1,文6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,
Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是
A .
B .
C .
D .
13.【2014高考广东卷.文.9】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足
12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )
A .14l l ⊥
B .14//l l
C .1l .4l 既不平行也不垂直
D .1l .4l 的位置关系不确定
14.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )
A .l 至少与1l ,2l 中的一条相交
B .l 与1l ,2l 都相交
C .l 至多与1l ,2l 中的一条相交
D .l 与1l ,2l 都不相交
15. 【2016高考上海文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )
(A)直线AA 1 (B)直线A 1B 1
(C)直线A 1D 1 (D)直线B 1C 1
16、如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是__________
17.【2017山东,文18】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,
(Ⅰ)证明:1AO ∥平面B 1CD 1;
(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.
18.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点。