离散数学 练习题七

合集下载

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

离散数学7习题解答

离散数学7习题解答

第7章习题解答7.1 (1),(2),(3),(5) 都能构成无向图的度数列,其中除⑸ 外又都能构成无向简单图的度数列.n 分析1 °非负整数列d!,d2,…,d n能构成无向图的度数列当且仅当di为i 4偶数,即d!,d2,…,d n中的奇数为偶数个.(1),(2),(3),(5) 中分别有4个,0个,4 个,4个奇数,所以,它们都能构成无向图的度数列,当然,所对应的无向图很可能是非简单图.而⑷中有3个奇数,因而它不能构成无向图度数列.否则就违背了握手定理的推论.2° (5)虽然能构成无向图的度数列,但不能构成无向简单度数列.否则,若存在无向简单图G,以1,3,3,3 为度数列,不妨设G中顶点为v! ,v2, v3,v4,且d(V i) =1,于是d(V2)=d(V3)=d(V4)=3.而V!只能与v?""之一相邻,设w 与v?相邻,这样一来,除V2能达到3度外,V3 ,V4都达不到3度,这是矛盾的.在图7.5所示的4个图中,(1)以1为度数列,(2)以2为度数列,(3)以3为度数列,(4)以4为度数列(非简单图).7.2设有几简单图D以2,2,3,3为度数列,对应的顶点分别为V1,V2, V3,V4 ,由于d(v)二 d (v) d_(v),所示,d (vj - d -(y) = 2 - 0 = 2,d(V2) = d(V2)-d “2)= 2—0 =2,d (vj =d(V s) _d—(V3) =3_2 =1,d (V4) = d(V q) _ d^v。

)= 3 _ 3 = 0由此可知,D 的出度列为2,2,1,0,且满足a dd -(V i ).请读者画出一个有向图•以2,2,3,3为度数列,且以0,0,2,3为入度列,以2,2,1,0为出度列.7.3 D 的入度列不可能为 1,1,1,1.否则,必有出度列为 2,2,2,2(因为 d(v) =d (v) d~(v)),)此时,入度列元素之和为4,不等于出度列元素之和 8,这 违背握手定理.类似地讨论可知,1,1,1,1也不能为D 的出席列.7.4不能.N 阶无向简单图的最大度 厶_ n 一1.而这里的n 个正整数彼此不同 因而这n 个数不能构成无向简单图的度数列,否则所得图的最大度大于n,这与最 大度应该小于等于n-1矛盾.7.5 (1) 16个顶点.图中边数m=16,设图中的顶点数为n.根据握手定理可n知 2m =32 二' d(vj=2 ni 4所以,n =16.(2) 13个顶点.图中边数m =21,设3度顶点个数为x,由握手定理有2m =42 =3 4 3x由此方程解出x =10.于是图中顶点数n =3 10 =13. (3) 由握手定理及各顶点度数均相同,寻找方程2 24 = nk的非负整数解,这里不会出现n,k 均为奇数的情况.其中n 为阶级,即顶点 数,k 为度数共可得到下面10种情况.① 个顶点,度数为48.此图一定是由一个顶点的24个环构成,当然为非简单⑥ 个顶点,每个顶点的度数均为6.所对应的非同构的图中有简单图,也有非 简单图.② 2个顶点,每个顶点的度数均为 非简单图.③ 3个顶点,每个顶点的度数均为 ④ 4个顶点,每个顶点的度数均为⑤ 6个顶点,每个顶点的度数均为 24.这样的图有多种非同构的情况,一定为 16.所地应的图也都是非简单图. 12.所对应的图也都是非简单图.8,所对应的图也都是非简单图.⑦ 12个顶点,每个顶点的度数均为4.所对应的非同构的图中有简单图,也 有非简单图•⑧ 16个顶点,每个顶点的度数均为3,所对应的非同构的图中有简单图,也有 非简单图•⑨ 24个顶点,每个顶点的度数均为2.所对应的非同构的图中有简单图,也有 非简单图•⑩ 48个顶点,每个顶点的度数均为1,所对应的图是唯一的,即由24个K 2构 成的简单图•分析 由于n 阶无向简单图G 中,:(G)< n —1,的以①-⑤所对应的图不可能 有简单图•⑥-⑨既有简单图,也有非简单图,读者可以画出若干个非同构的图,而 ⑩只能为简单图•7.6 设G 为n 阶图,由握手定理可知n70 =2 35 八 d(vj _3n ,i吕所以,这里,乂为不大于x 的最大整数,例如.2」=2,25」=2,空=23..3 一7.7由于:(G) = n-1,说明G 中任何顶点v 的度数d(v)八(G) = n-1,可是由于G 为简单图,因而列G)乞n -1,这又使得d(v)岂n -1,于是d(v)二n-1,也就 是说,G 中每个顶点的度数都是n-1,因而应有"G)乞n-1.于是G 为(n-1)阶正 则图,即G 为n 阶完全图K n .7.8由G 的补图G 的定义可知,G G 为K n ,由于n 为奇数,所以,K n 中各 项顶点的度数n -1为偶数.对于任意的V(G),应有v V(G),且d G (v)_d G (v)二 dg(v)二 n -1其中d G (v)表示v 在G 中的度数,d G(v)表示v 在G 中的度数.由于n_1为偶 数,所|70= 23.以,d G(v)与d G(v)同为奇数或同为偶数,因而若G有r个奇度顶点,则G也有r个奇度顶点.7.9由于D' D,所以,m'空m.而n阶有向简单图中,边数m乞n(n 一1),所以, 应有n(n _1) = m\ m 乞n(n -d)这就导致m = n(n -1),这说明D为n阶完全图,且D' = D .7.10图7.6给出了K4的18个非同构的子图,其中有11个生成子图(8-18), 其中连通的有6个11,12,13,14,16,17). 图7.6中,n,m分别为顶点数和边数.7.11 K4有11个生成子图,在图7.6中,它们分别如图8-18所示.要判断它们之中哪些是自补图,首先要知道同构图的性质,设G1与G2的顶点数和边数.若G1三G?,贝U门丄=门2「且m<i = m?.国(8)的补图为(14) -K4 ,它们的边数不同,所以,不可能同构.因而(8)与(14) 均不是自补图类似地,(9)的补图为(13),它们也非同构,因而它们也都不是自补图.(10)与(12)互为补图,它们非同构,因而它们都不是自补图.(15)与(17)互为补图,它们非同构,所以,它们都不是自补图•类似地,(16)与(18)互为补图且非同构,所以,它们也都不是自补图•而(11)与自己的补图同构,所以,(11)是自补图•7.12 3阶有向完全图共有20个非同构的子图,见图7.7所示,其中⑸-(20)为生成子图,生成子图中(8),(13),(16),(19) 均为自补图.分析在图7.7所示的生成子图中,(5)与(11)互为补图,(6)与(10)互为补图,(7)与(9)互为补图,(12)与(14)互为补图,(15)与(17)互为补图,(18)与(20) 互为补图,以上互为补图的两个图边数均不相同,所以,它们都不是自补图.而(8),(13),(16),(19)4 个图都与自己的补图同构,所以,它们都是自补图.7.13 不能.分析在同构的意义下,G,G2,G3都中K4的子图,而且都是成子图.而K4的两条边的生成子图中,只有两个是非同构的,见图7.6中(10)与(15)所示.由鸽巢原理可知,G,G2,G3中至少有两个是同构的,因而它们不可能彼此都非同构.鸽巢原理m只鸽飞进n个鸽巢,其中m 一n ,则至少存在一巢飞入至少[凹]只n鸽子.这里x表示不小于x的最小整数.例如,|2 = 2, |2.5 =3.7.14 G是唯一的,即使G是简单图也不唯一.分析由握手定理可知2m = 3n,又由给的条件得联立议程组'2m =3 n 、2n —3 = m.解出n = 6,m二9.6个顶点,9条边,每个顶点的度数都是3的图有多种非同构的情况,其中有多个非简单图(带平行边或环),有两个非同构的简单图,在图7.8 中(1),(2)给出了这两个非同构的简单图.满足条件的非同构的简单图只有图7.8中,(1),(2)所示的图,(1)与⑵所示的图,(1) 与(2)是非同构的.注意在⑴中不存在3个彼此相邻的顶点而在⑵ 中存在3个彼此相邻的顶点,因而⑴图与(2)图非同构.下面分析满足条件的简单图只有两个是非同构的.首先注意到(1)中与(2)中图都是K6的生成子图,并且还有这样的事实,设G,G2都是n阶简单图,则G^G2当且仅当G^e G2 ,其中G,G2分别为G与G2的补图.满足要求的简单图都是6阶9条边的3正则图,因而它们的补图都为6阶6条边的2正则图(即每个顶点度数都是2).而K6的所有生成子图中,6条边2正则的非同构的图只有两个,见图7.8中(3),(4)所示的图,其中(3) 为(1)的补图,(4)为(2)的补图,满足要求的非同构的简单图只有两个.但满足要求的非同简单图有多个非同构的,读者可自己画出多个来.7.15将K6的顶点标定顺序,讨论X所关联的边.由鸽巢原理(见7.13题),与V1关联的5条边中至少有3条边颜色相同,不妨设存在3条红色边,见图7.9 中⑴ 所示(用实线表示红色的边)并设它们关联另外3个顶点分别为V2,v4,V6.若V2,V4, V6构成的K g中还有红色边,比如边(V2M)为红色,则Vj^M构成的K g为红色K3,见图7.9中⑵ 所示.若V2,V4,V6构成的K3各边都是蓝色(用虚线表示), 则V2,V4,V6构成的K a为蓝色的.珂7.16在图7.10所示的3个图中,(1)为强连通图,(2)为单向连通图,但不是强连通的,(3)是弱连通的,不是单向连通的,更不是强连通的.图7. 10分析在⑴中任何两个顶点之间都有通路,即任何两个顶点都是相互可达的,因而它是强连能的.(2)中c不可达任何顶点,因而它不是强连通的,但任两个顶点存在一个顶点可达另外一个顶点,所以,它是单向可达的.(3)中a,c互相均不可达,因而它不是单向连通的,更不是强连通的.判断有向图的连通性有下面的两个判别法.1°有向图D是强连通的当且仅当D中存在经过每个顶点至少一次的回路.2°有向图D是单向连通的当且仅当D中存在经过每个顶点至少一次的通路.(1)中abcda为经过每个顶点一次的回路,所以,它是强连能的.(2)中abdc 为经过每个顶点的通路,所以,它是单向连通的,但没有经过每个顶点的回路,所以,它不是强连通的.(3)中无经过每个顶点的回路,也无经过每个顶点的通路,所以,它只能是弱连通的.7.17 G-E'的连通分支一定为2,而G-V'的连通分支数是不确定的.分析设E'为连通图G的边割集,则G - E'的连通分支数p(G - E')二2,不可能大于2.否则,比如p(G -E') =3,则G -E'由3个小图G「G2,G3组成,且E'中边的两个端点分属于两个不同的小图.设E"中的边的两个端点一个在G中,另一个在G 2中,则E " E ',易知p(G 一 E") =2 ,这与E '为边割集矛盾,所以, p(G 一 E") =2.但p(G-V ')不是定数,当然它大于等于2,在图7.11中,V 二{u,v }为⑴的点 割集,p(G-V)=2,其中G 为(1)中图.V ={v }为⑵ 中图的点割集,且v 为割tin i点,p(G -V ) =4,其中G 为⑵中图.屛1;■<]>£ 7.11(2)7.18解此题,只要求出D 的邻接矩阵的前4次幕即可.D 中长度为4的通路数为A 4中元素之和,等于15,其中对角线上元素之和为 3,即D 中长度为3的回路数为3. V 3到V 4的长度为4的通路数等于a 34)= 2.分析 用邻接矩阵的幕求有向图D 中的通路数和回路数应该注意以下几点: 1 °这里所谈通路或回路是定义意义下的,不是同构意义下的.比如,不同始 点(终点)的回路2 ° 这里的通路或回路不但有初级的、简单的,还有复杂的.例 如,V 1,V 2,w,V 2,V 1是一条长为4的复杂回路.3°回路仍然看成是通路的特殊情况.读者可利用A 2, A 3,求D 中长度为2和3的通路和回路数. 7.19 答案A:④.分析G 中有N k 个k 度顶点,有(n — NQ 个(k 1)度顶点,由握手定理可知0 11010 0 0 A = 0 10 1 .0 0 0 0一A 2A 3A 4~1 1 0 11 1 0 0 0 1 0 0 1211n、d(V j) =k N k(k 1)(n - N k) =2mi 4=N k=n (k 1)-2 n.7.20答案A:②;B:③.分析在图7.12中,图(1)与它的补同构,再没有与图(1)非同构的自补图了所以非同构的无向的4阶自补图只有1个.图⑵与它的补同构,图⑶与它的补也同构,而图⑵ 与图⑶ 不同构,再没有与(2),(3)非同构的自补图了,所以,非同械的5阶自补图有2个.<1)(Z) ⑶圉7.127.21答案A:④;B:③;C:④;D:①.分析(1)中存在经过每个顶点的回路,如adcba..(2)中存在经过每个顶点的通路,但无回路.(3)中无经过每个顶点至少一次的通路,其实,b,d两个顶点互不可达.(4)中有经过每个顶点至少一次的通路,但无回路,aedcbd为经过每个顶点的通路.(5)中存在经过每个顶点至少一次的回路,如aedbcdba.(6)中也存在经过每个顶点的回路,如baebdcb.由7.16题可知,(1),(5) ,(6) 是强连通的,(1),(2),(4),(5),(6) 是单向连能的,(2),(4)是非强连通的单向连通图.注意,强连通图必为单向连通图.6个图中,只有(3)既不是强连通的,也不是连通的,它只是弱连通图.在⑶中,从a到b无通路,所以d, ::: a,b「:,而b到a有唯一的通路ba,所以d b, a =1.7.22 答案A: ①;B:⑥㈩C:②;D:④.分析用Dijkstra标号法,将计算机结果列在表7.1中.表中第x列最后标定y/Z表示b到x的最短路径的权为y,且在b到x的最短路径上,Z邻接到x,即x的前驱元为Z.由表7.1可知,a的前驱元为c(即a邻接到c),c的前驱元为b, 所以,b到a的最短路径为bca,其权为4.类似地计论可知,b到c的最短路径为be,其权为1.b到d的最短路径为bcegd ,其权为9.b到e的最短路径为bee,其权为7.7.23 答案A:⑧;B:⑩ C:③;D:③和④.分析按求最早、最晚完成时间的公式,先求各顶点的最早完成时间,再求最晚完成时间,最后求缓冲时间(1)最早完成时间:TE(vJ =0-_(V2)二{vM, TE(v2) =max{0 3} =3-_(V3)二{vz}, TE(v3) =max{0 2,3 C} -3厂(vj 二{WM},TE(vJ =max{0 4,3 2} = 5-(V5)二M M},TE(V5)= max{34,3 4} - 711 /11TL(V 9)=13 -(V 8)二{V 9},TL(v 8) =mi n{13_1} =12; -(V 6) ={V 8},TL(v 6) = mi n{12 -3 = 9; -(V 7)二 g},TL(v 7) =mi n{12 —1} =11; -(V 5) ={V 6,V 9}, TL(v 5) =min{9-0,13 -6} = 7; :(V 4)*7}, TL (V4)= min {11-5=6; -(V 3)二{V 4,V 5,V 6},TL(v 3) =min{6-2.7-4.9-4二 5; (v 2 ) = {v 3, V 5}, TL(v 2) =mi n{3-0.7-4} =3; ;(vj ={V 2,V 3,V 4},TL(vJ = mi n{ 3 —3.3 —2,6 —'4} = 0;(3)缓冲时间: TS(V i )二TS(V 2)=TS(V 3)=TS(V 5)=TS(V 9)=0 TS(V 4)=1,TS (V 6)=2,TS (V 7)=TS (V 8)=1.(4)关键路径有两条: V 1,V 2,V 5,V 9 和 V 1,V 2,V 3,V 5,V 9.-一山)={V 4,V 5},TE(v 7) = max{5 5,10 0} =10 (V 8 ) = { V 6, V 7 }, TE(v 8) = max{7 3,10 1} =11-讥)二{V 5,V 8},TE(v 9) =max{7 6,11 1} =13 -_(V 6)二“他},TE(v 6) =max{3 4,7 0} = 7 (2)最晚完成时间:。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学课后习题答案第七章

离散数学课后习题答案第七章

第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。

与平凡图构成的非连通图中有4个结点3条边,但是它不是树。

3K 3.证明 必要性。

因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。

再证充分性。

因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。

4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。

5.解6个结点的所有不同构的树如图7-1所示。

图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。

⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。

综合⑴,⑵得知T 中至少有两片树叶。

7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。

图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。

⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。

,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。

其中T 2,T 5是图中的最小生成树。

9.解 最小生成树T 如图7-7所示,W (T )=18。

a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。

如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。

离散数学第7章 图论 习题

离散数学第7章 图论 习题
证明:设无向图G中两个奇数度的结点为u和v。 从u开始构造一条迹,即从u出发经关联于结点u的边e1到达结点 u1,若deg(u1)为偶数,则必可由u1再经关联于结点u1的边e2到达结 点u2,如此继续下去,每边只取一次,直到另一个奇数度结点停止, 由于图G中只有两个奇数度结点,故该结点或是u或是v。如果是v, 那么从u到v的一条路就构造好了。如果仍是结点u,此路是闭迹。
300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
距离矩阵为
0 1 2 1 ∞ 0 1 1 ∞ 1 0 1 ∞ 1 2 0 dij=1表示存在边<vi,vj>。
c)画一个没有一条欧拉回路,但有一条汉密尔顿回路的图。
设G是一个具有k个奇数度结点(k>0)的连通图, 证明在G中的边能剖分为k/2条路(边不相重)。 证明:因为一个图中度数为奇数的结点个数必为偶数, 故k必为偶数。 将G中k个奇数度结点分为数目相等的两组{u1,u2,…,uk/2} 和{v1,v2,…,vk/2} 。对图G添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)共k/2条边,得到图G’。由于图G’中每个结 点的度数均为偶数,故G’中存在一条欧拉回路。 在图G’中删去边(u1,v1),得到一条欧拉路, 此路的两个端 点是u1和v1。结点u2和v2必在路的中间, 再删去边 (u2,v2),得到两条边互不相重的迹,这两个迹的端点 分别为u2和v2。结点u3和v3必在某一条迹的中间。 再删去边(u3,v3) ,则将一条迹(包含u3和v3的迹)又分 为两条边互不相重的迹,共得到3条互不相重的迹。 以此继续下去,直到所有的添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)全部删去,得到k/2条边互不相重的路(迹)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.给定算式: {[(a +b)*c]*(d +e)}+[f -(g *h)] 此算式的波兰符号表示式为( ), 逆波兰符号表示式为( ).
A 、+**a +bc +def -g *h
B 、+**+abc +de -f *gh
C 、*-*+abc +de -fgh +
D 、ab +c *de +*fgh *-+
10.设R,Z,N 分别为实数,整数和自然数集,函数f :R →R ,f(x)=x ,f 是( );
g: Z →N, g(x)=|x|, g 是( ); h: N →N ×N. h(n)=﹤n,n +1﹥,h({5})=( ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射
E. 满射非单射
F.单射非满射 G ,<5,6> H,{<5,6>} J,以上答案都不对.
11. 75个学生去书店买语文,数学,英语书,每种书每个学生至多买1本.已知20个学生每人 买3本书,55个学生每人至少买2本书.每本书的价格都是1元,所有学生总共花费 140元,恰好买2本书的有( )多少个学生.至少买2本书的学生花费( )元.买 1本书的有( )个学生.至少买1本书的有( )个学生.没买书的有( )个学生. A.55 B.40 C.35 D.15 E.30 F.130 G.65 H.140 J.60 K.10
12. 为每个逻辑断言选择正确的解释。

T(x):x 今天来上课,S(x):x 学计算机专业的学生,
P(x):x 编程序,G(x):x 玩游戏。

个体域是殷都大学。

∀x T(x)表示( ),⌝∃x T(x)表示( ),∃x ⌝ T(x)表示( ),∀x(S(x)→P(x))表示( ),∃x(S(x)∧G(x))表示( ),∀x(S(x)∧P(x))表示( ),∃x(S(x)→G(x))表示( )。

A 学计算机专业的学生会编程序,
B 殷都大学的学生都是计算机专业且会编程序。

C 有些计算机专业的学生玩游戏,
D 所有同学今天都来上课了,
E 今天有同学没来上课。

F 计算机专业的学生玩游戏,
G 今天没有同学来上课。

二、计算与应用题(共40分)
1. S={ 1,2,…,10 },定义S 上的关系R={<x,y> | x,y ∈S ∧ x+y=10 }, 试列举出R 中的所有有序对,并分析说明R 具有哪些性质。

(10分)
2.在偏序集<Z,≤>中,其中Z={1,2,3,4,6,8,12,24},≤是Z 中的整除关系,求集合D={2,3,4,6}的极大元,极小元,最大元,最小元,最小上界和最大下界。

(12分)
3.设7个字母在通信中出现的频率如下:
a: 35%, b: 20%, c: 15%, d: 10%, e: 10%, f: 5%, g: 5%.
编一个最佳2元前缀码.在这个前缀码中,a,b,c,d,e,f,g 的码长分别是多少? 传输10000个按上述比例出现的字母需要多少个二进制数字.(8分).
4. 若图G 的邻接矩阵是A ,试通过矩阵讨论图的连通性。

(10分)
———————————密———————————————封——
—————————————线——————————
——
密 封 线 内 不 要 答 题
____________________ 系
____________________专业_____________ 班 姓名_______________学号______________
_
三,证明题(共35分)
1.有N 个人,已知他们中的任何二人合起来认识其余的N-2个人。

证明:当N ≥3时,
这N 个人 能排成一列,使得任何两个相邻的人都相互认识。

而当N ≥4时,这N 个人 能排成一个圆圈,使得每个人都认识两旁的人。

(12分)
2.设f 是A 到B 的映射,g 是B 到A 的映射。

证明:f 是单射的充分必要条件是fg=I A ;
f 是满射的充分必要条件是gf=I B 。

(13分)
3. 设G 为n (n ≥5)阶简单图,证明G 或G 中必含圈。

(10分)
———————————密———————————————封———————————————线———————————— 密 封 线 内 不 要 答 题 ___________________
系 ____________________专业_____________ 班 姓名_______________学_____________ ______ ———————————密———————————————封———————————————线———————————— 密 封 线 内 不 要 答 题
__________________ 系
____________________专业_____________ 班
姓名_______________号______________
______。

相关文档
最新文档