离散数学章练习题及答案

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学习题解答(祝清顺版)

离散数学习题解答(祝清顺版)
2
(1) 错误; (2) 正确; (3) 正确; (4) 错误; (5) 错误; (6) 错误; (7) 正确; (8) 正确; (9) 错误; (10) 错误. 10. (1) {d}; (2) {a, c, e}; (3) {a, b, c, e}; (4) {b, d, e}. 11. 各集合的文氏图如图所示(阴影部分).
5
195 = 1 ∙ 154 + 41 154 = 3 ∙ 41 + 31 41 = 1 ∙ 31 +10 31 = 3 ∙ 10 +1 10=10 ∙ 1 +0 所以, gcd(934, 195) = 1. 代回去, 有 gcd(540, 168) = 1 = 31 3 ∙ 10 = 31 3 ∙ (41 1∙31) = 4 ∙ 31 3 ∙ 41 = 4 ∙ (154 3 ∙ 41) 3 ∙ 41 = 4 ∙ 154 15 ∙ 41 = 4 ∙ 154 15 ∙ (1951 ∙ 154) = 19 ∙ 154 15 ∙ 195 = 19 ∙ (934 4 ∙ 195) 15 ∙ 195 = 19 ∙ 934 91 ∙ 195 故 gcd(540, 168) = 19 ∙ 934 91 ∙ 195, 其中 m=19, n = 91. (2) 方法同(1). 计算可得: gcd(369, 25) = 1, gcd(369, 25)= 4 ∙ 369 59 ∙ 25, 其中 m=4, n = 59. (3) 方法同(1). 计算可得: gcd(369, 25) = 33, gcd(369, 25)= 8 ∙ 165 1 ∙ 1287, 其中 n=8, m = 1. (4) 方法同(1). 计算可得: gcd(369, 25) = 2, gcd(369, 25)= 17 ∙ 42 2 ∙ 256, 其中 n=8, m = 1. 32. 由定理 1.3.8, 可得 ab=lcm(a, b)gcd(a, b)=24 ∙ 144. 由已知条件 a+b=120, 根据根与 系数的关系可构造一个一元二次方程 x2120x+24 ∙ 144=0 解之得, x1=72, x2=48. 由此可得 a=72, b=48 或 a=48, b=72. 33. (1) 运用辗转相除法可得 10920 = 1 ∙ 8316 + 2604 8316 = 3 ∙ 2604 + 504 2604 = 5 ∙ 504 + 84 504 = 6 ∙ 84 +0 所以, gcd(934, 195) = 84. (2) 对于(1)中各式回代过去, 有 gcd(10920, 8316) = 84 = 2604 5 ∙ 504 = 2604 5 ∙ (8316 3 ∙ 2604) = 16 ∙ 2604 5 ∙ 8316 = 16 ∙ (10920 1 ∙ 8316) 5 ∙ 8316 = 16 ∙ 10920 21 ∙ 8316 故 gcd(10920, 8316) = 21 ∙ 8316+16 ∙ 10920, 其中 m = 21, n=16. (3) 由最大公因子与最小公倍数的关系, 有 ab 8316 10920 =1081080. lcm(a, b) gcd(a, b) 84

离散数学习题与参考答案

离散数学习题与参考答案

习题二谓词逻辑一、选择题1、下列哪个式子不是谓词演算的合式公式( )A. (x)(A(x,2)∧B(y))B. (x)(A(x)∧B(x,y))C. ((x)∧(y))→(A(x,y)∧B(x,y))D. (x)(A(x)→B(y))2、设个体域是整数集,则下列命题的真值为真的是()A.∀x∃y (xy=1)B. ∃x∀y(x+y=y)C.∃x∀y(x+y=x)D. ∀x∃y(y=2x)3、设B是不含变元x的公式,谓词公式(x)(A(x)→B)等价于( )A.(x)A(x)→BB. (x)A(x)→BC. A(x)→BD.(x)A(x)→(x)B4、谓词公式(x)(P(x)∨(y)R(y))→Q(x)中的x( ).A.只是约束变元B.只是自由变元C.既非约束变元又非自由变元D.既是约束变元又是自由变元5、谓词公式(x)P(x,y)∧(x)(Q(x,z)→(x)(y)R(x,y,z))中量词x的辖域是().A.(x)Q(x,z)→(x)(y)R(x,y,z))B.Q(x,z)→(y)R(x,y,z)C.Q(x,z)→(x)(y)R(x,y,z)D.Q(x,z)6、在论域D={a,b}中与公式()A(x)等价的不含存在量词的公式是()A. B.C. D.7、设M(x):x是人;F(x):x要吃饭.用谓词公式表达下述命题:所有的人都要吃饭,其中错误的表达式是().A.B.C.D.8、设个体域A={a,b},公式xP(x)∧xS(x)在A中消去量词后应为().A.P(x)∧S(x) B.P(a)∧P(b)∧(S(a)∨S(b))C.P(a)∧S(b) D.P(a)∧P(b)∧S(a)∨S(b)9、按照约束变元的改名规则,∀xP(x) →∃yR(x,y)不可改写成(). A.∀mP(m) →∃yR(x,y) B.∀xP(x) →∃zR(x,z)C.∀xP(x) →∃xR(x,x) D.∀xP(x) →∃nR(x,n)10、∀ x∀y(P(x,y)∧Q(y,z))∧(∃x)p(x,y),下面的描述中错误的是()A.(∀ x)的辖域是(∀ y)(P(x,y)∧Q(y,z))B.z是该谓词公式的约束变元C.(∃ x)的辖域是P(x,y)D. x是该谓词公式的约束变元二、填空题1、设P(x):x非常聪明;Q(x):x非常能干;a:小李;则命题“小李非常聪明和能干”的为谓词表达式为_______.2、使公式(x)( y)(A(x)∧B(y))(x)A(x)∧(y)B(y)成立的条件是______不含有y,______不含有x.3、公式(x)A(x)→B(y)的前束范式为______.4、公式x(P(x)→Q(x,y)∨zR(y, z))→S(x)中的自由变元为________________,约束变元为________________.5、令R(x):x是实数,Q(x):x是有理数。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。

B. 有向图中的边无方向性,无向图中的边有方向性。

C. 无向图和有向图都是由顶点和边组成的。

D. 无向图和有向图都只由边组成。

答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。

B. 若集合A和B相交为空集,则A和B相等。

C. 若集合A和B相等,则A和B互相包含。

D. 若集合A和B相等,则A和B相交为空集。

答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。

答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。

答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。

答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。

答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。

答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。

证明过程:假设A和B互相包含,即A包含于B且B包含于A。

设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。

同理,对于集合B中的任意元素y,y也属于集合A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、判断公式的类型
1,
2.
3.
解:设三个公式为A,B,C则真值表如下:
p, q ,r
A
B
C
000
1
0
1
001
1
0
0
010
1
0
1
011
1
0
1
100
1
0
1
101
1
0
1
110
1
0
0
111
1
0
1
由上表可知A为重言式,B为矛盾式,C为可满足式。
第二章练习题
一.填空
1.设A为含命题变项p, q, r的重言式,则公式 的类型为重言式
二.将下列命题符合化
1. 不是无理数是不对的。
解: ,其中p: 是无理数;或p,其中p: 是无理数。
2.小刘既不怕吃苦,又很爱钻研。
解: p:小刘怕吃苦,q:小刘很爱钻研
3.只有不怕困难,才能战胜困难。
解: ,其中p:怕困难,q:战胜困难
或 ,其中p:怕困难,q:战胜困难
4.只要别人有困难,老王就帮助别人,除非困难解决了。
A=12,B=10
~(A B)=5
A B=25-5=20
A B-A=8
A B=10-8=2
第七章习题
设 ,求x,y
解:由有序相等的充要条件:
解得:
2.已知 , ,试确定下列集合(1) ,(2) (3)
解:(1)
(2)
(3)
P143页13题
设 ,
求: , ,
解:
离散数学章练习题及答案
离散数学练习题
第一章
一.填空
1.公式 的成真赋值为01;10
2.设p, r为真命题,q, s为假命题,则复合命题 的真值为0
3.公式 共同的成真赋值为01;10
4.设A为任意的公式,B为重言式,则 的类型为重言式
5.设p, q均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。
2.设 ,则 ____ _________
3.设 ,则 ____{ ,{{1}},{{1,2}},{{1},{1,,2}}}________
4.设 ,则 ____{ ,{1},{2},{1,2}}_________
5.设[a,b], (c,d)代表实数区间,那么 ____[3,4]________
6.设X,Y,Z为任意集合,且 , ,若 则一定有___ _____
解: ,其中p:别人有困难,q:老王帮助别人,r:困难解决了
或: ,其中p:别人有困难,q:老王帮助别人,r:困难解决了
5.整数n是整数当且仅当n能被2整除。
解: ,其中p:整数n是偶数,q:整数n能被2整除
三、求复合命题的真值
P:2能整除5,q:旧金山是美国的首都,r:在中国一年分四季
1.
2.
解:p, q为假命题,r为真命题
答:设A为第一次考试得5分的人,B为第二次考试得5分的人。
A=26,B=21
~(A B)=17
A B=50-17=33
A B-A=7
A B=21-7=14
五,一个班25个学生,会打篮球的有12人,会打排球的有10人,两种球都不会打的有5人,那么两种球都会打的有多少人(
提示:应用包含排斥原理)
答:设A为会打篮球的人数,B为会打排球的人数。
3.设F(x): x具有性质F,G(y): y具有性质G,命题“对所有x都有性质F,则所有的y都有性质G”的符号化形式为
4.设F(x): x具有性质F,G(y): y具有性质G,命题“若存在x具有性质F,则所有的y都没有性质G”的符号化形式为
5.设A为任意一阶逻辑公式,若A中__不含自由出现的个体项_____,则称A为封闭的公式。
(d)N上谓词
给出下列公式在I下的解释,并指出他们的真值:
1.
解: ,即对任意的自然数 ,都有 ,真值为0
2.
解: ,即对任意自然数 若 ,则 ;其真值为0
3.
解: ,即对任意的自然数 ,都存在 ,使得 ;真值为1
4.
解: ,即存在自然数 使得 ,其真值为1
第六章习题
一,填空
1.设 , ,则 ____ ______
(c)特定函数
(d)特定谓词
给出下列公式在I的解释,并指出他们的真值:
1.
解: ,即对任意的实数, ,则 ;真值为1
2.
解: ,即对任意的实数 若 则 其真值为0
3.
解: ,即对任意的实数 若 则 其真值为1
4.
解: ,即对任意的实数 若 则 其真值为0
四.给定解释I如下:
(a)个体域D=N; (b)特定元素 (c)N上函数
6.在一阶逻辑中将命题符号化时,若没有指明个体域,则使用全总个体域。
二.在一阶逻辑中将下列命题符号化
1.所有的整数,不是负整数就是正整数,或是0。
解: ,其中 是整数, 是负整数, 是正整数,
2.有的实数是有理数,有的实数是无理数。
解: ,其中, 是实数, 是有理数, 是无理数
3.发明家都是聪明的并且是勤劳的,王进是发明家,所以王进是聪明的并且是勤劳的。
7.设 则 ______ _______
二,简答题
1.设 , , , , ,计算: ; ; ; ; ;
{1,2,3,5,7,9,11} ={3} ={6,12} ={1, 9} ={3,6,12} ={3,4,5,7,8,11}
2.设 ,求: ;
={a,b}
={a}
三、设 , , ,求:
; ;
C={1,8}
四、将公式 化成与之等值且仅含 中连接词的公式
解:
五、用主析取范式判断 是否等值。
解:
所以他们等值。
第四章习题
一,填空题
1.设F(x): x具有性质F,G(x): x具有性质G,命题“对所有x的而言,若x具有性质F,则x具有性质G”的符号化形式为
2.设F(x): x具有性质F,G(x): x具有性质G,命题“有的x既有性质F,又有性质G”的符号化形式为
解: ,其中: 是发明家, 是聪明的, 是勤劳的, 王前进
4.实数不都是有理数。
解: ,其中 是实数, 是有理数
5.不存在能表示成分数的有理数。
解: ,其中: 是无理数, 能表示成分数
6.若x与y都是实数且x>y,则x+y>y+z
解: ,其中, 是实数,
三.给定解释I如下:
(a)个体域为实数集合R;(b)特定元素 ;
={1,2,3,4,5,6,8}
=
P(B)={ ,{2},{4},{6},{2,4},{2,6},{4,6},{2,4,6}}
四:一个班50个学生,在一次考试中有26人得5分,在第二次考试中有21人得5分,如果两次考试中没有得5分的有17人,那么两次考试中都得5分的有都少人(提示:应用包含排斥原理)
二、用等值演算法求公式的主析取范式或主合取范式
1.求公式 的主合取范式。
解:
2.求公式 的主析取范式,再由主析取范式求出主合取范式。
解:
三、用其表达式求公式 的主析取范式。
解:真值表
p,q,r
000
0
001
1
010
0
011
1
100
111
1
由上表可知成真赋值为001;011;100;111
1. 的真值为0
2. 的真值为1
四、判断推理是否正确
设 为实数,推理如下:
若y在x=0可导,则y在x=0连续。y在x=0连续,所以y在x=0可导。
解: ,x为实数,令p:y在x=0可导,q: y在x=0连续。P为假命题,q为真命题,推理符号化为: ,由p,q得真值可知,推理的真值为0,所以推理不正确。
2.设B为含命题变项p, q, r的重言式,则公式 的类型为矛盾式
3.设p, q为命题变项,则 的成真赋值为01;10
4.设p,q为真命题,r, s为假命题,则复合函数 的成真赋值为__0___
5.矛盾式的主析取范式为___0_____
6.设公式A为含命题变项p, q, r又已知A的主合取范式为 则A的主合取范式为
相关文档
最新文档