电力电子技术复习提纲
电力电子技术知识提纲

电力电子技术知识提纲第1章 绪论电力电子技术和4类电力变换第2章 电力电子器件1、二极管、晶闸管、MOSFET 、IGBT 工作原理、特性、主要参数,晶闸管电流的换算2、器件的分类第3章 整流电路1、单相、三相可控整流电路的结构、工作原理、波形分析、参数计算(求d U 公式,电阻负载、阻感负载、反电动势阻感负载)(3.1~3.2)2、单相桥式可控整流电路、三相半波可控整流电路、三相桥式可控整流电路求d U ∆γ、的公式(3.3)3、了解3.4 、3.5 两节的知识4、有源逆变产生的条件、波形分析、参数计算,第4章 逆变电路1、换流方式2、单相、三相电压型逆变电路结构、工作原理、波形分析、特点3、了解电流逆变电路原理4、了解多重逆变电路和多电平逆变电路原理第5章 直流-直流变流电路1、4种斩波电路(Buck 、Boost 、Buck-Boost 、Cuk )工作原理、求o U 公式2、5种带隔离的直流-直流变流电路(正激、反激、半桥、全桥、推挽)原理、波形分析、电流连续时求o U 公式第6章 交流-交流变流电路1、单相交流调压电路结构、原理、波形分析,了解交流调功电路的原理2、了解三相调压电路及单相交-交变流电路原理第7章 PWM 控制技术1、面积等效原理2、单相桥式逆变电路的单极性调制、双极性调制原理、波形分析,三相桥式逆变电路的双极性调制原理、波形分析,异步调制和同步调制各自的优缺点,了解PWM 逆变电路的谐波特性,了解梯形波、鞍形波、叠加3倍频和直流的信号作为调制信号提高电压利用率和减少开关频率3、特定谐波消除法原理、规则采样法原理4、滞环比较方式原理及优缺点,了解三角波比较方式原理,了解电压型逆变电路的8种开关状态5、PWM 整流电路工作原理,了解PWM 整流电路控制方法第8章 软开关技术了解硬开关和软开关、零电压开关和零电流开关第9章 电力电子器件应用的共性问题1、驱动电路的隔离,了解电压型驱动型驱动电路原理2、了解器件4种保护(过电压保护、过电流保护、du dt 保护、di dt 保护)和缓冲电路原理。
电力电子技术(王兆安)复习重点

第一章电力电子器件1、电力电子技术是用电力电子器件对电能进行变换和控制的技术交流(AC—AC)。
常用电力电子器件、电路图形文字符号和分类:二、晶闸管的导通条件:阳极正向电压、门极正向触发电流.三、晶闸管关断条件是:晶闸管阳极电流小于维持电流。
导通后晶闸管电流由外电路决定实现方法:加反向阳极电压。
3、晶闸管额定电流是指:晶闸管在环境温度40和规定的冷却状态下,稳定结温时所允许流过的最大工频正弦半波电流的平均值。
4、IT(AV)与其有效值IVT的关系是IT(AV)=IVT/1.575、晶闸管对触发电路脉冲的要求是:1)触发脉冲的宽度应保证晶闸管可靠导通 2)触发脉冲应有足够的幅度3)所提供的触发脉冲应不超过晶闸管门极电压,电流和功率额定且在门极伏安特性的可靠触发区域之内4)应有良好的抗干扰性能,温度稳定性与主电路的电气隔离。
第二章:整流电路1、单相桥式全控整流电路结构组成:A.纯电阻负载:α的移相范围0~180º,Ud 和Id的计算公式,要求能画出在α角下的Ud ,Id及变压器二次测电流的波形(参图3-5);B.阻感负载:R+大电感L下,α的移相范围0~90º,Ud 和Id计算公式要求能画出在α角下的Ud ,Id,Uvt1及I2的波形(参图3-6);2、三相半波可控整流电路:α=0 º的位置是三相电源自然换相点A)纯电阻负载α的移相范围0~150 ºB)阻感负载(R+极大电感L)①α的移相范围0~90 º②Ud IdIvt计算公式③参图3-17 能画出在α角下能Ud IdIvt的波形(Id电流波形可认为近似恒定)3、三相桥式全控整流电路的工作特点:A)能画出三相全控电阻负载整流电路,并标出电源相序及VT器件的编号。
B)纯电阻负载α的移相范围0~120 ºC)阻感负载R+L(极大)的移相范围0~90 ºUd IdIdvtIvt的计算及晶闸管额定电流It(AV)及额定电压Utn的确定D)三相桥式全控整流电路的工作特点:1)每个时刻均需要两个晶闸管同时导通,形成向负载供电的回路,其中一个晶闸管是共阴极组的,一个共阳极组的,且不能为同一相的晶闸管。
电力电子复习提纲--南京工程学院

2
区的少子空穴浓度将很大,为了维持半导体的电中性条件,其多子浓度也相应 大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调 制效应。 (4)根据反向恢复时间 trr 二极管分为:普通二极管(General Purpose Diode)、 快恢复二极管(Fast Recovery Diode—— FRD)、肖特基二极管(Schottky Barrier Diode——SBD) (5)晶闸管
1
第二章 电力电子器件
1、复习方法 (1)器件电气符号 (2)工作原理 (3)基本特性:静态+动态 (4)主要参数 (5)主要特点 2、基本知识点 (1)主要电力电子器件的电气符号,按照三种分类方法各属于哪一种:
①Power Diode ②Thyristor(SCR) ③GTO ④GTR ⑤Power MOSFET ⑥IGBT (2)各器件的主要特点: ①Power Diode:单向导电性 ②Thyristor(SCR):半控型,目前主要的电力电子器件中容量最大的 ③GTO:晶闸管的派生器件,全控,关断时需要从门极抽取很大的电流才 能使之关断,在全控型电力电子器件中容量最大 ④GTR:二次击穿,安全工作区 ⑤Power MOSFET:主要电力电子器件中开关速度最快的, U GS ≤ 20V ⑥IGBT:结合 GTR 和 Power MOSFET 的优点,但开关速度比 Power MOSFET 低,容量比 GTR 小,擎住效应(自锁效应),MOSFET 作为输入级 UGE ≤ 20V (3)◆电导调制效应:当 PN 结上流过的正向电流较小时,二极管的电阻主要 是作为基片的低掺杂 N 区的欧姆电阻,其阻值较高且为常量,因而管压降随正 向电流的上升而增加;当 PN 结流过的正向电流较大时,注入并积累在低掺杂 N
《电力电子技术》课程复习与考试提纲

《电力电子技术》课程复习与考试提纲绪论什么是电力电子技术?1)电力电子技术的定义2)电力变换的类型3)电力电子技术的分类、学科组成、重要特征。
一、电力电子器件课后习题:第1题,第3题、第4题、第8题、第9题1)电力电子器件的概念、特征,与信息电子器件的区别。
2)电力电子器件的分类,3)电力二极管的分类。
4)晶闸管的静态工作特性,参数计算。
5)4种全控型器件的优缺点比较。
6)电力电子器件驱动电路的任务.7)缓冲电路的定义、作用。
二、整流电路课后习题:第2题,第3题、第5题、第7题、第11题、第13题、第26题1)单相半波可控整流电路带不同负载(纯电阻负载、阻感负载)时,电路结构,工作原理,波形,参数计算,触发角的移相范围。
2)单相桥式全控整流电路带不同负载(纯电阻负载、阻感负载)时,电路结构,工作原理,波形,参数计算,触发角的移相范围。
3)单相半波可控整流电路带不同负载(纯电阻负载、阻感负载)时,电路结构,工作原理,波形,优缺点。
4)三相可控整流电路带不同负载(纯电阻负载、阻感负载)时,电路结构,工作原理,波形,参数计算,触发角的移相范围。
5)三相桥式全控整流电路带不同负载(纯电阻负载、阻感负载)时,电路结构,工作原理,波形,参数计算,触发角的移相范围。
6)逆变、有源逆变的定义,逆变的条件。
三、直流斩波电路课后习题:第2题、第3题、第5题1)直流斩波电路的定义。
2)buck电路的电路结构,工作原理,波形,参数计算。
(电流连续、断续情况下)3)boost电路的电路结构,工作原理,波形,参数计算。
四、交流电力控制电路和交交变频电路课后习题:第1题、第6题、第7题1)交流电力控制电路和交交变频电路的定义、分类。
2)单相交流调压电路不同负载情况下的电路结构,工作原理,波形,参数计算。
3)单相交交变频电路的电路结构,工作原理,输入输出特性。
五、逆变电路课后习题:第1题、第2题、第3题、第4题、第5题1)有源逆变与无源逆变的的区别。
电力电子技术期末考试复习宝典

电力电子技术复习大纲一、基本概念1.电力电子技术是什么技术?它包含哪几类变换?电力电子系统一般包含哪四部分?电力电子技术——使用电力电子器件对电能进行变换和控制的技术,即应用于电力领域的电子技术。
它包含四类变换 整流(AC-DC ),逆变(DC-AC ),斩波(DC-DC (可调)),交流-交流变换(AC-AC )。
电力电子系统:由控制电路、驱动电路和以电力电子器件为核心的主电路组成。
2.谁是半控型器件?哪些是全控型器件?哪些是单极型器件?哪些是双极型器件?哪些是复合型器件?按照器件能够被控制电路信号所控制的程度,分为以下三类:1)不可控器件(不能用控制信号来控制其通断, 因此也就不需要驱动电路。
) 电力二极管(Power Diode )只有两个端子,器件的通和断是由其在主电路中承受的电压和电流决定的。
2)半控型器件(通过控制信号可以控制其导通而不能控制其关断。
) 晶闸管(SCR )(Thyristor )及其大部分派生器件 器件的关断由其在主电路中承受的电压和电流决定3)全控型器件(通过控制信号既可控制其导通又可控制其关断,又称自关断器件。
)绝缘栅双极晶体管(Insulated-Gate Bipolar Transistor ——IGBT ) 电力场效应晶体管(电力MOSFET ) 电力晶体管(GTR ,BJT ) 门极可关断晶闸管(GTO )控制电 路测 测驱电RL 主电V1V2 控制电路检测电路驱动电路主电路V1LR2U 22按照器件内部电子和空穴两种载流子参与导电的情况分为三类: 1) 单极型器件(由一种载流子参与导电的器件) 如:电力场效应晶体管(电力MOSFET )2) 双极型器件(由电子和空穴两种载流子参与导电的器件) 如:电力二极管 晶闸管(SCR )电力晶体管(GTR ,BJT ) 门极可关断晶闸管(GTO )3) 复合型器件(由单极型器件和双极型器件集成混合而成的器件) 如:绝缘栅双极晶体管(IGBT )MCT (MOS 控制晶闸管)3.单相桥式全控整流电路带纯阻负载时,晶闸管控制角α的移相范围为?单个晶闸管所承受的最大正向电压为?三相半波整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是?单个晶闸管所承受的最大电压为?三相桥式全控整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是?单个晶闸管所承受的最大电压为?单相桥式全控整流电路带纯阻负载时,晶闸管控制角α的移相范围[0 °,180 °]单个晶闸管所承受的最大正向电压为三相半波整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是[0 °,150 °](纯阻负载);[0 °,90 °](大电感负载) 单个晶闸管所承受的最大正向电压为2U 6三相桥式全控整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是[0 °,120 °](纯阻负载);[0 °,90 °](大电感负载) 单个晶闸管所承受的最大正向电压为2U 6知识点巩固:1.单相桥式全控整流带纯阻负载工作波形:2.三相半波整流电路带纯阻负载工作情况分析:工作波形:基本数量关系:3.三相半波整流电路带大电感负载工作情况分析:工作波形:基本数量关系:4.三相桥式全控整流电路带纯阻负载工作情况分析:工作波形:基本数量关系:5.三相桥式全控整流电路带大电感工作波形:4.逆变电路可以根据直流侧滤波元件的不同进行分类,当直流侧采用电感滤波时,是哪一种逆变电路?直流侧采用电容滤波时,是哪一种逆变电路?逆变电路可以根据直流侧滤波元件的不同进行分类,当直流侧采用电感滤波时,是电压型逆变电路;直流侧采用电容滤波时,是电流型逆变电路。
电力电子技术复习资料

电力电子技术复习资料第一章 电力电子器件及驱动、保护电路1、电力电子技术是一种利用电力电子器件对电能进行控制、转换和传输的技术。
P12、电力电子技术包括电力电子器件、电路和控制三大部分。
P13、电力电子技术的主要功能:1)、整流与可控整流电路也称为交流/直流(AC/DC )变换电路;2)、直流斩波电路亦称为直流/直流(DC/DC)转换电路;3)、逆变电路亦称为直流/交流(DC/AC)变换电路;4)、交流变换电路(AC/AC 变换)。
P14、电力电子器件的发展方向主要体现在:1)、大容量化;2)、高频化;3)、易驱动;4)、降低导通压降;5)、模块化;6)、功率集成化。
P25、电力电子器件特征:1)、能承受高压;2)、能过大电流;3)、工作在开关状态。
P46、电力电子器件分类:1)、不可控器件,代表:电力二极管;2)、半控型器件,代表:晶闸管;3)、全控型器件,代表:电力晶体管(GTR )。
P57、按照加在电力电子器件控制端和公共端之间的驱动电路信号的性质又可以将电力电子器件分为电流驱动和电压驱动两类。
P68、晶闸管电气符号。
P19、晶闸管关断条件:阴极电流小于维持电流;晶闸管导通条件:阳极加正压,门极加正压。
导通之后门极就失去控制。
P1110、晶闸管的主要参数(选管用)重复峰值电压——额定电压U Te ;晶闸管的通态平均电流I T(A V)——额定电流。
P1311、K f =电流平均值电流有效值===2)(πAV T T I I 1.57。
P14 12、根据器件内部载流载流子参与导电的种类不同,全控型器件又分为单极型、双极性和复合型三类。
P1713、门极可关断晶闸管(GTO )具有耐压高、电流大等优点,同时又是全控型器件。
P1814、电力晶体管(GTR)具有自关断能力、控制方便、开关时间短、高频特性好、价格低廉等优点。
P1915、GTR 发生二次击穿损坏,必须具备三个条件:高电压、大电流和持续时间。
电力电子技术内容提要

电力电子技术内容提要模块1 电力电子器件1.同处理信息的电子器件相比,电力电子器件具有以下特征:(1)能处理电功率的大小,即承受电压和电流的能力大多都远大于处理信息的电子器件;(2)电力电子器件一般都工作在开关状态。
导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定;(3)实用中,电力电子器件往往需要由信息电子电路来控制;(4)不仅在器件封装上讲究散热设计,在其工作时一般都要安装散热器2.在电力电子器件的各种功率损耗中,一般来讲,断态损耗是很小的,通态损耗是主要因素,但当器件开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素3.电力电子器件的分类:(1)按照器件能够被控制电路信号所控制的程度,可将电力电子器件分为半控型、全控型和不控型三类,如晶闸管是半控型,Power MOSFET、IGBT、GTO、GTR、IGCT等是全控型,Power Diode 是不控型。
(举例)(2)按照驱动电路加在器件控制端和公共端之间信号的性质,可将电力电子器件分为电流驱动型和电压驱动型两大类,如晶闸管、GTR、GTO等是电流驱动型,Power MOSFET、IGBT、SIT、SITH等是电压驱动型。
(举例)(3)按照器件内部电子和空穴两种载流子参与导电的情况,可将电力电子器件分为单极型、双极型和复合型三类,如Power MOSFET、SIT是单极型,晶闸管、GTR、GTO、SITH等是双极型,IGBT、MCT、IGCT等是复合型。
(举例)4. 电力二极管的关断(即恢复反向阻断能力)须经过一段短暂的时间,关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。
5.电力二极管的种类:普通二极管GPD、快恢复二极管FRD和肖特基二极管SBD。
6.晶闸管的导通条件是在承受正向的阳极电压的同时,注入正向门极触发电流。
高度电力电子技术复习提纲

电力电子技术复习提纲1电力电子技术的基本概念电力电子技术是应用于电力领域的电子技术,是使用电力电子器件对电能进行变换和控制的技术。
通常把电力电子技术分为电力电子器件制造技术和变流技术两个分支。
前者的理论基础是半导体物理,是电力电子技术的基础;后者的理论基础是电路理论,是电力电子技术的核心。
电力电子学是由电力学,电子学和控制理论三个学科交叉而形成的。
2两级式光伏并网逆变器的基本拓扑与控制(1)基本拓扑:两级式光伏并网逆变器主要包括前级DC/DC变换器和后级DC/AC 变换器。
两个变换器之间一般均设有一个足够容量的直流滤波电容,该直流滤波电容在缓冲前后级能量的同时,也起到了前后级控制上的解耦作用。
一般情况下,由于光伏电池的输出电压通常都低于电网电压的峰值,因此要实现并网发电,应先将光伏电池输出的直流电通过前级Boost变换器升压后再输出给后级的网侧逆变器。
单相三相(略)(2)控制策略:对前后级变换器的控制策略一般可以独立地进行研究。
一般而言,在具有两级变换的光伏并网逆变系统中,前级DC/DC变换器主要实现最大功率点跟踪(MPPT)控制,而后级的DC/AC变换器(并网逆变器)则有两个基本控制要求:一是要保持前后级之间的直流侧电压稳定;二是要实现并网电流的控制(网侧单位功率因数正弦波电流控制),甚至需根据指令进行电网的无功功率调节。
MPPT控制方法:1)基于输出特性曲线的开环MPPT方法;2)扰动观测法;3)电导增量法;4)智能MPPT方法。
并网逆变器的控制策略:1)基于电压定向的矢量控制策略;2)基于电压定向的直接功率控制策略;3)基于虚拟磁链定向的矢量控制策略;4)基于虚拟磁链定向的直接功率控制策略。
图1基于电压矢量定向的矢量控制系统(VOC)示意图图2基于虚拟磁链定向矢量控制(VFOC)的控制结构u*dc图3基于无电网电压传感器V-DPC的控制结构a ib i ci a e b e ce L L LPWMAS BS CS dcu dcu αi -PIp q*p*q --p S qS E空空空空βi αψβψA S B S CS *dcu 空空空空空空空空空空空空空空空空空空空空空空空空空图4基于无电网电压传感器VF-DPC 的控制结构3并网风力发电机组的基本类型与其变流器的基本拓扑3.1发电机组基本类型(1)恒速系统笼型/绕线型转子异步风发电机系统(2)半变速系统异步双馈(有齿轮箱)(3)全变速系统电励磁/永磁同步直驱(无齿轮箱)3.2变流器的基本拓扑(1)全功率电压型风机变流器拓扑二极管不控整流+升压斩波(boost)+三相电压型逆变器双PWM变流器三电平(2)全功率电流型风机变流器拓扑(3)全功率混合型风机变流器拓扑(4)矩阵型风机变流器拓扑4三相无源PWM逆变器的拓扑与控制策略,其输出滤波器的设计(1)三相无源PWM逆变器的拓扑(2)控制策略由于VSI直流侧多采用整流电源或蓄电池等供电,因此一般无需直流电压反馈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.电流可逆和桥式可逆斩波电路工作过程及对应电动机工作象限。
第六章
1.交流—交流变流电路包含几种。
2.交流调压和交流调功电路的异同点。
3.交流调压电路电阻负载计算。
4.简述斩控式交流调压电路工作原理。
5.三相交流调压电路的工作原理。
6.单相交—交变频电路的工作原理。
8.晶闸管主要参数如何选择
9.晶闸管的派生器件
10.GTO、GTR、MOSFET、IGBT的结构特点及导通和关断条件
11.有效值和平均值的计算
第三章
1.可控整流电路的工作过程分析、绘制波形,求解数值(器件、负载和电源的有效值、平均值、最大值),选择器件,各种负载的数值。
注意几个小名词:控制角、导通角、停止导通角。
3.换流方式,在哪些场合应用。
4.电压、电流逆变电路的特点。
5.单相半桥、全桥电压的工作过程、形成回路、导通的器件及电流方向、全桥控制方式。
6.单向和三相电流型逆变电路换流过程。
第五章
1.直流斩波电路六种基本形式、电路结构形式、输出计算。
2.斩波电路的三种控制方式。(频率、宽度、混合)
3.降压斩波电路电流连续的条件。
电力电力技术复习提纲
第一章
1.电力电子技术
2.电力电子器件
3.电力变换四中形式
4.电力电子三种控制技术
5.举例说明电力电子技术的应用
第二章
1.电力电子器件特征
2.电力电子器件系统组成及作用
3.电力电子器件的分类
4.电力二极管外形结构及应用
5.电力二极管特性及主要参数
6.晶闸管外形结构及工作原理
7.晶闸管关断和导通条件
2.变压器漏抗对整流电路的影响,换相压降、重叠角计算、电路工作状态和漏抗对整流电路工作情况的影响。
3.整流电路的谐波和功率因数分析,电源侧谐波和功率因数,负载侧谐波。
n次谐波电流含有率HRIn、电流谐波总畸变率THD、基波因数、电压纹星形、多重整流电路),负载电压平均值计算、平衡电抗器作用、电压波形、谐波成分。
5.可控整流电路的逆变工作状态,有源逆变的条件、三相可控整流电路的有源逆变工作状态的分析计算、逆变失败及最小逆变角的限制等。
6.同步信号为锯齿波的触发电路组成。恒流源生成、控制电压作用、偏移电压作用、X、Y作用、强触发环节、触发电路的定向包含的内容。
第四章
1.逆变和无源逆变、有源逆变定义。
2.简述无源逆变的工作过程。
7.交-交变频电路输出正弦波调制方式。
8.简述交-交变频电路的优缺点。
1.PWM定义控制基本原理。
2.逆变电路生成PWM波形方法。
3.载波比、PWM调制方式。
4.软开关主要解决的问题,与硬开关的异同点。
第九章
1.光耦合器种类。
2.晶闸管的触发电路满足的要求。
3.过电压种类,主要采用哪些器件保护。
4.电流和电压缓冲采用何种器件。
5.晶闸管串并联使用要解决的主要问题是什么。