二次函数提高难题练习及答案二
(完整版)初三二次函数专题强化训练及提高测试+详细答案

初三二次函数专题训练及强化提高一、选择题:1.抛物线的对称轴是( )3)2(2+-=x y A. 直线 B. 直线 C. 直线 D. 直线3-=x 3=x 2-=x 2=x 2.二次函数的图象如右图,则点c bx ax y ++=2在( )),(acb M A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.已知二次函数,且,,则一定有()c bx ax y ++=20<a 0>+-c b a A. B. C. D. ≤0042>-ac b 042=-ac b 042<-ac b ac b 42-4.把抛物线向右平移3个单位,再向下平移2个单位,所得图象的解析式c bx x y ++=2是,则有( )532+-=x x y A. , B. ,3=b 7=c 9-=b 15-=c C. , D. ,3=b 3=c 9-=b 21=c 5.下面所示各图是在同一直角坐标系内,二次函数与一次函数c x c a ax y +++=)(2的大致图象,有且只有一个是正确的,正确的是()c ax y +=D6.抛物线的对称轴是直线()322+-=x x y A. B. C. D. 2-=x 2=x 1-=x 1=x7.二次函数的最小值是()2)1(2+-=xyA. B. 2 C. D. 12-1-8.二次函数的图象如图所示,若cbxaxy++=2cba++24,,则()cbaN+-=baP-=4A. ,,>M0>N0>PB. ,,<M0>N0>PC. ,,>M0<N0>PD. ,,<M0>N0<P二、填空题:9.将二次函数配方成的形式,则322+-=xxy khxy+-=2)(y=______________________.10.已知抛物线与x轴有两个交点,那么一元二次方程的cbxaxy++=202=++cbxax根的情况是______________________.11.已知抛物线与x轴交点的横坐标为,则=_________.cxaxy++=21-ca+12.请你写出函数与具有的一个共同性质:_______________.2)1(+=xy12+=xy13.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.14.如图,抛物线的对称轴是,与x轴交于A、B两点,若B点坐标是,则A1=x)0,3(点的坐标是三、解答题:1.已知函数的图象经过点(3,2).12-+=bxxy(1)求这个函数的解析式;(2)当时,求使y≥2的x的取值范围.>x2、如右图,抛物线经过点,与y轴交于点B.nxxy++-=52)0,1(A(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.3.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标 ;(2)阴影部分的面积S= ;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.4.(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.5.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.6.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S△ABC的值.7.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.8、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).(1)由已知图象上的三点坐标,求累积利润s(万元)与销售时间t (月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?参考答案及解题步骤一、选择题:题号123456789答案DDAADDDBD二、填空题:1. 2. 有两个不相等的实数根3. 12)1(2+-=x y 4. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 或或或358512+-=x x y 358512-+-=x x y 178712+-=x x y 178712-+-=x x y 6. 等(只须,)122++-=x x y 0<a 0>c 7. )0,32(-8. ,,1,43=x 51<<x 三、解答题:1. 解:(1)∵函数的图象经过点(3,2),∴. 解得.12-+=bx x y 2139=-+b 2-=b∴函数解析式为.122--=x x y (2)当时,.3=x 2=y 根据图象知当x ≥3时,y ≥2.∴当时,使y ≥2的x 的取值范围是x ≥3.0>x 2. 解:(1)由题意得. ∴. ∴抛物线的解析式为.051=++-n 4-=n 452-+-=x x y(2)∵点A 的坐标为(1,0),点B 的坐标为.)4,0(- ∴OA =1,OB =4. 在Rt △OAB 中,,且点P 在y 轴正半轴上.1722=+=OB OA AB ①当PB =PA 时,. ∴.17=PB 417-=-=OB PB OP此时点P 的坐标为.)417,0(-②当PA =AB 时,OP =OB =4此时点P 的坐标为(0,4).3. 解:(1)设s 与t 的函数关系式为,c bt ats ++=2由题意得或 解得 ∴.⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a ⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a ⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a t t s 2212-=(2)把s =30代入,得 解得,(舍去)t t s 2212-=.221302t t -=101=t 62-=t答:截止到10月末公司累积利润可达到30万元.(3)把代入,得7=t .5.10727212=⨯-⨯=s 把代入,得8=t .16828212=⨯-⨯=s.答:第8个月获利润5.5万元.5.55.1016=-4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为.1092+=ax y 因为点或在抛物线上,所以,得.)0,25(-A )0,25(B 10925(·02+-=a 12518-=a因此所求函数解析式为(≤x ≤).109125182+-=x y 25-25(2)因为点D 、E 的纵坐标为,所以,得.20910912518209+-=245±=x所以点D 的坐标为,点E 的坐标为.)209,245(-)209,245( 所以.225)245(245=--=DE因此卢浦大桥拱内实际桥长为(米).385227501.01100225≈=⨯⨯5. 解:(1)∵AB =3,,∴. 由根与系数的关系有.21x x <312=-x x 121=+x x ∴,.11-=x 22=x ∴OA =1,OB =2,.2·21-==amx x ∵,∴.1tan tan =∠=∠ABC BAC 1==OBOCOA OC ∴OC =2. ∴,.2-=m 1=a ∴此二次函数的解析式为.22--=x x y (2)在第一象限,抛物线上存在一点P ,使S △PAC =6.解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y 轴于N ,连结PA 、PC 、MC 、NA .∵MN ∥AC ,∴S △MAC =S △NAC = S △PAC =6.由(1)有OA =1,OC =2.∴. ∴AM =6,CN =12.6121221=⨯⨯=⨯⨯CN AM ∴M (5,0),N (0,10).∴直线MN 的解析式为.102+-=x y 由 得(舍去)⎩⎨⎧--=+-=,2,1022x x y x y ⎩⎨⎧==;4311y x ⎩⎨⎧=-=18,422y x ∴在 第一象限,抛物线上存在点,使S △PAC =6.)4,3(P 解法二:设AP 与y 轴交于点(m >0)),0(m D∴直线AP 的解析式为.m mx y +=⎩⎨⎧+=--=.,22m mx y x x y ∴.02)1(2=--+-m x m x ∴,∴.1+=+m x x P A 2+=m x P 又S △PAC = S △ADC + S △PDC ==.P x CD AO CD ·21·21+)(21P x AO CD +∴,6)21)(2(21=+++m m 0652=-+m m ∴(舍去)或.6=m 1=m ∴在 第一象限,抛物线上存在点,使S △PAC =6.)4,3(P 提高题1. 解:(1)∵抛物线与x 轴只有一个交点,c bx x y ++=2∴方程有两个相等的实数根,即. ①02=++c bx x 042=-c b 又点A 的坐标为(2,0),∴. ②024=++c b 由①②得,.4-=b 4=a (2)由(1)得抛物线的解析式为.442+-=x x y 当时,. ∴点B 的坐标为(0,4).0=x 4=y 在Rt △OAB 中,OA =2,OB =4,得.5222=+=OB OA AB ∴△OAB 的周长为.5265241+=++2. 解:(1).76)34()10710710(1022++-=--⨯++-⨯=x x x x x S 当时,.3)1(26=-⨯-=x 16)1(467)1(42=-⨯-⨯-⨯=最大S∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是万元.13316=- 经分析,有两种投资方式符合要求,一种是取A 、B 、E 各一股,投入资金为(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元);13625=++另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).3.解:(1)设抛物线的解析式为,桥拱最高点到水面CD 的距离为h 米,则,2ax y =),5(h D -.)3,10(--h B∴ 解得⎩⎨⎧--=-=.3100,25h a h a ⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为.2251x y -= (2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时),货车按原来速度行驶的路程为40×1+40×4=200<280,∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当时,.2801404=⨯+x 60=x∴要使货车安全通过此桥,货车的速度应超过60千米/时.4. 解:(1)未出租的设备为套,所有未出租设备的支出为元.10270-x )5402(-x (2).54065101)5402()1027040(2++-=----=x x x x x y∴.(说明:此处不要写出x 的取值范围)540651012++-=x x y (3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套.因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套.(4).5.11102)325(1015406510122+--=++-=x x x y∴当时,y 有最大值11102.5.但是,当月租金为325元时,租出设备套数为34.5,325=x 而34.5不是整数,故租出设备应为34套或35套.即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.16.如图,抛物线y 1=﹣x 2+2向右平移1个单位得到抛物线y 2,回答下列问题:(1)抛物线y 2的顶点坐标 (1,2) ;th i ng si nt h ei r be i (2)阴影部分的面积S= 2 ;(3)若再将抛物线y 2绕原点O 旋转180°得到抛物线y 3,求抛物线y 3的解析式.考点:二次函数图象与几何变换.分析:直接应用二次函数的知识解决问题.解答:解:(1)读图找到最高点的坐标即可.故抛物线y 2的顶点坐标为(1,2);(2分)(2)把阴影部分进行平移,可得到阴影部分的面积即为图中两个方格的面积=1×2=2;(6分)(3)由题意可得:抛物线y 3的顶点与抛物线y 2的顶点关于原点O 成中心对称.所以抛物线y 3的顶点坐标为(﹣1,﹣2),于是可设抛物线y 3的解析式为:y=a (x+1)2﹣2.由对称性得a=1,所以y 3=(x+1)2﹣2.(10分)20.(1999•烟台)如图,已知抛物线y=ax 2+bx+交x 轴正半轴于A ,B 两点,交y 轴于点C ,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC 的解析式.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.sintheirbei分析:根据抛物线的解析式,易求得C点的坐标,即可得到OC的长;可分别在Rt△OBC和Rt△OAC中,通过解直角三角形求出OB、OA的长,即可得到A、B的坐标,进而可运用待定系数法求得抛物线和直线的解析式.解答:解:由题意得C(0,)在Rt△COB中,∵∠CBO=60°,∴OB=OC•cot60°=1∴B点的坐标是(1,0);(1分)在Rt△COA中,∵∠CAO=45°,∴OA=OC=∴A点坐标(,0)由抛物线过A、B两点,得解得∴抛物线解析式为y=x2﹣()x+(4分)设直线BC的解析式为y=mx+n,得n=,m=﹣∴直线BC解析式为y=﹣x+.(6分)23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.考点:二次函数综合题.专题:压轴题;动点型.Al l th i ng si nt h ei r be i ng ar 分析:(1)先根据直线y=x ﹣3求出A 、B 两点的坐标,然后将它们代入抛物线中即可求出待定系数的值.(2)根据(1)中抛物线的解析式可求出C ,D 两点的坐标,由于△APC 和△ACD 同底,因此面积比等于高的比,即P 点纵坐标的绝对值:D 点纵坐标的绝对值=5:4.据此可求出P 点的纵坐标,然后将其代入抛物线的解析式中,即可求出P 点的坐标.解答:解:(1)直线y=x ﹣3与坐标轴的交点A (3,0),B (0,﹣3).则,解得,∴此抛物线的解析式y=x 2﹣2x ﹣3.(2)抛物线的顶点D (1,﹣4),与x 轴的另一个交点C (﹣1,0).设P (a ,a 2﹣2a ﹣3),则(×4×|a 2﹣2a ﹣3|):(×4×4)=5:4.化简得|a 2﹣2a ﹣3|=5.当a 2﹣2a ﹣3=5,得a=4或a=﹣2.∴P (4,5)或P (﹣2,5),当a 2﹣2a ﹣3<0时,即a 2﹣2a+2=0,此方程无解.综上所述,满足条件的点的坐标为(4,5)或(﹣2,5).27.如图,抛物线y=a (x+1)2的顶点为A ,与y 轴的负半轴交于点B ,且OB=OA .(1)求抛物线的解析式;(2)若点C (﹣3,b )在该抛物线上,求S △ABC 的值.an dAl l th i ng si nt h ei r be i ng ar e 考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.专题:计算题.分析:(1)由抛物线解析式确定出顶点A 坐标,根据OA=OB 确定出B 坐标,将B 坐标代入解析式求出a 的值,即可确定出解析式;(2)将C 坐标代入抛物线解析式求出b 的值,确定出C 坐标,过C 作CD 垂直于x轴,三角形ABC 面积=梯形OBCD 面积﹣三角形ACD 面积﹣三角形AOB 面积,求出即可.解答:解:(1)由投影仪得:A (﹣1,0),B (0,﹣1),将x=0,y=﹣1代入抛物线解析式得:a=﹣1,则抛物线解析式为y=﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过C 作CD ⊥x 轴,将C (﹣3,b )代入抛物线解析式得:b=﹣4,即C (﹣3,﹣4),则S △ABC =S 梯形OBCD ﹣S △ACD ﹣S △AOB =×3×(4+1)﹣×4×2﹣×1×1=3.点评:此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.an dAl l th i ng si nt h ei r 28.如图,抛物线y=x 2﹣2x+c 的顶点A 在直线l :y=x ﹣5上.(1)求抛物线顶点A 的坐标及c 的值;(2)设抛物线与y 轴交于点B ,与x 轴交于点C 、D (C 点在D 点的左侧),试判断△ABD 的形状.考点:二次函数综合题.分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A 的横坐标,然后代入直线l 的解析式中求出点A 的坐标,再将点A 的坐标代入抛物线的解析式y=x 2﹣2x+c 中,运用待定系数法即可求出c 的值;(2)先由抛物线的解析式得到点B 的坐标,再求出AB 、AD 、BD 三边的长,然后根据勾股定理的逆定理即可确定△ABD 是直角三角形.解答:解:(1)∵y=x 2﹣2x+c ,∴顶点A 的横坐标为x=﹣=1,又∵顶点A 在直线y=x ﹣5上,∴当x=1时,y=1﹣5=﹣4,∴点A 的坐标为(1,﹣4).将A (1,﹣4)代入y=x 2﹣2x+c ,得﹣4=12﹣2×1+c,解得c=﹣3.故抛物线顶点A的坐标为(1,﹣4),c的值为﹣3;(2)△ABD是直角三角形.理由如下:∵抛物线y=x2﹣2x﹣3与y轴交于点B,∴B(0,﹣3).当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴C(﹣1,0),D(3,0).∵BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,∴BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.nisgnihtllA。
中考数学二次函数提高练习题压轴题训练含答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).【解析】试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可;(3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,∵直线BC 经过B (4,0),C (0,3), 设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +,∵PE ⊥x 轴,PE ∥OC , ∴∠BDE=∠BCO , ∵∠BDE=∠PDF , ∴∠PDF=∠BCO , ∵∠PFD=∠BOC=90°, ∴△PFD ∽△BOC ,∴=PED PDBOC BC的周长的周长,由(1)得:OC=3,OB=4,BC=5, 故△BOC 的周长=12,∴2334125m mL -+=,即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD , ∴∠PCQ=∠CPD , ∴∠PCD=∠CPD , ∴CD=PD , ∴CD=DP=PQ=QC , ∴四边形CDPQ 是菱形, 过D 作DG ⊥y 轴于点G , 设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|,∵PD=CD , ∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q点,使得四边形CDPQ是菱形,此时点P的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q553)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可. 【详解】(Ⅰ)设二次函数的解析式为y=a (x ﹣2)2+9,把C (0,5)代入得到a=﹣1, ∴y=﹣(x ﹣2)2+9,即y=﹣x 2+4x+5, 令y=0,得到:x 2﹣4x ﹣5=0, 解得x=﹣1或5,∴A (﹣1,0),B (5,0).(Ⅱ)设点Q (m ,﹣m 2+4m+5),则Q′(﹣m ,m 2﹣4m ﹣5). 把点Q′坐标代入y=﹣x 2+4x+5, 得到:m 2﹣4m ﹣5=﹣m 2﹣4m+5, ∴m=5或5-(舍弃), ∴Q (5,45).(Ⅲ)如图,作MK ⊥对称轴x=2于K .①当MK=OA ,NK=OC=5时,四边形ACNM 是平行四边形. ∵此时点M 的横坐标为1, ∴y=8,∴M (1,8),N (2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形, 此时M′的横坐标为3,可得M′(3,8),N′(2,3). 【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC 可应用“一组对边平行且相等”得到平行四边形.3.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y x y x =+⎧⎨=-+⎩,得45215x y ⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E ,(0,1)F ∵点M 在AOB ∆内,∴405b <<当点,C D 关于抛物线对称轴(直线x b =)对称时,1344b b -=-,∴12b =且二次函数图象的开口向下,顶点M 在直线41y x =+上 综上:①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y <.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.4.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元. (1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.5.在平面直角坐标系xOy 中(如图).已知抛物线y=﹣12x 2+bx+c 经过点A (﹣1,0)和点B (0,52),顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处. (1)求这条抛物线的表达式; (2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式; (2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92,∴C (2,92),抛物线的对称轴为直线x=2, 如图,设CD=t ,则D (2,92﹣t ),∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处, ∴∠PDC=90°,DP=DC=t ,∴P (2+t ,92﹣t ), 把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得﹣12(2+t )2+2(2+t )+52=92﹣t ,整理得t 2﹣2t=0,解得t 1=0(舍去),t 2=2, ∴线段CD 的长为2;(3)P 点坐标为(4,92),D 点坐标为(2,52), ∵抛物线平移,使其顶点C (2,92)移到原点O 的位置, ∴抛物线向左平移2个单位,向下平移92个单位,而P 点(4,92)向左平移2个单位,向下平移92个单位得到点E , ∴E 点坐标为(2,﹣2), 设M (0,m ),当m >0时,12•(m+52+2)•2=8,解得m=72,此时M 点坐标为(0,72);当m <0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M 点坐标为(0,﹣72);综上所述,M 点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.6.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式. (3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【解析】 【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论.【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b ,将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩, 解得:3300m n =-⎧⎨=⎩, ∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩; (2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105, ∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600,当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65, ∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675,∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.7.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210.(3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).【解析】【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可.【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0),∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-.∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+.(2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值.∴当PB+PC 最小时,△PBC 的周长最小.∵点A 、点B 关于对称轴I 对称,∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴AC=32,BC=10.∴△PBC 的周长最小是:3210+.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+)∴()22EF m 2m 32m 6m 4m 3=--+-+=---. ∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---.②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).8.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存在,(32-,32)或(34-,94),见解析. 【解析】【分析】(1)利用待定系数法,然后将A 、B 、C 的坐标代入解析式即可求得二次函数的解析式; (2))过P 点作PQ 垂直x 轴,交AC 于Q ,把△APC 分成两个△APQ 与△CPQ ,把PQ 作为两个三角形的底,通过点A ,C 的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB ,使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM 为y=-x ,若∠AOM=∠CBA ,则OM 为y=-3x+3,然后由直线解析式可求OM 与AD 的交点M .【详解】(1)把A (﹣3,0),B (1,0),C (0,3)代入抛物线解析式y =ax 2+bx+c 得 93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,所以抛物线的函数表达式为y =﹣x 2﹣2x+3.(2)如解(2)图1,过P 点作PQ 平行y 轴,交AC 于Q 点,∵A (﹣3,0),C (0,3),∴直线AC 解析式为y =x+3,设P 点坐标为(x ,﹣x 2﹣2x+3.),则Q 点坐标为(x ,x+3),∴PQ =﹣x 2﹣2x+3﹣(x+3)=﹣x 2﹣3x .∴S △PAC =1PQ A 2O ⋅, ∴()213332x x --⋅=, 解得:x 1=﹣1,x 2=﹣2.当x =﹣1时,P 点坐标为(﹣1,4),当x =﹣2时,P 点坐标为(﹣2,3),综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,∵D 为抛物线y =﹣x 2﹣2x+3的顶点,∴D 点坐标为(﹣1,4),又∵A (﹣3,0),∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2,∵B (1,0),C (0,3)∴tan ∠ABC =3,BC 10,sin ∠ABC 310BC 解析式为y =﹣3x+3. ∵AC =4,∴AE =AC•sin ∠ABC =3104610BE 210, ∴CE =3105, ∴tan ∠ACB =2AE CE =, ∴tan ∠ACB =tan ∠PAB =2,∴∠ACB =∠PAB ,∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA ,即OM 为y =﹣x ,设OM 与AD 的交点M (x ,y )依题意得:3y x y x =-⎧⎨=+⎩, 解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(32-,32). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC ,∵直线BC 解析式为y =﹣3x+3.∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则依题意得:33y x y x =-⎧⎨=+⎩, 解得3494x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(34-,94), 综上所述:存在使得以M ,A ,O 为顶点的三角形与△ABC 相似的点M ,其坐标为(32-,32)或(34-,94). 【点睛】 本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【答案】(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2).【解析】【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解;(2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:()219y a x =-+,将点A 的坐标代入上式并解得:1a =-,故抛物线的表达式为:228y x x =-++…①,则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得:直线AB 的表达式为:21y x =-;(2)存在,理由:二次函数对称轴为:1x =,则点()1,1C ,过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -, ∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯, 解得:1x =-或5(舍去5),故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++,①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++,解得:6s =或﹣4,故点()6,16P -或()4,16--;②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =± 故点()17,2P 或()17,2;综上,点()6,16P -或()4,16--或()17,2或()17,2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.10.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.【答案】解:(1)y=x2﹣1(2)详见解析(3)详见解析【解析】【分析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
二次函数能力提升含答案

二次函数一、填空题1.抛物线 y=x 2+2x -3的顶点坐标为 .2.假设),413(1y A -,),45(2y B -),41(3y C 为二次函数542-+=x x y 的图象上的三点,那么1y ,2y ,3y 的大小关系是 .〔用“<〞号连接〕3.二次函数y =ax 2+bx +c 的图象及x 轴交于A (1,0),B (3,0)两点,及y 轴交于点C (0,3),那么二次函数的解析式是__________________4.如图,二次函数y 1=ax 2+bx +c 及一次函数y 2=kx +m 的图 象相交于 A 〔-2,4〕、B 〔8,2〕两点,那么能使关于x 的不等式ax 2+(b -k )x +c -m >0 成立的x 的取值范围是____________.5抛物线的顶点坐标为〔2,9〕,且它在x 轴上截得的线段长为6, 那么该抛物线的解析式为__________________ .6、如下图,P 是边长为1的正三角形ABC 的BC边上一点,从P 向AB 作垂线PQ ,Q 为垂足.延长QP 及AC 的延长线交于R ,设BP =x〔0≤x ≤1〕,△BPQ 及△CPR 的面积之与为y ,把y 表示为x 的函数是____________________________.二 选择题7.抛物线2(2)3y x =-+的对称轴是〔 〕A .直线x =-2B .直线 x =2C .直线x =-3D .直线x =38.将抛物线122--=x y 向上平移假设干个单位,使抛物线及坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为〔 〕A .23个单位B .1个单位C .21个单位D .2个单位x y O A B9. 二次函数c bx ax y ++=2的图象过点A 〔1,2〕,B 〔3,2〕,C 〔5,7〕.假设点M 〔-2,y 1〕,N 〔-1,y 2〕,K 〔8,y 3〕也在二次函数c bx ax y ++=2的图象上,那么以下结论正确的选项是〔 〕A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 210二次函数 y =ax 2-ax +1 (a ≠0)的图象及x 轴有两个交点,其中一个交点为(31,0),那么另一个交点坐标为〔 〕A .(21, 0) B . (32, 0) C . (31, 0) D .(61,0)11.函数65)1(2---=x x m y 是关于x 的二次函数,那么m ( ).A .等于1B .不等于1C .等于1-D .不等于1-12.假设二次函数的解析式为3422+-=x x y ,那么其函数图象及x 轴交点的情况是〔 〕A .没有交点B .有一个交点C .有两个交点D .无法确定13.在同一直角坐标系中,函数y =mx +m 与函数y =-mx 2+2x +2〔m 是常数,且m ≠0〕的图象可能..是〔 〕. 14.如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B 〔4,2〕,一次函数1y kx =-的图象平分它的面积,关于x 的函数()232y mx m k x m k =-+++的图象及坐标轴只有两个交点,那么m 的值为〔 〕. A .0B .21-C .-1D .0或21-或-1 15.二次函数c bx ax y ++=2的图象如图〔2〕所示,那么下面结论成立的是〔 〕A.0>a ,0<bcB.0<a ,0>bcC.0>a ,0>bcD.0<a ,0<bc16.假设二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,那么m 的取值范围是〔 〕A .m =lB .m >lC .m ≥lD .m ≤l三、解答题 17、二次函数25y x kx k =-+-. ⑴求证:无论k 取何实数,此二次函数的图像及x 轴都有两个交点;⑵假设此二次函数图像的对称轴为1x =,求它的解析式;18、如图,抛物线y=ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,及x 轴交于另一点B .〔1〕求抛物线的解析式; 〔2〕点D (m ,m +1)在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; 19、二次函数2y ax bx c =++的图象Q 及X 轴有且只有一个交点P ,及Y 轴的交点为B 〔0,4〕,且ac =b , 〔1〕求该二次函数的解析表达式。
二次函数应用(能力提高)附答案.doc

二次函数应用(能力提高)一、选择题:1、二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )(A )12 (B )11 (C )10 (D )92、下列四个函数中,y 的值随着x 值的增大而减小的是( ) (A )x y 2=(B )()01>=x xy (C )1+=x y (D )()02>=x x y 3、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则 ( ) (A ) ac+1=b (B ) ab+1=c (C )bc+1=a (D )以上都不是4、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( )(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<15、如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-146、把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )(A )()1232+-=x y (B ) ()1232-+=x y (C ) ()1232--=x y(D )()1232++=x y7、(3)已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过( )A.一、二、三象限B.一、二、四象限 C .一、三、四象限D.一、二、三、四象限8、若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9、已知二次函数222)(22b a x b a x y +++-= ,b a , 为常数,当y 达到最小值时,x 的值为 ( ) (A )b a + (B )2b a + (C )ab 2- (D )2ba - 10、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )二、填空题:C A y xO11、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
人教 中考数学(二次函数提高练习题)压轴题训练及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E 113+113+3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x 12+x 22﹣x 1x 2=13,∴(x 1+x 2)2﹣3x 1x 2=13,∴m 2+3(m +1)=13,即m 2+3m ﹣10=0,解得m 1=2,m 2=﹣5.∵OA <OB ,∴抛物线的对称轴在y 轴右侧,∴m =2,∴抛物线的解析式为y =x 2﹣2x ﹣3;(2)连接BE 、OE .∵在Rt △BCD 中,∠CBD =90°,EC =ED ,∴BE =12CD =CE . 令y =x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∵C (0,﹣3),∴OB =OC ,又∵BE =CE ,OE =OE ,∴△OBE ≌△OCE (SSS ),∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3,得m =m 2﹣2m ﹣3,解得m =1132±, ∵点E 在第四象限,∴E 113+113+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S△ACQ=2S△AOC,∴S△ACF=2S△AOC,∴AF=2OA=2,∴F(1,0).∵A(﹣1,0),C(0,﹣3),∴直线AC的解析式为y=﹣3x﹣3.∵AC∥FQ,∴设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,得0=﹣3+b,解得b=3,∴直线FQ的解析式为y=﹣3x+3.联立22333y x xy x⎧=--⎨=-+⎩,解得113 12x y =-⎧⎨=⎩,2223xy=⎧⎨=-⎩,∴点Q的坐标为(﹣3,12)或(2,﹣3).【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,(0,3﹣)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,,∴或OP=PC ﹣﹣3∴P1(0,P 2(0,3﹣②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.3.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:BC ===在Rt CND ∆中,由勾股定理得:CD ==在Rt BMD ∆中,由勾股定理得:BD ===.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -. 111222QPE PBKFBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-. 直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.4.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫-⎪⎝⎭. 【解析】【分析】 ()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=()22AM [11](m 0)=--+-AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标.【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中, 得:{103b c c --+==,解得:{23b c ==, ∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=,解得:11x =-,23x =,∴点B 的坐标为()3,0.抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠,将()3,0B 、()0,3C 代入y kx d =+中,得:{303k d d +==,解得:{13k d =-=, ∴直线BC 的解析式为3y x =-+.当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m , 则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=()22[11](0)AM m =--+-分三种情况考虑: ①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++, 解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2; ②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-, 解得:83m =, ∴点M 的坐标为81,3⎛⎫ ⎪⎝⎭; ③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++, 解得:23m =-,∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.5.已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6). 【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0), ∴设抛物线解析式为y=a (x ﹣6)(x+2), 将点A (0,6)代入,得:﹣12a=6, 解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩,则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.6.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm,4807mm;(2)PN=60mm,40PQ mm.【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm,mm(2)、设PQ=x(mm),PN=y(mm),矩形面积为S ,则AE=80-x(mm)..由(1)知=∴=∴ y=则S=xy===∵∴ S有最大值∴当x=40时,S最大=2400(mm2)此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ、PN长分别是40 mm ,60 mm.考点:三角形相似的应用7.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1), ∴1=4a ,解得:a=14, ∴抛物线的解析式为y=14(x-2)2=14x 2-x+1. (2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813,∴点P的坐标为(2813,-1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m-x0)2+(n-y0)2=(n+1)2,∴m2-2x0m+x02-2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.8.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x 轴和y 轴上,抛物线21()4y x m n =-+经过B 、C 两点,顶点D 在正方形内部. (1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y =x +1,求此抛物线的解析式;(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【答案】(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m+n ;(2)21(2)34y x =-+;(3)抛物线向下平移9233-或2312距离,其顶点落在OP 上. 【解析】试题分析:(1)根据特征线直接求出点D 的特征线;(2)由点D 的一条特征线和正方形的性质求出点D 的坐标,从而求出抛物线解析式; (2)分平行于x 轴和y 轴两种情况,由折叠的性质计算即可.试题解析:解:(1)∵点D (m ,n ),∴点D (m ,n )的特征线是x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m +n ;(2)点D 有一条特征线是y =x +1,∴n ﹣m =1,∴n =m +1.∵抛物线解析式为21()4y x m n =-+,∴21()14y x m m =-++,∵四边形OABC 是正方形,且D 点为正方形的对称轴,D (m ,n ),∴B (2m ,2m ),∴21(2)24y m m n m =-+=,将n =m +1带入得到m =2,n =3;∴D (2,3),∴抛物线解析式为21(2)34y x =-+. (3)①如图,当点A ′在平行于y 轴的D 点的特征线时:根据题意可得,D (2,3),∴OA ′=OA =4,OM =2,∴∠A ′OM =60°,∴∠A ′OP =∠AOP =30°,∴MN 323∴抛物线需要向下平移的距离=233923-.②如图,当点A ′在平行于x 轴的D 点的特征线时,设A ′(p ,3),则OA ′=OA =4,OE =3,EA 2243-7,∴A ′F =47,设P (4,c )(c >0),,在Rt △A ′FP 中,(4﹣7)2+(3﹣c)2=c2,∴c=16473-,∴P(4,16473-),∴直线OP解析式为y=47-x,∴N(2,827-),∴抛物线需要向下平移的距离=3﹣827 -=127+.综上所述:抛物线向下平移9233-或127+距离,其顶点落在OP上.点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答本题的关键是用正方形的性质求出点D的坐标.9.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线2y x bx c=-++过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内以点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.【答案】(1)b=﹣2,c=3;(2)M(125-,5125);(3)①证明见解析;②PA+PC+PG的最小值为P 的坐标(﹣919,19). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQQC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR ≌△GAP ,∴QR=PG .②如图3中,∵PA+PB+PC=QR+PR+PC=QC ,∴当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K .∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q 坐标(﹣6,RT △QCN 中,QN=CN=7,∠QNC=90°,∴,∵sin ∠ACM=AM AC =NQQC,∴∵△APR 是等边三角形,∴∠APM=60°,∵PM=PR ,cos30°=AM AP ,∴AP=121919,PM=RM=61919,∴MC=22AC AM-=141919,∴PC=CM﹣PM=819,∵PK CP CKQN CQ CN==,∴CK=2819,PK=123,∴OK=CK﹣CO=919,∴点P坐标(﹣919,123),∴PA+PC+PG的最小值为219,此时点P的坐标(﹣919,12319).考点:二次函数综合题;旋转的性质;最值问题;压轴题.10.复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.【答案】①真,②假,③假,④真,理由和所用的数学方法见解析.【解析】试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断.试题解析:①真,②假,③假,④真.理由如下:①将(1,0)代入,得,解得.∴存在函数,其图像经过(1,0)点.∴结论①为真.②举反例如,当时,函数的图象与坐标轴只有两个不同的交点.∴结论②为假.③∵当时,二次函数(k是实数)的对称轴为,∴可举反例如,当时,二次函数为,当时,y随x的增大而减小;当时,y随x的增大而增大.∴结论③为假.④∵当时,二次函数的最值为,∴当时,有最小值,最小值为负;当时,有最大值,最大值为正.∴结论④为真.解决问题时所用的数学方法有方程思想,特殊与一般思想,反证思想,分类思想考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.。
中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。
二次函数提高训练

二次函数提高训练一.解答题(共30小题)1.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求⊥PAC为直角三角形时点P的坐标.2.如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设⊥PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使⊥MAC和⊥MBC都是等腰三角形.直接写出所有满足条件的M 点的坐标;(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.3.如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0.(1)如果m=﹣4,n=1,试判断⊥AMN的形状;(2)如果mn=﹣4,(1)中有关⊥AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;(3)如图2,题目中的条件不变,如果mn=﹣4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;(4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标.4.已知:直角三角形AOB中,⊥AOB=90°,OA=3厘米,OB=4厘米.以O为坐标原点如图建立平面直角坐标系.设P、Q分别为AB边,OB边上的动点,它们同时分别从点A、O 向B点匀速运动,移动的速度都为1厘米每秒.设P、Q运动的时间为t秒(0≤t≤4).(1)求⊥OPQ的面积S与(厘米2)与t的函数关系式;并指出当t为何值时S的最大值是多少?(2)当t为何值时,⊥BPQ和⊥AOB相似;(3)当t为何值时,⊥OPQ为直角三角形;(4)①试证明无论t为何值,⊥OPQ不可能为正三角形;②若点P的移动速度不变,试改变点Q的运动速度,使⊥OPQ为正三角形,求出点Q的运动速度和此时的t值.5.如图,已知抛物线y=x2﹣ax+a2﹣4a﹣4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,⊥PBQ是等腰三角形?(直接写出答案)6.在平面直角坐标系xOy中,已知抛物线y=﹣+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin⊥MOH=.(1)求此抛物线的函数表达式;(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若=时,求点P的坐标;(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使⊥ANG 与⊥ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由.7.已知如图,矩形OABC的长OA=,宽OC=1,将⊥AOC沿AC翻折得⊥APC.(1)求⊥PCB的度数;(2)若P,A两点在抛物线y=﹣x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M 是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.8.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ⊥y轴交直线BC于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使⊥OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.9.如图(1),抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).[图(2)、图(3)为解答备用图](1)k=,点A的坐标为,点B的坐标为;(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.10.已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S⊥ABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c 平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.11.如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt⊥OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)①在x轴上方的抛物线上,是否存在一点P,使四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由;②在抛物线的对称轴上,是否存在上点Q,使得⊥BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.12.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,⊥APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.13.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将⊥AOB 绕点O逆时针旋转90°得到⊥COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l 表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q 的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.14.如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当⊥MBA+⊥CBO=45°时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B 向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q 为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.23.如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c与x轴相交于A、B两点.(1)试求点A、C的坐标;(2)求抛物线的解析式;(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN⊥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.15.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求⊥BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成⊥ADP,是否存在S⊥ADP=S⊥BCD?若存在,请求出P点的坐标;若不存在.请说明理由.16.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求⊥ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=⊥ABM时,求P点坐标.17.如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设⊥PQH的面积为s,当时,确定点Q的横坐标的取值范围.20.如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G、P、Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.18.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且⊥CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是⊥BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:⊥OBD⊥⊥ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求⊥POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.21.如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD⊥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分⊥DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.。
《二次函数》精编测试题及参考答案(提高)

二次函数精编测试题及参考答案(提高)一、选择题1.下列是二次函数的是()A.y=2x-1B. y=x2-(x-1)2C.y=x(x+1)-7D.y=1 x22.若二次函数y=(k-2)x2-3x+4与x轴有两个交点,则k的取值范围是()A.k≠2B.k≠4116C.k<4116且k≠2 D.k>4116且k≠23.将抛物线y=2x2-4x+1向左平移2022个单位,再向下平移2023个单位,则平移后抛物线的解析式为()A.y=2(x-1)2-1B.y=2(x+2021)2-2024C.y=2(x-2022)2-2024D.y=2(x-2024)2+20224.关于二次函数y=3x2+1的说法中,错误的是()A.抛物线顶点(0,1)B.当x>1时,y随x的增大而增大C.图象经过点(1,4)D.图象的对称轴是直线x=15.如果三点P1(1,y1),P2(3,y2)和P3(4,y3)在抛物线y=-x2+6x+c的图象上,那么y1,y2与y3之间的大小关系是()A y1<y3<y2 B.y3<y2<y1 C.y3<y1<y2 D.y1<y2<y36.根据下表中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0a,b,c为常数)的一个解x的范围可能是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.向空中抛一枚物体,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a≠0),若此物体在第6秒与第15秒时的高度相等,则下列时间中物体所在的高度最高是()A.第6秒B.第10秒C.第14秒D.第15秒8.如图,函数y=kx 2-2x+1和y=k(x-1)(k 是常数,且k ≠0)在同一平面直角坐标系的图象可能是( ) 9.三孔桥的三个桥孔呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.当大孔水面宽度为20米时,单个小孔的水面宽度为( )A.2√3B. 4√3C. 5√2D. 6√310.如图,在四边形DEFG 中,∠E=∠F= 90°,∠DGF=45°,DE=1,FG=3,Rt △ABC 的直角顶点C 与点G 重合,另一个顶点B(在点C 左侧)在射线FG 上,且BC=1,AC=2,将△ABC 沿GF 方向平移,点C 与点F 重合时停止.设CG 的长为x,△ABC 在平移过程中与四边形DEFG 重叠部分的面积为y,则下列图象能正确反映y 与x 函数关系的是( )11.对于二次函数y=12x 2-6x+21,有以下结论:①当x>5时,y 随x 的增大而增大;②当x=6时,y 有最小值3;③图象与x 轴有两个交点;④图象是由抛物线y=12x 2先向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为( )A.1B.2C.3D.412.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,则下列结论: ①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(-1,m),则关于x的方程ax2+bx+c=m-1无实数根.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.二次函数y=3(x-3)2+2顶点坐标为_________.14.已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c的值是_______.15.如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是_____________.第15题第16题第17题16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为________________.17.如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为_________.18.如图,在平面直角坐标系中,抛物线y=x2的图象如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2023的坐标是_____________.三、解答题19.已知函数y=(m2+2m)x2+mx+m+1,(1)当m为何值时,此函数是一次函数.(2)当m为何值时,此函数是二次函数.20.如图,一农户要建一矩形猪舍,猪舍的一边利用长12m的住房墙,另外三边用27m长的建筑材料围成,为了方便进出,在垂直于住房墙的一边留一个1m宽的门.所围成矩形猪舍的长、宽分别为多少时,猪舍的面积y最大,最大面积是多少?21.如图,已知直线y1=kx+n与抛物线y2=-x2+bx+c相交于A(4,0)和B(0,2).(1)求直线和抛物线解析式;(2)当y1>y2时,求x的取值范围;(3)若直线上方的抛物线有一点C,S△ABC=6,求点C的坐标.22.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)当原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?23.抛物线y=-x2+bx+c经过点A(-3,0)和点C(0,3).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,求点Q的坐标.参考答案一、选择题1-5 CCBDA 6-10 CBBCB 11-12 AC二、填空题13.(3,2)14. 115.y=4x2+160x+150016.y=−125(x−20)2+1617. 13.518.(-1012,10122)三、解答题19(1)m=-2 (2)m≠0且m≠-220.设宽为x,y=-2x2+28x,当宽为8米,长为12米时,面积最大,最大是96平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. ( 2014•珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E 两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.:】12.(2014•舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED 的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.:|13.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.—(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形若存在,请求出点P的坐标;若不存在,请说明理由.]16.(2014•武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.^(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.24. (2014•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.…(第1题图)#25. (2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.(第2题图)二次函数综合题@考点:分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.—(2)平行四边形对边平行且相等,恰得MN 为OF,即为中位线,进而横坐标易得,D 为x轴上的点,所以纵坐标为0.(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O 点右边时,所求三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ⊥CO于J,∵A(2,0)、C(0,2),∴OE=OA=2,OG=OC=2,~∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°•GO==,IO=cos30°•GO==3,JO=cos30°•OE==,JE=sin30°•OE==1,∴G(﹣,3),E(,1),设抛物线解析式为y=ax2+bx+c,∵经过G、O、E三点,<∴,解得,∴y=x2﹣x.(2)∵四边形OHMN为平行四边形,∴MN∥OH,MN=OH,∵OH=OF,∴MN为△OGF的中位线,!∴x D=x N=•x G=﹣,∴D(﹣,0).(3)设直线GE的解析式为y=kx+b,∵G(﹣,3),E(,1),∴,解得,∴y=﹣x+2.,∵Q在抛物线y=x2﹣x上,∴设Q的坐标为(x,x2﹣x),∵Q在R、E两点之间运动,∴﹣<x<.①当﹣<x<0时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),∵S△PKQ=•(y K﹣y Q)•(x Q﹣x P),~S△HKQ=•(y K﹣y Q)•(x H﹣x Q),∴S△PQH=S△PKQ+S△HKQ=•(y K﹣y Q)•(x Q﹣x P)+•(y K﹣y Q)•(x H﹣x Q)=•(y K﹣y Q)•(x H﹣x P)=•[﹣x+2﹣(x2﹣x)]•[0﹣(﹣)]=﹣x2+.②当0≤x<时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),同理S△PQH=S△PKQ﹣S△HKQ=•(y K﹣y Q)•(x Q﹣x P)﹣•(y K﹣y Q)•(x Q﹣x H)=•(y K ﹣y Q )•(x H ﹣x P )=﹣x 2+.—综上所述,S △PQH =﹣x 2+.∵,∴<﹣x 2+≤,解得﹣<x <, ∵﹣<x <, ∴﹣<x <.考点:, 二次函数综合题专题: 综合题.分析: (1)首先可得点A 的坐标为(m , m 2),再由m 的值,确定点B 的坐标,继而可得点E 的坐标及BE 、OE 的长度,易得△ABE ∽△CBO ,利用对应边成比例求出CO ,根据轴对称的性质得出DO ,继而可求解S 的值;(2)分两种情况讨论,(I )当0<m <2时,将BE •DO 转化为AE •BO ,求解;(II )当m >2时,由(I )的解法,可得S 关于m 的函数解析式; (3)①首先可确定点A 的坐标,根据===k ,可得S △ADF =k •S △BDF •S △AEF =k •S △BEF ,从而可得===k ,代入即可得出k 的值;②可得===k ,因为点A 的坐标为(m ,m 2),S =m ,代入可得k 与m 的关系.,解答: 解:(1)∵点A 在二次函数y =x 2的图象上,AE ⊥y 轴于点E 且AE =m ,∴点A 的坐标为(m , m 2),当m=时,点A的坐标为(,1),∵点B的坐标为(0,2),∴BE=OE=1.∵AE⊥y轴,∴AE∥x轴,~∴△ABE∽△CBO,∴==,∴CO=2,∵点D和点C关于y轴对称,∴DO=CO=2,∴S=BE•DO=×1×2=;(2)(I)当0<m<2时(如图1),!∵点D和点C关于y轴对称,∴△BOD≌△BOC,∵△BEA∽△BOC,∴△BEA∽△BOD,∴=,即BE•DO=AE•BO=2m.∴S=BE•DO=×2m=m;(II)当m>2时(如图2),…同(I)解法得:S=BE•DO=AE•OB=m,由(I)(II)得,S关于m的函数解析式为S=m(m>0且m≠2).(3)①如图3,连接AD,∵△BED的面积为,>∴S=m=,∴点A的坐标为(,),∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∴k===;②k与m之间的数量关系为k=m2,如图4,连接AD,…∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∵点A的坐标为(m,m2),S=m,∴k===m2(m>2).点评:本题考查了二次函数的综合,涉及了三角形的面积、比例的性质及相似三角形的判定与性质、全等三角形的性质,解答本题的关键是熟练数形结合思想及转化思想的运用,难度较大.~确定C点坐标;(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P1与D点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1..∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.—如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,.∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.考点:二次函数综合题;解一元二次方程-因式分解法;根与系数的关系;勾股定理;相似三角形的判定与性质专题:-压轴题.分析:(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可.(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.(3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题.解答:解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4.∴直线AB:y=kx+2k+4必经过定点(﹣2,4).!∴点C的坐标为(﹣2,4).(2)∵k=﹣,∴直线的解析式为y=﹣x+3.联立,解得:或.∴点A的坐标为(﹣3,),点B的坐标为(2,2).过点P作PQ∥y轴,交AB于点Q,过点A作AM⊥PQ,垂足为M,过点B作BN⊥PQ,垂足为N,如图1所示.设点P的横坐标为a,则点Q的横坐标为a.∴y P=a2,y Q=﹣a+3.∵点P在直线AB下方,∴PQ=y Q﹣y P=﹣a+3﹣a2|∵AM+NB=a﹣(﹣3)+2﹣a=5.∴S△APB=S△APQ+S△BPQ=PQ•AM+PQ•BN=PQ•(AM+BN)=(﹣a+3﹣a2)•5=5.整理得:a2+a﹣2=0.解得:a1=﹣2,a2=1.:当a=﹣2时,y P=×(﹣2)2=2.此时点P的坐标为(﹣2,2).当a=1时,y P=×12=.此时点P的坐标为(1,).∴符合要求的点P的坐标为(﹣2,2)或(1,).(3)过点D作x轴的平行线EF,作AE⊥EF,垂足为E,)作BF⊥EF,垂足为F,如图2.∵AE⊥EF,BF⊥EF,∴∠AED=∠BFD=90°.∵∠ADB=90°,∴∠ADE=90°﹣∠BDF=∠DBF.∵∠AED=∠BFD,∠ADE=∠DBF,∴△AED∽△DFB.—∴.设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2.AE=y A﹣y E=m2﹣t2.BF=y B﹣y F=n2﹣t2.ED=x D﹣x E=t﹣m,DF=x F﹣x D=n﹣t.∵,…∴=.化简得:mn+(m+n)t+t2+4=0.∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根.∴m+n=2k,mn=﹣4k﹣8.∴﹣4k﹣8+2kt+t2+4=0,即t2+2kt﹣4k﹣4=0.即(t﹣2)(t+2k+2)=0.;∴t1=2,t2=﹣2k﹣2(舍).∴定点D的坐标为(2,2).过点D作x轴的平行线DG,过点C作CG⊥DG,垂足为G,如图3所示.∵点C(﹣2,4),点D(2,2),∴CG=4﹣2=2,DG=2﹣(﹣2)=4.∵CG⊥DG,∴DC====2.过点D作DH⊥AB,垂足为H,如图3所示,∴DH≤DC.∴DH≤2.∴当DH与DC重合即DC⊥AB时,]点D到直线AB的距离最大,最大值为2.∴点D到直线AB的最大距离为2.分析:(1)只需找到两组对应角相等即可.(2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,借助三角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题.(3)易知AF就是圆的直径,利用圆周角定理将∠EDF转化为∠EAF.在△AFC中,知道tan∠EAF、∠C、AC,通过解直角三角形就可求出AF长.解答:解:(1)∵DF⊥AB,EF⊥AC,<∴∠BDF=∠CEF=90°.∵△ABC为等边三角形,∴∠B=∠C=60°.∵∠BDF=∠CEF,∠B=∠C,∴△BDF∽△CEF.(2)∵∠BDF=90°,∠B=60°,∴sin60°==,cos60°==.∵BF=m,…∴DF=m,BD=.∵AB=4,∴AD=4﹣.∴S△ADF=AD•DF=×(4﹣)×m=﹣m2+m.同理:S△AEF=AE•EF=×(4﹣)×(4﹣m)…=﹣m2+2.∴S=S△ADF+S△AEF=﹣m2+m+2=﹣(m2﹣4m﹣8)=﹣(m﹣2)2+3.其中0<m<4.∵﹣<0,0<2<4,∴当m=2时,S取最大值,最大值为3.∴S与m之间的函数关系为:*S═﹣(m﹣2)2+3(其中0<m<4).当m=2时,S取到最大值,最大值为3.(3)如图2,∵A、D、F、E四点共圆,∴∠EDF=∠EAF.∵∠ADF=∠AEF=90°,∴AF是此圆的直径.∵tan∠EDF=,∴tan∠EAF=.∴=.∵∠C=60°,∴=tan60°=.设EC=x,则EF=x,EA=2x.∵AC=a,∴2x+x=a.∴x=.【∴EF=,AE=.∵∠AEF=90°,∴AF==.∴此圆直径长为.考点:二次函数综合题.分析:(1)由对称轴为x=﹣,且函数过(0,0),则可推出b,c,进而得函数解析式.(2)=,且两三角形为同高不同底的三角形,易得=,考虑计算方便可作B,C对x轴的垂线,进而有B,C横坐标的比为=.由B,C为直线与二次函数的交点,则联立可求得B,C坐标.由上述倍数关系,则k易得.(3)以BC为直径的圆经过原点,即∠BOC=90°,一般考虑表示边长,再用勾股定理构造方程求解k.可是这个思路计算量异常复杂,基本不考虑,再考虑(2)的思路,发现B,C横纵坐标恰好可表示出EB,EO,OF,OC.而由∠BOC=90°,易证△EBO∽△FOC,即EB•FC=EO•FO.有此构造方程发现k值大多可约去,进而可得k值.解答:解:(1)∵二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,∴﹣=2,0=0+0+c,∴b=4,c=0,∴y=﹣x2+4x.(2)如图1,连接OB,OC,过点A作AE⊥y轴于E,过点B作BF⊥y轴于F,∵=,∴=,∴=,∵EB∥FC,∴==.∵y=kx+4交y=﹣x2+4x于B,C,∴kx+4=﹣x2+4x,即x2+(k﹣4)x+4=0,∴△=(k﹣4)2﹣4•4=k2﹣8k,∴x=,或x=,∵x B<x C,∴EB=x B=,FC=x C=,∴4•=,解得k=9(交点不在y轴右边,不符题意,舍去)或k=﹣1.∴k=﹣1.(3)∵∠BOC=90°,∴∠EOB+∠FOC=90°,∵∠EOB+∠EBO=90°,∴∠EBO=∠FOC,∵∠BEO=∠OFC=90°,∴△EBO∽△FOC,∴,∴EB•FC=EO•FO.∵x B=,x C=,且B、C过y=kx+4,∴y B=k•+4,y C=k•+4,∴EO=y B=k•+4,OF=﹣y C=﹣k•﹣4,∴•=(k•+4)•(﹣k•﹣4),整理得 16k=﹣20,。