二次函数提高难题练习及答案二

二次函数提高难题练习及答案二
二次函数提高难题练习及答案二

5. ( 2014?珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.

(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;

(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E 两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.

:

12.(2014?舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED 的面积为S.

(1)当m=时,求S的值.

(2)求S关于m(m≠2)的函数解析式.

(3)①若S=时,求的值;

②当m>2时,设=k,猜想k与m的数量关系并证明.

:

|

13.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为

A、D(A在D的右侧),与y轴的交点为C.

(1)直接写出A、D、C三点的坐标;

(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;

(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形若存在,请求出点P的坐标;若不存在,请说明理由.

]

16.(2014?武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.

^

(1)直线AB总经过一个定点C,请直接出点C坐标;

(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;

(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

24. (2014?湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,

(1)求证:△BDF∽△CEF;

(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;

(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

(第1题图)

#

25. (2014?湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,

(1)求二次函数解析式;

(2)若=,求k;

(3)若以BC为直径的圆经过原点,求k.

(第2题图)

二次函数综合题

@

考点:

分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.—

(2)平行四边形对边平行且相等,恰得MN 为OF,即为中位线,进而横坐标易得,D 为x轴上的点,所以纵坐标为0.

(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O 点右边时,所求三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.

解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ⊥CO于J,

∵A(2,0)、C(0,2),

∴OE=OA=2,OG=OC=2,

~

∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°?GO==,

IO=cos30°?GO==3,

JO=cos30°?OE==,

JE=sin30°?OE==1,

∴G(﹣,3),E(,1),

设抛物线解析式为y=ax2+bx+c,

∵经过G、O、E三点,

<

∴,

解得,

∴y=x2﹣x.

(2)∵四边形OHMN为平行四边形,

∴MN∥OH,MN=OH,

∵OH=OF,

∴MN为△OGF的中位线,

!

∴x D=x N=?x G=﹣,

∴D(﹣,0).

(3)设直线GE的解析式为y=kx+b,

∵G(﹣,3),E(,1),

∴,

解得,

∴y=﹣x+2.

∵Q在抛物线y=x2﹣x上,

∴设Q的坐标为(x,x2﹣x),

∵Q在R、E两点之间运动,

∴﹣<x<.

①当﹣<x<0时,

如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),

∵S△PKQ=?(y K﹣y Q)?(x Q﹣x P),

~

S△HKQ=?(y K﹣y Q)?(x H﹣x Q),

∴S△PQH=S△PKQ+S△HKQ=?(y K﹣y Q)?(x Q﹣x P)+?(y K﹣y Q)?(x H﹣x Q)

=?(y K﹣y Q)?(x H﹣x P)=?[﹣x+2﹣(x2﹣x)]?[0﹣(﹣)]=﹣x2+.

②当0≤x<时,

如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),

同理S△PQH=S△PKQ﹣S△HKQ=?(y K﹣y Q)?(x Q﹣x P)﹣?(y K﹣y Q)?(x Q﹣x H)

=?(y K ﹣y Q )?(x H ﹣x P )=﹣

x 2+

综上所述,S △PQH =﹣x 2+

∵,

<﹣

x 2+

≤,

解得﹣<x <, ∵﹣<x <, ∴﹣<x <

考点:

, 二次函数综合题

专题: 综合题.

分析: (1)首先可得点A 的坐标为(m , m 2

),再由m 的值,确定点B 的坐标,继而可得点

E 的坐标及BE 、OE 的长度,易得△ABE ∽△CBO ,利用对应边成比例求出CO ,根据轴

对称的性质得出DO ,继而可求解S 的值;

(2)分两种情况讨论,(I )当0<m <2时,将BE ?DO 转化为AE ?BO ,求解;(II )当m >2时,由(I )的解法,可得S 关于m 的函数解析式; (3)①首先可确定点A 的坐标,根据

=

=

=k ,可得

S △ADF =k ?S △BDF ?S △AEF =k ?S △BEF ,从而可得

=

=

=k ,代入即可得出k 的值;

②可得===k ,因为点A 的坐标为(m ,

m 2),S =m ,代入可得k 与m 的关系.

解答: 解:(1)∵点A 在二次函数y =x 2

的图象上,AE ⊥y 轴于点E 且AE =m ,

∴点A 的坐标为(m , m 2

),

当m=时,点A的坐标为(,1),∵点B的坐标为(0,2),

∴BE=OE=1.

∵AE⊥y轴,

∴AE∥x轴,

~

∴△ABE∽△CBO,

∴==,

∴CO=2,

∵点D和点C关于y轴对称,

∴DO=CO=2,

∴S=BE?DO=×1×2=;

(2)(I)当0<m<2时(如图1),

∵点D和点C关于y轴对称,

∴△BOD≌△BOC,

∵△BEA∽△BOC,

∴△BEA∽△BOD,

∴=,即BE?DO=AE?BO=2m.

∴S=BE?DO=×2m=m;

(II)当m>2时(如图2),

同(I)解法得:S=BE?DO=AE?OB=m,

由(I)(II)得,

S关于m的函数解析式为S=m(m>0且m≠2).

(3)①如图3,连接AD,

∵△BED的面积为,

>

∴S=m=,

∴点A的坐标为(,),

∵===k,

∴S△ADF=k?S△BDF?S△AEF=k?S△BEF,

∴===k,∴k===;

②k与m之间的数量关系为k=m2,

如图4,连接AD,

∵===k,

∴S△ADF=k?S△BDF?S△AEF=k?S△BEF,

∴===k,

∵点A的坐标为(m,m2),S=m,

∴k===m2(m>2).

点评:本题考查了二次函数的综合,涉及了三角形的面积、比例的性质及相似三角形的判定与性质、全等三角形的性质,解答本题的关键是熟练数形结合思想及转化思想的运用,难度较大.

~

确定C点坐标;

(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;

(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P1与D点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.

解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,

解得x1=﹣2,x2=4.当x=0,y=﹣3.

∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);

(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.

.

∵AD在x轴上,点M在抛物线上,

∴当△MAD的面积与△CAD的面积相等时,分两种情况:

①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,

∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);

②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,

∴M点坐标为(1+,3)或(1﹣,3).

综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);

(3)结论:存在.

如图所示,在抛物线上有两个点P满足题意:

①若BC∥AP1,此时梯形为ABCP1.

由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,

∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;

②若AB∥CP2,此时梯形为ABCP2.

∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,

∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,

∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,

.

∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,

∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).

∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.

综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).

点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.

考点:二次函数综合题;解一元二次方程-因式分解法;根与系数的关系;

勾股定理;相似三角形的判定与性质

专题:-

压轴题.

分析:(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可.

(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P

的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据

条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.

(3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,

可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数

的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定

点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,

利用勾股定理即可解决问题.

解答:解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4.

∴直线AB:y=kx+2k+4必经过定点(﹣2,4).

!

∴点C的坐标为(﹣2,4).

(2)∵k=﹣,

∴直线的解析式为y=﹣x+3.

联立,

解得:或.

∴点A的坐标为(﹣3,),点B的坐标为(2,2).过点P作PQ∥y轴,交AB于点Q,

?

过点A作AM⊥PQ,垂足为M,

过点B作BN⊥PQ,垂足为N,如图1所示.

设点P的横坐标为a,则点Q的横坐标为a.

∴y P=a2,y Q=﹣a+3.

∵点P在直线AB下方,

∴PQ=y Q﹣y P

=﹣a+3﹣a2

|

∵AM+NB=a﹣(﹣3)+2﹣a=5.

∴S△APB=S△APQ+S△BPQ

=PQ?AM+PQ?BN

=PQ?(AM+BN)

=(﹣a+3﹣a2)?5

=5.

整理得:a2+a﹣2=0.

解得:a1=﹣2,a2=1.

:

当a=﹣2时,y P=×(﹣2)2=2.

此时点P的坐标为(﹣2,2).

当a=1时,y P=×12=.

此时点P的坐标为(1,).

∴符合要求的点P的坐标为(﹣2,2)或(1,).

(3)过点D作x轴的平行线EF,

作AE⊥EF,垂足为E,

)

作BF⊥EF,垂足为F,如图2.

∵AE⊥EF,BF⊥EF,

∴∠AED=∠BFD=90°.

∵∠ADB=90°,

∴∠ADE=90°﹣∠BDF=∠DBF.

∵∠AED=∠BFD,∠ADE=∠DBF,

∴△AED∽△DFB.

∴.

设点A、B、D的横坐标分别为m、n、t,

则点A、B、D的纵坐标分别为m2、n2、t2.

AE=y A﹣y E=m2﹣t2.

BF=y B﹣y F=n2﹣t2.

ED=x D﹣x E=t﹣m,

DF=x F﹣x D=n﹣t.

∵,

∴=.

化简得:mn+(m+n)t+t2+4=0.

∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根.∴m+n=2k,mn=﹣4k﹣8.

∴﹣4k﹣8+2kt+t2+4=0,

即t2+2kt﹣4k﹣4=0.

即(t﹣2)(t+2k+2)=0.

;

∴t1=2,t2=﹣2k﹣2(舍).

∴定点D的坐标为(2,2).

过点D作x轴的平行线DG,

过点C作CG⊥DG,垂足为G,如图3所示.

∵点C(﹣2,4),点D(2,2),

∴CG=4﹣2=2,DG=2﹣(﹣2)=4.

∵CG⊥DG,

∴DC=

=

=

=2.

过点D作DH⊥AB,垂足为H,如图3所示,

∴DH≤DC.

∴DH≤2.

∴当DH与DC重合即DC⊥AB时,

]

点D到直线AB的距离最大,最大值为2.

∴点D到直线AB的最大距离为2.

分析:(1)只需找到两组对应角相等即可.

(2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,借助三角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题.

(3)易知AF就是圆的直径,利用圆周角定理将∠EDF转化为∠EAF.在△AFC中,知道tan∠EAF、∠C、AC,通过解直角三角形就可求出AF长.

解答:解:(1)∵DF⊥AB,EF⊥AC,

<

∴∠BDF=∠CEF=90°.

∵△ABC为等边三角形,

∴∠B=∠C=60°.

∵∠BDF=∠CEF,∠B=∠C,

∴△BDF∽△CEF.

(2)∵∠BDF=90°,∠B=60°,

∴sin60°==,cos60°==.

∵BF=m,

∴DF=m,BD=.

∵AB=4,

∴AD=4﹣.

∴S△ADF=AD?DF

=×(4﹣)×m

=﹣m2+m.

同理:S△AEF=AE?EF

=×(4﹣)×(4﹣m)

=﹣m2+2.

∴S=S△ADF+S△AEF

=﹣m2+m+2

=﹣(m2﹣4m﹣8)

=﹣(m﹣2)2+3.其中0<m<4.

∵﹣<0,0<2<4,

∴当m=2时,S取最大值,最大值为3.∴S与m之间的函数关系为:

*

S═﹣(m﹣2)2+3(其中0<m<4).当m=2时,S取到最大值,最大值为3.(3)如图2,

∵A、D、F、E四点共圆,

∴∠EDF=∠EAF.

∵∠ADF=∠AEF=90°,

∴AF是此圆的直径.

∵tan∠EDF=,

?

∴tan∠EAF=.

∴=.

∵∠C=60°,

∴=tan60°=.

设EC=x,则EF=x,EA=2x.

∵AC=a,

∴2x+x=a.

∴x=.

∴EF=,AE=.

∵∠AEF=90°,

∴AF==.

∴此圆直径长为.

考点:二次函数综合题.

分析:(1)由对称轴为x=﹣,且函数过(0,0),则可推出b,c,进而得函数解析式.(2)=,且两三角形为同高不同底的三角形,易得=,考虑计算方便可作B,

中考数学(二次函数提高练习题)压轴题训练及答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图:在平面直角坐标系中,直线l :y=13x ﹣4 3 与x 轴交于点A ,经过点A 的抛物线 y=ax 2﹣3x+c 的对称轴是x=3 2 . (1)求抛物线的解析式; (2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ; (3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由. 【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】 (1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=3 2 列出关于a 、c 的方程组求解即可; (2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可; (3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到 22x x x x Q P F E ++=,22 y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】

二次函数提高难题练习及答案二

5. ( 2014?珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH. (1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标; (3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E 两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.

12.(2014?舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED 的面积为S. (1)当m=时,求S的值. (2)求S关于m(m≠2)的函数解析式. (3)①若S=时,求的值; ②当m>2时,设=k,猜想k与m的数量关系并证明.

13.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为 A、D(A在D的右侧),与y轴的交点为C. (1)直接写出A、D、C三点的坐标; (2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标; (3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由. 16.(2014?武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点. (1)直线AB总经过一个定点C,请直接出点C坐标; (2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5; (3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

中考数学易错题专题训练-二次函数练习题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5) (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积. 【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15. 【解析】 【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式; (2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标; (3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积. 【详解】(1)设抛物线顶点式y=a(x+1)2+4, 将B(2,﹣5)代入得:a=﹣1, ∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3; (2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3), 令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1, 即抛物线与x轴的交点为:(﹣3,0),(1,0); (3)设抛物线与x轴的交点为M、N(M在N的左侧), 由(2)知:M(﹣3,0),N(1,0), 当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5), ∴S△OA′B′=1 2 ×(2+5)×9﹣ 1 2 ×2×4﹣ 1 2 ×5×5=15. 【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的

实际问题与二次函数-详解与练习(含答案)

. 初中数学专项训练:实际问题与二次函数(人教版) 一、利用函数求图形面积的最值问题 一、围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的 函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 分析:关键是用含x 的代数式表示出矩形的长与宽。 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0 180 <x<x >x >∴?? ?- (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(218 2=-?-=- =a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回扣问题实际时,一定注意不要遗漏了单位。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠 墙。问如何围,才能使养鸡场的面积最大? 分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(2 50x -)(米), 根据题意,得:x x x x y 252 1 )250( 2+-=-=; 又∵500,02 500 <x<>x x >∴??? ??- ∵x x x x y 2521)250( 2+-=-=中,a=2 1 -<0,∴y 有最大值, 即当25) 2 1(2252=-?- =-=a b x 时,2625) 2 1(42504422max =-?-=-=a b ac y

实际问题与二次函数练习题及答案

26.3 实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

最新二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案) 二次函数y = ax 2 bx c (a = 0) 是初中函数的主要内容,也是高中学习的重要基础. 在初 x取任意实数时的最值情况(当a ■ 0时,函数在 本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题.同时 还将学习二次函数的最值问题在实际生活中的简单应用. 2 【例1】当-2弐x玄2时,求函数y=x -2x-3的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x的值. 解:作出函数的图象.当x=1时,y mi n =-4,当x=-2时,y max=5. 【例2】当1^x^2时,求函数y =-X2「x T的最大值和最小值. X = 1 时,y min = T ,当X = 2 时,y max = 一5 . 由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常 见情况: 【例3】当x - 0时,求函数y = -x(2 - x)的取值范围. 中阶段大家已经知道:二次函数在自变量 b 2a 处取得最小值 4ac - b2 4a ,无最大值;当 a c 0时,函数在x = -亠-处取得最大值 2a 4ac -b2 4a 无最小值. 解:作出函数的图象.当

解:作出函数y =-x(2 - x) n x? — 2x在x_0内的图象. 可以看出:当x = 1时,ymin - -1,无最大值. 所以,当X _ 0时,函数的取值范围是y _ -1 . 1 25 【例4】当t

二次函数中考真题卷高难度专项练习及答案

组卷二次函数难题1-30 一、选择题(共12小题) 1.(2011?包头)已知二次函数y=ax2+bx+c同时满足下列条件:对称轴是x=1;最值是15;二次函数的图象与x轴有两个交点,其横坐标的平方和为15﹣a,则b的值是() A.4或﹣30 B.﹣30 C.4D.6或﹣20 2.(2011?玉溪)如图,函数y=﹣x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=﹣1,在下列结论中,错误的是() A.顶点坐标为(﹣1,4)B.函数的解析式为y=﹣x2﹣2x+3 C.当x<0时,y随x的增大而增大D.抛物线与x轴的另一个交点是(﹣3,0)3.(2010?钦州)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论: ①ac>0; ②a﹣b+c<0; ③当x<0时,y<0; ④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有() A.②③B.②④C.①③D.①④ 4.(2010?柳州)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表: x …﹣2 ﹣1 0 1 2 … y …0 4 6 6 4 … 从上表可知,下列说法正确的个数是() ①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y随x增大而增大. A.1B.2C.3D.4 5.(2010?自贡)y=x2+(1﹣a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是() A.a≤﹣5 B.a≥5 C.a=3 D.a≥3 6.(2010?十堰)方程x2+2x﹣1=0的根可看出是函数y=x+2与y=的图象交点的横坐标,用此方法可推断方程x3+x ﹣1=0的实根x所在范围为() A. ﹣B. C.D. 1 7.(2010?西宁)下列哪一个函数,其图象与x轴有两个交点() A.B.C.D. 8.(2010?台州)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为()

二次函数_二次函数解决实际问题专题训练-中考数学专题复习练习

二次函数--二次函数解决实际问题 1. 如图,用长8m 的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( ) A.6425m2 B.43m2 C.83 m2 D.4m2 2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( ) A.4米 B.3米 C.2米 D.1米 3. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m ,如图所示,则防护栏不锈钢支柱的总长度至少为( ) A.50m B.100m C.160m D.200m 4. 河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y =-125 x2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( ) A.-20m B.10m C.20m D.-10m 5. 某幢建筑物,从10米高的窗口A 用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如 图),如果抛物线的最高点M 离墙1米,离地面403 米,则水流下落点B 离墙距离OB 是( )

A.2米 B.3米 C.4米 D.5米 6. 如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( ) A.3cm2 B.323cm2 C.923cm2 D.272 3cm2 7. 若某商品的利润y(元)与售价x(元)之间的函数关系式是y =-x2+8x +9,且售价x 的范围是1≤x≤3,则最大利润是( ) A.16元 B.21元 C.24元 D.25元 8. 一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( ) A.5元 B.10元 C.0元 D.3600元 9. 如图,隧道的截面是抛物线,可以用y =-116 x2+4表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( ) A.不大于4m B.恰好4m C.不小于4m D.大于4m ,小于8m 10. 如图所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆的养鸡场,设它的长为xm ,要使鸡场的面积最大,鸡场的长为 m. 11. 比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度 y(米)与水平距离x(米)之间满足关系式y =-29x2+89x +109 ,则羽毛球飞出的水平距离为 米.

22.3实际问题与二次函数练习题及答案

实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

教学设计——二次函数专题训练点的存在性问题

二次函数点的存在性专题——等面积问题 【教材分析】 二次函数隶属于数与代数领域,是初中阶段一种重要的函数,二次函数面积问题本身是学习二次 函数的图象与性质后,检验学生应用所学知识解决代几综合问题能力的一个考查。二次函数面积 问题将数与代数,空间与图形两大领域有机结合,目的在于让学生通过二次函数面积问题,学会 用函数知识,深化学生对由形到数,再由数到形的数学思想方法的理解,体会图形变换在函数中 的作用,学会用分类讨论,转化的思想去解决和函数有关的面积问题。此部分内容是学习一次函 数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。 【教学目标】 1.知识与技能:能利用二次函数解析式,求出相应线段的长度及图形面积,并根据面积相等的条 件,在图像上确定点的位置,并求出相应点的坐标 2.过程与方法:在探索等面积点存在性问题的过程中,进一步体会研究函数图像和图形面积问题 的基本方法,以及数形结合、分类讨论的思想方法;体会利用平移变换,确定点的位置的方法 3.情感态度价值观:经历解决问题的过程,感受数学思想方法的价值,培养学生合作意识,让学 生积累经验,提升学生总结归纳的能力 教学重点:确定点的位置,求出点的坐标 教学难点:利用同底等高及平移变换,确定点的位置;利用函数解析法及代几综合法求出点的坐 标 【学情分析】 对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步 认识,对分析问题的方法已会初步模仿,能利用数形结合的思想方法解决三角形底边在x轴上的简单的同底等高的问题,但在三角形底边不在x轴上也不用x轴平行时,学生就不容易在函数图 像上确定出点的位置,并且还不能熟练地应用一次函数及二次函数的相关知识,以及数与形之间 的转化的思想解决问题。本节课正是为了弥补这一不足而设计的,目的是进一步培养学生综合运 用函数知识的能力,深化学生对由形到数,再由数到形的数学思想方法的理解,从而解决解决学 生解决面积问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。 【教学过程】 环节一【自主学习,合作释疑】 已知:抛物线y=x2-2x-3与x轴交于点A,B,与y轴交于点C, (1)求△ABC的面积

九年级数学二次函数的专项培优 易错 难题练习题附答案解析

九年级数学二次函数的专项培优易错难题练习题附答案解析 一、二次函数 1.(10分)(2015?佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画. (1)请用配方法求二次函数图象的最高点P的坐标; (2)小球的落点是A,求点A的坐标; (3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积; (4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标. 【答案】(1)(2,4);(2)(,);(3);(4)(,). 【解析】 试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标; (2)联立两解析式,可求出交点A的坐标; (3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直 线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛 物线的解析式联立,得到方程组,解方程组即可求出点M的坐标. 试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4, 故二次函数图象的最高点P的坐标为(2,4); (2)联立两解析式可得:,解得:,或.

故可得点A的坐标为(,); (3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B. S△POA=S△POQ+S△梯形PQBA﹣S△BOA =×2×4+×(+4)×(﹣2)﹣×× =4+﹣ =; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积. 设直线PM的解析式为y=x+b, ∵P的坐标为(2,4), ∴4=×2+b,解得b=3, ∴直线PM的解析式为y=x+3. 由,解得,, ∴点M的坐标为(,). 考点:二次函数的综合题

实际问题与二次函数最大利润问题专题练习题含答案

实际问题与二次函数最大利润问题专题练习题 1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( ) A.150元 B.160元 C.170元 D.180元 2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( ) A.50元 B.80元 C.90元 D.100元 3.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节 性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n -24,则该企业一年中应停产的月份是( ) A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月 4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=,所以每件降价____元时,每日获得的利润最大为____元.5.已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式y=-x2+1200x-357600,则当卖出盒饭数量为____盒时,获得最大利润是____元. 6. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:

每投入x万元,可获得利润P=- 1 100 (x-60)2+41. 每年最多可投入100万元的销售投资, 则5年所获利润的最大值是. 7. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少? 8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据: 设y与x的关系是我们所学过的某一种函数关系. (1)直接写出y与x的函数关系式,并指出自变量x的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少? 销售单价x(元/kg) 120 130 (180) 每天销量y(kg) 100 95 (70) 9.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元,当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的

二次函数难题练习及答案一

37.(20XX年山东泰安,第29题)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 34.(2014?德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式; (2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由; (3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

28. (2014?株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2. (1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点; (2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1?x2?x3的最大值; (3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA?GE=CG?AB,求抛物线的解析式. (第5题图) 24. (2014?湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC, (1)求证:△BDF∽△CEF; (2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值; (3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径. (第1题图)

二次函数难题练习答案-

37.(2014年山东泰安,第29题)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 34.(2014?德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式; (2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由; (3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

28. (2014?株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2. (1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点; (2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1?x2?x3的最大值; (3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA?GE=CG?AB,求抛物线的解析式. (第5题图) 24. (2014?湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC, (1)求证:△BDF∽△CEF; (2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值; (3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径. (第1题图)

最新二次函数专题训练(正方形的存在性问题)含答案只是分享

1.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD. (1)求抛物线的解析式. (2)若点P在直线BD上,当PE=PC时,求点P的坐标. (3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.

2.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐 标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD. (1)求抛物线的解析式及点D的坐标; (2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标; (3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.

3.如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M 作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F (1)求二次函数y=ax2+bx﹣3的表达式; (2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积; (3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.

4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′. (1)求抛物线的解析式; (2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积; (3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.

二次函数绝对值的问题练习与答案

二次函数绝对值的问题练习及答案 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明 例1 设a 为实数,函数 2 ()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时, () f x 为偶函数 0a ≠时,()f x 为非奇非偶函数 (2)2 222 2131,24()||1131,24x x a x a x a f x x x a x x a x a x a ?? ?+-+=++-≥? ??? ?=+-+=??? ?-++=-++< ????? 当()min 13 ,24a f x a ≤-=- 当()2min 11 ,1 22a f x a -<<=+ 当()min 13 ,24a f x a ≥=+ 例2 已知函数 1)(2 -=x x f ,|1|)(-=x a x g . (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤). 解:(1)方程|()|()f x g x =,即2 |1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1 x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的

二次函数最大利润问题专项 练习

二次函数最大利润问题练习 1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 2.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 3.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?

x (元)152030…y (件)252010… 4.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元? 5.某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表: 若日销售量是销售价的一次函数. ⑴求出日销售量(件)与销售价(元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?

6.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围; (2)当降价多少元时,每星期的利润最大?最大利润是多少 7. .将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则这种商品应如何定价?获取最大利润是多少? 8.某工厂在生产过程中要消耗大量电能,消耗每千度电产生的利润与电价是一次函数关系,经过测算,工厂每千度电产生的利润y(元/千度)与电价x(元/千度)的函数图象如图:

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2y x bx c =-++与直线1 22 y x = +交于,C D 两点,其中点C 在y 轴上,点D 的坐标为7(3,)2 。点P 是y 轴右侧的抛物线上一动点,过点P 作 PE x ⊥轴于点E ,交CD 于点F . (1)求抛物线的解析式; (2)若点P 的横坐标为m ,当m 为何值时,以,,,O C P F 为顶点的四边形是平行四边形请说明理由。 【解答】(1)∵直线1 22 y x = +经过点C ,∴(0,2)C ∵抛物线2 y x bx c =-++经过点(0,2)C ,D 7(3,)2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

相关文档
最新文档