八年级数学下册 19.2.2 第1课时 一次函数的概念习题课

合集下载

19.2.2 一次函数的概念 课件(共23张PPT)

19.2.2  一次函数的概念   课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数(第1课时)一课一练基础闯关(含解析)(新版)

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数(第1课时)一课一练基础闯关(含解析)(新版)

一次函数一课一练·基础闯关题组一次函数的概念1.(2017·浦东新区月考)下列函数的解析式中是一次函数的是( )A.y=-B.y=-x+6C.y=2x2+1D.y=2+1【解析】选B.A.y=-自变量x在分母上,不是一次函数,故本选项错误;B.y=-x+6是一次函数,故本选项正确;C.y=2x2+1自变量x的次数是2,不是一次函数,故本选项错误;D.y=2+1自变量x是被开方数,不是一次函数,故本选项错误.2.下列函数关系式:①y=-x;②y=2x+11;③y=x2;④y=.其中一次函数的个数是( )A.1B.2C.3D.4【解析】选B.①y=-x是正比例函数,是特殊的一次函数;②y=2x+11符合一次函数的定义;③y=x2中自变量的指数是2,不是一次函数;④y=分母中有自变量,不是一次函数.综上,一次函数的个数是2.3.下列函数中,是一次函数但不是正比例函数的是( )A.y=2xB.y=+2C.y=-xD.y=2x2-1【解析】选C.B的自变量的次数不是1,D的自变量次数是2,故它们都不是一次函数,A是正比例函数,C是一次函数.4.若函数y=(m+3)x|m|-2+1是一次函数,则m的值是( )A.±3B.±1C.3D.-3【解析】选C.由一次函数的定义可得解得m=3.【变式训练】若函数y=(m-1)x|m|+2是一次函数,则( )A.m=±1B.m=-1C.m=1D.m≠-1【解析】选B.根据题意得:m-1≠0,|m|=1,解得m=-1.5.已知+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-时,函数值y是多少?【解题指南】先根据非负数的性质求出a,b的值,再把a,b的值代入函数解析式即可判断出函数的种类,再把x的值代入求解即可.【解析】因为+(b-2)2=0,所以a=-1,b=2.所以y=(2+3)x-(-1)+1-2×(-1)×2+22,即y=5x+9,所以函数y=(b+3)x-a+1-2ab+b2是一次函数,当x=-时,y=5×+9=.当m,n为何值时,y=(m-1)+n.(1)是一次函数?(2)是正比例函数?【解析】(1)当m2=1且m-1≠0时,y=(m-1)+n是一次函数,即m=-1.∴当m=-1时,y=(m-1)+n是一次函数.(2)当m2=1且m-1≠0,且n=0时,y=(m-1)+n是正比例函数,即m=-1且n=0时,y=(m-1)+n是正比例函数.题组一次函数的实际应用1.下列函数关系不是一次函数的是( )A.汽车以120km/h的速度匀速行驶,行驶路程y(km)与时间t(h)之间的关系B.等腰三角形顶角y与底角x间的关系C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系D.一棵树现在高50cm,每月长高3cm,x个月后这棵树的高度y(cm)与生长月数x(月)之间的关系【解析】选C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系是y=πx2,不是一次函数,故C错误.2.写出下列各题中y与x之间的解析式,并判断y是否是x的一次函数.(1)在时速为70千米的匀速运动中,路程y(千米)与时间x(小时)的关系.(2)居民用电标准是每千瓦时0.53元,则电费y(元)与用电量x(千瓦时)之间的关系.(3)汽车离开A站4千米,再以40千米/时的平均速度行驶了x小时,那么汽车离开A站的距离y(千米)与时间x(小时)之间的关系.(4)某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费用,则旅客需交的行李费y(元)与携带行李质量x(x>20)(千克)之间的关系.【解析】(1)根据题意可得:y=70x,是一次函数.(2)根据题意可得:y=0.53x,是一次函数.(3)根据题意可得:y=4+40x,是一次函数.(4)根据题意可得:y=1.5(x-20),是一次函数.为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费.设某户用水量为x吨,自来水公司应收水费为y元.(1)试写出y(元)与x(吨)之间的函数解析式.(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?【解题指南】解答本题的两个关键点(1)两个收费标准:当0≤x≤5时,y=2x;当x>5时,y=2×5+2.6(x-5)=2.6x-3.(2)当用户的用水量为8吨时,超过了5吨,所以要代入后一个函数解析式求解.【解析】(1)y=(2)当x=8时,y=2.6×8-3=17.8,即自来水公司应收水费17.8元.已知函数y=(m2-2m+3)x2|m|-1-5是一次函数,求其解析式.【解析】∵函数y=(m2-2m+3)x2|m|-1-5是一次函数,∴2|m|-1=1且m2-2m+3≠0,解得m=±1,则m2-2m+3=2或m2-2m+3=6.该函数解析式为y=2x-5或y=6x-5.【母题变式】[变式一]已知函数y=(k+1)x2+(k-3)x+k,当k取何值时,y是x的一次函数? 【解析】∵函数y=(k+1)x2+(k-3)x+k是一次函数,∴k+1=0,解得k=-1,∴k取-1时,y是x的一次函数.[变式二]你能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数)吗? 【解析】∵函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数),∴|m|=1,m+1≠0,m-1≠0, ∴不能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数).。

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.2.2 一次函数(1)基础过关全练知识点1 一次函数的定义1.下列函数关系式中,属于一次函数的是( )A.y =2x -1  B.y =x 2+1C.y =kx +b (k 、b 是常数)D.y =1-2x2.(2022黑龙江哈尔滨期末)当m 为何值时,函数y =(m -3)x 3-|m |+m +2是一次函数( )A.2B.-2C.-2或2D.3知识点2 一次函数的图象与性质3.【教材变式·P92例3变式】下列函数图象中,表示直线y =2x +1的是( )A B C D4.【教材变式·P91思考变式】将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)5.(2020黑龙江牡丹江中考)已知一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,则m 、n 的取值是( )A.m >3,n >3B.m >32,n >-13 C.m <32,n <13 D.m >32,n <136.【新独家原创】新定义:[a,b,c]为函数y=ax2+bx+c(a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,-1]的函数为一次函数,对于该一次函数,下列说法正确的是( ) A.它的图象过点(1,0) B.y值随着x值的增大而减小C.它的图象经过第二象限D.当x>1时,y>07.(2022云南八中期末)在一次函数y=(5a2+8)x-3(a为常数)的图象上有A(x1,y1),B(x2,y2),C(x3,y3)三点.若x1<x2<x3,则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y18.(2020辽宁丹东中考)已知一次函数y=-2x+b,且b>0,则它的图象不经过第 象限.9.(2021四川眉山中考)一次函数y=(2a+3)x+2的值随x值的增大而减小,则常数a的取值范围是 .10.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若该函数的图象与直线y=3x-3平行,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围. 能力提升全练11.(2022湖南邵阳中考,8,★☆☆)在直角坐标系中,已知点,m,点,n是直线y=kx+b(k<0)上的两点,则m,n的大小关系是( )A.m<nB.m>nC.m≥nD.m≤n12.(2022河南信阳期末,8,★☆☆)已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,则在平面直角坐标系内,它的图象大致是( )A B C D13.(2022浙江绍兴中考,9,★★☆)已知(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( ) A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>014.(2020四川凉山州中考,7,★★☆)若一次函数y=(2m+1)x+m-3的图象不经过第二象限,则m的取值范围是( ) A.m>-12B.m<3C.-12<m<3 D.―12<m≤315.(2022安徽芜湖一中期末,12,★☆☆)已知点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是 .16.(2022重庆期末,12,★★☆)若关于x的分式方程6xx―1=3+axx―1的解为整数,且一次函数y=(7-a)x+a的图象不经过第四象限,则符合题意的整数a的个数为 .素养探究全练17.【几何直观】在平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.18.【运算能力】一次函数y=(m-2)x+m2-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若函数图象与x轴交于点B,直线y=(n+2)x+n2-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.答案全解全析基础过关全练1.D y =2x -1中,2x 不是整式,不是一次函数,y =x 2+1不是一次函数,y =kx +b (k 、b 是常数)中,当k =0时,不是一次函数,y =1-2x 是一次函数.故选D .2.C 由题意得3-|m |=1且m -3≠0,∴m =±2且m ≠3,∴m 的值为2或-2,故选C .3.B ∵k =2>0,b =1>0,∴直线经过第一、二、三象限.故选B .4.A 将直线y =5x 向下平移2个单位长度,所得直线的表达式为y =5x -2.故选A .5.B ∵一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,∴2m ―3>0,3n +1>0,解得m >32,n >-13,故选B .6.D 根据题意可得m -2=0,且m ≠0,解得m =2,所以该一次函数表达式为y =2x -1,把x =1代入y =2x -1得到y =1,故该函数图象经过点(1,1),不经过点(1,0),故选项A 错误;函数y =2x -1中,k =2>0,则y 值随着x 值的增大而增大,故选项B 错误;函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故选项C 错误;当x >1时,2x -1>1,即y >1,故y >0正确,故选项D 正确.故选D .7.A 一次函数y =(5a 2+8)x -3(a 为常数)中,5a 2+8>0,∴y随x的增大而增大,∵x1<x2<x3,∴y1<y2<y3,故选A.8.答案 三解析 ∵一次函数y=-2x+b,且b>0,∴它的图象经过第一、二、四象限,不经过第三象限.9.答案 a<-32解析 ∵一次函数y=(2a+3)x+2的值随x值的增大而减小,∴2a+3<0,解得a<-32.10.解析 (1)∵函数y=(2m+1)x+m-3的图象经过原点,∴当x=0时,y=0,即m-3=0,解得m=3.(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,∴2m+1=3,且m-3≠-3,解得m=1.(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<-12.能力提升全练11.A ∵点,m,点,n是直线y=kx+b上的两点,且k<0,∴y随x的增大而减小,∵32>72,∴m<n,故选A.12.A ∵点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,∴k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选A.13.D ∵y=-2x+3中,-2<0,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选D.14.D 根据题意得2m+1>0,m―3≤0,解得―12<m≤3.故选D.15.答案 a<2解析 ∵当x1>x2时,y1<y2,∴a-2<0,∴a<2,故答案为a<2.16.答案 3解析 ∵一次函数y=(7-a)x+a的图象不经过第四象限,∴7―a>0,a≥0,解得0≤a<7,由分式方程6xx―1=3+axx―1得x=3a―3,∵分式方程6xx―1=3+axx―1的解为整数,且x≠1,∴整数a=0,2,4,∴符合题意的整数a的个数为3.素养探究全练17.解析 (1)∵当x=m+1时,y=m+1-2=m-1,∴点P(m+1,m-1)在函数y=x-2的图象上.(2)∵函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,∴A (6,0),B (0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m -1<3,m -1<-12(m +1)+3,∴1<m <73.18.解析 (1)由题意得m 2-1=3,所以m =±2.又m -2≠0,所以m ≠2,所以m =-2,所以y =-4x +3.(2)由题意可得点B ,0.因为直线y =(n +2)x +n 2-1经过点A (0,3),所以n 2-1=3,所以n =±2.又n +2≠0,所以n ≠-2,所以n =2.所以y =4x +3,所以点C 的坐标为―34,0,所以线段BC 的长为34―=32.。

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

19.2.2一次函数第一课时(一次函数的概念)课件

19.2.2一次函数第一课时(一次函数的概念)课件

课堂练习
五、一次函数的简单应用
1、 汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升, 求油箱的油量y(单位:升)随行驶时间x(单位:时)变化的函
数关系式,并写出自变量的取值范围,y是x 的一次函数吗?
解:油量y与行驶时间x的函数关系式为:
y
=50-
9 50
x
自变量x的取值范围是 0≤x≤50.
D.y= x E.y=x2 +1 F.y= - x +1
3
2
3. 正比例函数y=kx,(1)若比例系数为 –5,则函数关系式为 y=-5x .
(2)若经过(5,1),则函数关系式 y x .
5
4. 已知 y=(m-2)x m 1,m= 0 时,y 是x 的正比例函数。
5. 函数y=–5x的图象在第二、四 象限,经过点(0 ,0 )与点(1,-5 ),
(2)若这个函数是正比例函数,求m的值.
解:(1)∵这个函数是一次函数
∴|m|=1
∴ m=±1.
(2)∵这个函数是正比例函数 ∴|m|=1 且 m+1=0. ∴m =±1且m=-1 ∴m=-1
新知讲解
五、典例精析
例2 :已知一次函数 y=kx+b,当 x=1时,y=1;当x=-1时,y=-5. 求 k 和 b 的值.
y=-2x+3
拓展提高
五、一次函数的简单应用
例3. 如果长方形的周长是30cm,长是xcm,宽是ycm.
(1)写出y与x之间的函数解析式,它是一次函数吗?
(2)若长是宽的2倍,求长方形的面积.
解:(1) y=15-x,是一次函数. (2)由题意可得x=2(15-x). 解得x=10,所以y=15-x=5. ∴长方形的面积为10×5=50(cm2).

最新人教版八年级数学下19.2.2一次函数的概念ppt公开课优质课件

最新人教版八年级数学下19.2.2一次函数的概念ppt公开课优质课件

(1)有人发现,在20 ℃~25 ℃时蟋蟀每分鸣叫次数
c 与温度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35
的差;
(20≤t≤25) c=7t -35
(2)一种计算成年人标准体重G(单位:kg)的方 法是,以厘米为单位量出身高值 h ,再减常数105,所得 差是G 的值;
G=h-105
提示
一次函数右边必须是整式,然后紧扣一次函数的 概念进行判断.
例1 下列函数中哪些是一次函数,哪些又是正
比例函数?
(1) y 8 x

(2) y 5x 6
2
不是,x的次数是2
8 (3) y x
不是,右边是分式
(4) y 0.5 x 1

解:(1)、(4)是一次函数,其中(1) 又是正比例函数.
一次函数的特点如下:
(1)解析式中自变量x的次数是 1 次; (2)比例系数 k≠0 ; (3)常数项:通常不为0,但也可以等于0.
例1 下列函数中哪些是一次函数,哪些又是正比例
函数?
(1) y 8 x
8 (3) y x
(2) y 5x 6
2
(4) y 0.5 x 1
B.正比例函数不是一次函数. C.不是正比例函数就不是一次函数. D.正比例函数是一次函数.
1 x3 2.在函数①y=2-x,②y=8+0.03t,③y=1+x+ , ④y= 中, x x 是一次函数的有_________. ①②
3.在函数y=(m-2)x+(m2-4)中,当m ≠2 时,y是x的一次函 数;当m =-2 时,y是x的正比例函数.
(2)某人月收入为4160元,他应缴所得税多少元?

八年级数学下册 19.2.2《一次函数》一次函数的图象与性质(第1课时)学案(新版)新人教版

八年级数学下册 19.2.2《一次函数》一次函数的图象与性质(第1课时)学案(新版)新人教版
请写出解答过程.
9.已Байду номын сангаас直线 分别与 轴和 轴交于A、B两点,设坐标原点为O,△COB与△AOB全等,求点C的坐标.(请画图探究)
教学反思:
-1
0
1
2
比较上面两个函数的图象的相同点和不同点:
(1)这两个函数的图象形状都是,并且倾斜程度,
即两条直线的位置关系是.
(2)函数 的图象经过原点,函数 的图象与 轴交于点,
即函数 的图象可以看作由直线 向平移个单位长度而得到.
思考:比较上面两个函数的解析式,你能说出两个函数的图象有上述关系的道理吗?
3.不画图象仅看解析式,直线 与 的位置关系是,因为它们的相同.
把直线 向向平移个单位可以得到直线 .
4.一次函数 的图象形状是,可由个点确定;
思考:画一次函数的图象时用哪几个特殊点合适呢?
教 师二次备课
备课教师:
【课堂探究】
5.分别画出下列一次函数的图象
0
0
1列表
2 描点
3连线
思考: 值的正负对一次函数 的图象有何影响?
(1) , , (2) , ,
8.画一次函数 的图象,并回答问题.列表:
(1)图象从左至右;
函数值 随 增大而 ;即当 时, ;画图:
(2)直线不经过第象限;
(3)图象 与 轴的交点坐标为,
与 轴的交点坐标为;
直线与两坐标轴围成的三角形面积为;
(4)点P在直线上,且点P到 轴的距离为2,求点P的坐标.
课后作业1908--一次函数的图象与性质(课时8)
1.(1)直线 过点(,0)、(0,)、(2,);(2)直线 过点(,0)、(0,)、(,1).
2.直线 与与 轴的交点坐标为,与 轴的交点坐标为;

19.2.2 一次函数的概念八年级数学下册

19.2.2 一次函数的概念八年级数学下册
难点)
情景导入
某登山队大本营所在地的气温为5℃,海拔
每升高1km气温下降6℃.登山队员由大本营向上
登高x km时,他们所在位置的气温是y℃.试用函
数解析式表示y与x的关系.
分析:y随x变化的规律是:从大本营向上,
当海拔增加x km时,气温从5℃减少6x℃.
因此y与x的函数解析式为y=5-6x
这个函数也可以写为 y=-6x+5
(2)求第2.5 s 时小球的速度;
(3)时间每增加1 s,速度增加多少,速度增
加量是否随着时间的变化而变化?
解:(2)当t=2.5时,v=2×2.5=5(m/s).
(3)时间每增加1 s,速度增加2
m/s,速度增加量不随着时间的
变化而变化.
分层练习-基础
1.下列说法正确的是( C )
A.y=kx+b 是一次函数
(2)某车站规定旅客可免费携带不超过 20 千克的行李,超过部分每千克收取
1.5 元行李费,则旅客需交的行李费 y(元)与携带行李重量 x(千克)(x>20)的
函数解析式.
解:(1)y=0.53x 是,也是正比例函数; (2)y=1.5x-30 是.
分层练习-巩固
8.下列说法错误的是( B )
A.y=-24x 是正比例函数,也是一次函数
得 x<25,∴当 20<x<25 时,小明选择方式二的付费方式, 当 x=25 时,
小明选择两种付费方式一样,当 x>25 时,小明选择方式一的付费方式.
课堂小结
一次函数
的概念
一次函数
的概念及
简单应用
形式:y=kx+b(k≠0)
特别地,当b=0时,
y=kx(k≠0)是正比例函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档