群桩作为整体基础的计算
合集下载
4.6群桩基础计算

扩散作用,桩底处 的压力分布范围要比桩 身截面积大,桩底处的 应力叠加。
桩底处地基,土受 到的压力比单桩大。
4.6群桩基础计算
4.6.1 群桩基础的工作特点
群桩基础的基础尺寸大,荷载传递的影响范围 也比单桩深,因此桩底下地基土层产生的压缩变形 和群桩基础的沉降比单桩大。
4.6群桩基础计算
4.6.1 群桩基础的工作特点
back
4.6群桩基础计算
4.6.5 基桩竖向承载力验算
1.荷载效应标准组合 承受轴心荷载桩基:
Nk R
承受偏心荷载桩基:
Nmax 1.2R
2.地震作用效应组合(承载力可以提高25%) 轴心荷载:
NEk 1.25R
偏心荷载:
N Ek max 1.25 R
back
4.6群桩基础计算
4.6.6桩基软弱下卧层承载力验算
Nk Qgn R
back
4.6群桩基础计算
4.6.10群桩基础沉降验算
《公桥基规》超静定结构桥梁或建于软土、湿陷 性黄土地基或沉降较大的其它土层的静定结构桥梁墩 台的群桩基础应计算沉降量并进行验算。
《建筑规范》以下桩基应进行沉降验算: (1)地基基础设计等级为甲级的建筑物桩基; (2)体形复杂荷载不均匀或桩端以下存在软弱土层 的设计等级为乙级的建筑物桩基; (3)摩擦型桩基。
Rh
0.75 3EI
vx
xoe
xoe
桩顶容许水平位移
vx
桩顶水平位移系数
back
4.6群桩基础计算
4.6.9桩基负摩阻力验算
Qgn nQn
n
sax say
/[d
(
qsn
' m
)
d] 4
桩底处地基,土受 到的压力比单桩大。
4.6群桩基础计算
4.6.1 群桩基础的工作特点
群桩基础的基础尺寸大,荷载传递的影响范围 也比单桩深,因此桩底下地基土层产生的压缩变形 和群桩基础的沉降比单桩大。
4.6群桩基础计算
4.6.1 群桩基础的工作特点
back
4.6群桩基础计算
4.6.5 基桩竖向承载力验算
1.荷载效应标准组合 承受轴心荷载桩基:
Nk R
承受偏心荷载桩基:
Nmax 1.2R
2.地震作用效应组合(承载力可以提高25%) 轴心荷载:
NEk 1.25R
偏心荷载:
N Ek max 1.25 R
back
4.6群桩基础计算
4.6.6桩基软弱下卧层承载力验算
Nk Qgn R
back
4.6群桩基础计算
4.6.10群桩基础沉降验算
《公桥基规》超静定结构桥梁或建于软土、湿陷 性黄土地基或沉降较大的其它土层的静定结构桥梁墩 台的群桩基础应计算沉降量并进行验算。
《建筑规范》以下桩基应进行沉降验算: (1)地基基础设计等级为甲级的建筑物桩基; (2)体形复杂荷载不均匀或桩端以下存在软弱土层 的设计等级为乙级的建筑物桩基; (3)摩擦型桩基。
Rh
0.75 3EI
vx
xoe
xoe
桩顶容许水平位移
vx
桩顶水平位移系数
back
4.6群桩基础计算
4.6.9桩基负摩阻力验算
Qgn nQn
n
sax say
/[d
(
qsn
' m
)
d] 4
4-桩基础计算

目的:用于检验桩的截面强度和配筋计算(关于配 筋的具体计算方法,见结构设计原理教材内容)。
一般方法:要找出弯矩最大的截面所在的位置及相应 的最大弯矩Mmax值。一般可将各深度Z处的Mz值求出后绘 制Z-Mz图,即可从图中求得。
Q 3E 0 IAx M 2E0 IBx (9a)
式中:A x(A 1A x0B 1A 0D 1) B x(A 1B x0B 1B 0 C 1)
同理,将式( 7)分别代入式(3)、(4)、(4-5) 再经整理归纳即可得
z Q 2E 0 IAM E0IB
Mz
Q0
AmM0Bm
(9b) (9c)
QzQ0AQM0BQ (9d)
对于单排桩 ,若作用于承台底面中心的荷载为N、H、 My,当N在承台横桥向无偏心时,则可以假定它是平均分 布在各桩上的,即
Pi N n;Qi H n;Mi M ny 式中:n——桩的根数。
当竖向力N在承台横桥向有偏心距e时,即Mx=Ne, 因此每根桩上的竖向作用力可按偏心受压计算,即
pi
N Mx yi n yi2
根据已有的试验资料分析,现行规范认为计算宽度的 换算方法可用下式表示:
b1Kf K0Kb(或 d)
b1Kf K0Kb(或 d)
上式中: b(或d)——与外力H作用方向相垂直平面上桩的宽度 (或直径); Kf——形状换算系数。即在受力方向将各种不同截面形状 的桩宽度,乘以Kf换算为相当于矩形截面宽度,其值见 表4-3 ; K0——受力换算系数。即考虑到实际上桩侧土在承受水平 荷载时为空间受力问题,简化为平面受力时所给的修正系 数,其值见表4-3; K——桩间相互影响系数。
即C=mz。 基于这一基本假定,进行桩的内力与位移的理论公式
推导和计算。
一般方法:要找出弯矩最大的截面所在的位置及相应 的最大弯矩Mmax值。一般可将各深度Z处的Mz值求出后绘 制Z-Mz图,即可从图中求得。
Q 3E 0 IAx M 2E0 IBx (9a)
式中:A x(A 1A x0B 1A 0D 1) B x(A 1B x0B 1B 0 C 1)
同理,将式( 7)分别代入式(3)、(4)、(4-5) 再经整理归纳即可得
z Q 2E 0 IAM E0IB
Mz
Q0
AmM0Bm
(9b) (9c)
QzQ0AQM0BQ (9d)
对于单排桩 ,若作用于承台底面中心的荷载为N、H、 My,当N在承台横桥向无偏心时,则可以假定它是平均分 布在各桩上的,即
Pi N n;Qi H n;Mi M ny 式中:n——桩的根数。
当竖向力N在承台横桥向有偏心距e时,即Mx=Ne, 因此每根桩上的竖向作用力可按偏心受压计算,即
pi
N Mx yi n yi2
根据已有的试验资料分析,现行规范认为计算宽度的 换算方法可用下式表示:
b1Kf K0Kb(或 d)
b1Kf K0Kb(或 d)
上式中: b(或d)——与外力H作用方向相垂直平面上桩的宽度 (或直径); Kf——形状换算系数。即在受力方向将各种不同截面形状 的桩宽度,乘以Kf换算为相当于矩形截面宽度,其值见 表4-3 ; K0——受力换算系数。即考虑到实际上桩侧土在承受水平 荷载时为空间受力问题,简化为平面受力时所给的修正系 数,其值见表4-3; K——桩间相互影响系数。
即C=mz。 基于这一基本假定,进行桩的内力与位移的理论公式
推导和计算。
4.6群桩基础计算-PPT文档资料

Hk H ik n
4.6群桩基础计算
4.6.4 桩顶作用效应简化计算
2.地震作用效应 对位于8度以下抗震设防区低承台桩基,满足下 列条件,计算桩顶作用效应时可不考虑地震作用; (1)按《建筑抗震设计规范》可不进行天然地基和 基础抗震承载力计算的建筑物; (2)不位于斜坡地带和地震可能导致滑移地裂地段 的建筑物; (3)桩端及桩身周围无可液化土层; (4)承台周围无可液化土、淤泥、淤泥质土。 对位于8度和8度以上抗震设防区的高大建筑物低 承台桩基.在计算算各这桩的作用效应和桩身内力时 要考虑地震作用。
4.6群桩基础计算
4.6.1 群桩基础的工作特点 4.6.2 承台下土对荷载的分担作用 4.6.3 复合基桩竖向承载力特征值 4.6.4 桩顶作用效应简化计算 4.6.5 基桩竖向承载力验算 4.6.6 桩基软弱下卧层承载力验算 4.6.7 桩基竖向抗拔承载力验算 4.6.8 桩基水平承载力验算 4.6.9 桩基负摩阻力验算 4.6.10 群桩基础沉降验算
back
4.6群桩基础计算
4.6.5 基桩竖向承载力验算
1.荷载效应标准组合 承受轴心荷载桩基:
Nk R
承受偏心荷载桩基:
N 1 .2 R m ax
2.地震作用效应组合(承载力可以提高25%) 轴心荷载:
N 1 .25 R Ek
偏心荷载:
N 1 . 25 R Ek max
back
4.6群桩基础计算
地基抗震承载力调整系 数,《抗震规范 a
4征值
承台荷载分担是以整体下沉为前提 下沉过大不满足变形要求 下列情况不考虑承台荷载分担效应: (1)承受经常出现的动力作用; (2)承台下土可能产生负摩阻力; (3)饱和软土中沉入密集桩群,引起超静孔隙 水压力和土体隆起,随着时间推移,桩间土逐渐 固结下沉而与承台脱离。
桩基础工程量计算

桩基础工程量
C1=桩身砼强度 d=桩直径(米) D=扩大头直径(米) hc=扩头圆台高(米) hb=圆缺高(米) H1=地面标高(米) H2=桩顶标高(米) H3=挖孔深度(米) H4=桩底标高(米) H=桩总高(米) h=护壁高(米) 30 1.3 1 0 0 221 220 16 205 14 15.8 单桩砼工程量: C2=护壁砼强度 20 分项 d1=桩主钢筋直径(毫米) 18 单桩身砼量(立方米) d2=桩主钢筋根数 16 单护壁砼量(立方米) d3=桩身箍筋直径(毫米) 10 单桩身主钢筋量(kg) d4=桩身加强筋直径(毫米) 16 单桩身箍筋量(kg) d5=护壁主筋直径(毫米) 6 单桩身加强筋量(kg) d6=护壁箍筋直径(毫米) 6 单护壁主钢筋量(kg) 桩身箍筋一圈长(毫米) 3895.57489 单护壁箍筋量(kg) 护壁箍筋一圈长(毫米) 4995.132319 桩身加强筋一圈长(毫米) 4055.57489 桩身上部高(米) 13.8 单砼总量(立方米) 单钢筋总量(kg) 工程量 18.4741356 12.81259294 467.5939217 95.40262907 34.35071932 158.6880276 136.8000238
31.28672854 892.8353215
桩身上部体积(立方米) 18.31705597 扩头圆台体积(立方米) 0 圆缺体积(立方米) 0 扩头0.2米高体积(立方米) 0.157079633
注:菊红色数据不用填,仅填写黄色部分数据。
下表:为上表同规格群桩工程总量: 1 15.5 群桩桩身上部之差总体积(立方米 20.57350489 群桩护壁之差总体积(立方米) 12.56931586 群桩桩身砼总量(立方米) 39.04764049 群桩护壁砼总量(立方米) 25.3819088
C1=桩身砼强度 d=桩直径(米) D=扩大头直径(米) hc=扩头圆台高(米) hb=圆缺高(米) H1=地面标高(米) H2=桩顶标高(米) H3=挖孔深度(米) H4=桩底标高(米) H=桩总高(米) h=护壁高(米) 30 1.3 1 0 0 221 220 16 205 14 15.8 单桩砼工程量: C2=护壁砼强度 20 分项 d1=桩主钢筋直径(毫米) 18 单桩身砼量(立方米) d2=桩主钢筋根数 16 单护壁砼量(立方米) d3=桩身箍筋直径(毫米) 10 单桩身主钢筋量(kg) d4=桩身加强筋直径(毫米) 16 单桩身箍筋量(kg) d5=护壁主筋直径(毫米) 6 单桩身加强筋量(kg) d6=护壁箍筋直径(毫米) 6 单护壁主钢筋量(kg) 桩身箍筋一圈长(毫米) 3895.57489 单护壁箍筋量(kg) 护壁箍筋一圈长(毫米) 4995.132319 桩身加强筋一圈长(毫米) 4055.57489 桩身上部高(米) 13.8 单砼总量(立方米) 单钢筋总量(kg) 工程量 18.4741356 12.81259294 467.5939217 95.40262907 34.35071932 158.6880276 136.8000238
31.28672854 892.8353215
桩身上部体积(立方米) 18.31705597 扩头圆台体积(立方米) 0 圆缺体积(立方米) 0 扩头0.2米高体积(立方米) 0.157079633
注:菊红色数据不用填,仅填写黄色部分数据。
下表:为上表同规格群桩工程总量: 1 15.5 群桩桩身上部之差总体积(立方米 20.57350489 群桩护壁之差总体积(立方米) 12.56931586 群桩桩身砼总量(立方米) 39.04764049 群桩护壁砼总量(立方米) 25.3819088
群桩基础承载力计算

群桩基础承载力计算
首先,计算桩端阻力。
桩端阻力主要包括桩尖端桩基与土层接触所产
生的端阻力和尖端摩阻力。
其中,端阻力是由于桩尖端与土层之间的摩擦
力所产生的,可通过土力学试验测得。
尖端摩阻力可以根据静力实验和岩
土工程经验进行估算。
其次,计算桩侧摩擦力。
桩侧摩擦力是桩身与土层之间的摩擦力所产
生的,与桩的长度和土层的性质有关。
桩侧摩擦力通常采用土力学单桩摩
擦力计算方法估算,再根据群桩排列的间距和数量来计算总的桩侧摩擦力。
最后,计算群桩基础的承载力。
群桩基础的承载力主要由桩端阻力和
桩侧摩擦力共同组成。
根据土力学理论和大量的试验数据,可以使用承载
力公式进行计算。
常用的计算方法有传统的反分析法、数值模拟方法、理
论模型法等。
这些方法均考虑了土体侧封闭效应和变形特征,能够较为准
确地计算群桩基础的承载力。
需要注意的是,在群桩基础承载力计算时还需要考虑到桩与桩之间的
相互作用效应。
桩与桩之间会相互影响,通过桩与土体之间土压力作用、
变形传递等方式进行相互作用。
因此,在计算时需要综合考虑群桩中各个
桩的单桩承载力和桩与桩之间相互作用的影响。
综上所述,群桩基础承载力计算是基于土力学理论和桩与土地相互作
用原理,综合考虑土层对桩基础的桩端阻力和桩侧摩擦力的影响,通过承
载力公式等方法进行计算。
在进行计算时,需要考虑桩与桩之间的相互作
用效应,以获得较为准确的承载力结果。
桩基础——群桩基础的计算实用教案

均因相邻桩桩端土互逆的侧向变形而增强,即 η p >1。 但侧阻、端阻的综合群桩效应系数 η sp对于非单一粘性 土大于1,单一粘性土当桩距为3~4d 时略小于1。计入
承台土抗力的综合群桩效应系数略大于1,非粘性土群桩较 粘性土更大一些。
第3页/共11页
第四页,共12页。
就实际工程而言,桩所穿越的土层往往是两种以上性 质土层交互出现,且水平向变化不均,由此计算群桩 效应确定承载力较为繁琐。另据美国、英国规范规定,
桩基础——群桩基础的计算
会计学
1
第一页,共12页。
2.摩擦桩:主要是通过桩侧 摩阻力将上部荷载传到桩周
及桩端土层中,侧摩阻力在 土中引起的附加应力按一定
角度沿桩长向下扩散分布,
至桩端平面处。
(1)当桩距较大时,桩端平面处各桩传来的压力互不重叠,此时群桩的工 作情况和单桩一样,所以群桩的承载力等于各单桩承载力之和。
(2)当桩距较小时,桩端平面处各桩传来的压力互相重叠,使得桩端 处压力要比单桩时增大很多,桩端以下压缩土层的厚度也比单桩要 深,此时群桩基础的承载力小于各单桩承载力之和,沉降量则大于 单桩的沉降量,存在所谓的群桩效应。
第1页/共11页
第二页,共12页。
群桩效应:把竖向荷载作用下的群
桩基础,由于承台、桩、土相
当桩距sa≥3d 时不考虑群桩效应。本规范第条所规 定的最小桩距除桩数少于3 排和9 根桩的非挤土 端承桩群桩外,其余均不小于3d。鉴于此,本规范 关于侧阻和端阻的群桩效应不予考虑,即取η s = η p=
1.0 。这样处理,方便设计,多数情况下可留给工程更多 安全储备。对单一粘性土中的小桩距低承台桩基,不应 再另行计入承台效应。
第6页/共11页
承台土抗力的综合群桩效应系数略大于1,非粘性土群桩较 粘性土更大一些。
第3页/共11页
第四页,共12页。
就实际工程而言,桩所穿越的土层往往是两种以上性 质土层交互出现,且水平向变化不均,由此计算群桩 效应确定承载力较为繁琐。另据美国、英国规范规定,
桩基础——群桩基础的计算
会计学
1
第一页,共12页。
2.摩擦桩:主要是通过桩侧 摩阻力将上部荷载传到桩周
及桩端土层中,侧摩阻力在 土中引起的附加应力按一定
角度沿桩长向下扩散分布,
至桩端平面处。
(1)当桩距较大时,桩端平面处各桩传来的压力互不重叠,此时群桩的工 作情况和单桩一样,所以群桩的承载力等于各单桩承载力之和。
(2)当桩距较小时,桩端平面处各桩传来的压力互相重叠,使得桩端 处压力要比单桩时增大很多,桩端以下压缩土层的厚度也比单桩要 深,此时群桩基础的承载力小于各单桩承载力之和,沉降量则大于 单桩的沉降量,存在所谓的群桩效应。
第1页/共11页
第二页,共12页。
群桩效应:把竖向荷载作用下的群
桩基础,由于承台、桩、土相
当桩距sa≥3d 时不考虑群桩效应。本规范第条所规 定的最小桩距除桩数少于3 排和9 根桩的非挤土 端承桩群桩外,其余均不小于3d。鉴于此,本规范 关于侧阻和端阻的群桩效应不予考虑,即取η s = η p=
1.0 。这样处理,方便设计,多数情况下可留给工程更多 安全储备。对单一粘性土中的小桩距低承台桩基,不应 再另行计入承台效应。
第6页/共11页
土力学课件:群桩基础计算

故单桩竖向极限承载力标准值为:
QukQskQpk u ∑qsik li qpk Ap
0.4(503807)60000.42/4
892.21753.98 1646.19 kN
因该桩基属桩数不超过3根的非端承桩基,可取
c 0,s p sp 1.0,s p 1.65。
对位于 8 度和 8 度以上抗震设防区的高大建筑物 低承台桩基,在计算各基桩的作用效应和桩身内 力时,可考虑承台(包括地下墙体)与基桩的共
同工作和土的弹性抗力作用。
5 基桩竖向承载力验算 (1) 荷载效应基本组合
承受轴心荷载的桩基,其承载力设计值R应符 合下式要求: oN ≤R (7-47)
承受偏心荷载的桩基,除应满足式(7-50)要求 外,尚应满足下式的要求:
的基桩称复合基桩。复合基桩的竖向承载力设计值R
的统一计算式为:
R s Qsk / s pQ pk / p c Qck / c
qck Ac Qck n
(7-40a) (7-40b)
当单桩极限承载力标准值Quk由静载试验确定时, 基桩的设计值R按下式计算:
R spQuk / sp cQck / c
《建筑桩基规范》推荐的方法称等效作用分层总和法 对桩中心距小于或等于 6倍桩径的桩基,其等效 作用面位于桩端平面;等效作用面积为桩承台投影 面积;等效作用附加应力 p近似取承台底平均附加应 力。 桩基的最终沉降量表达式可为:
s e s
nb 1 e C0 C1 (nb 1) C 2
传到桩端处土层上。 各桩端的压力没有重叠(图22),可认为端承型 群桩基础的工作性状与单桩基本一致; 同时,由于桩侧摩阻力不易发挥,桩与桩之间的 干扰很小,群桩基础的承载力就等于各单桩的承载力 之和;群桩的沉降量也与单桩基本相同。
《群桩基础计算》课件

多点控制法计算群桩基础
原理概述
详细解释多点控制法计算群桩基础的原理和方法。
输入参数
列举计算过程中需要使用的输入参数,如桩长、桩径等。
计算步骤
分步介绍多点控制法计算群桩基础的具体步骤。
有限元法计算群桩基础
原理与背景
详解有限元法计算群桩基础的原理和背景。
建模与分析
介绍如何建立群桩基础的有限元模型并进行分析。
结果解读
解读有限元计算得出的群桩基础的应力、位移等结果。
群桩基础优化设计
1 设计原则
讲解群桩基础的优化设计原则,如经济性、可行性等。
2 设计方法
介绍群桩基础的优化设计方法和常用工具。
3 案例分析
提供群桩基础优化设计的实际案例分析。
现场施工注意事项
1 施工前准备
指导现场施工前的准备 工作,如场地清理、管 线排查等。
群桩基础计算
本课件介绍群桩基础的概念与作用,分类及特点,设计步骤,承载力计算方 法,常用计算理论,施工注意事项,维护和管理,应用案例,发展现状,标 准规范,安全问题,土的力学特性,建筑物基础计算,地铁工程应用实例。
群桩基础的分类与特点
1 不同类型
介绍不同类型的群桩基础,如并桩、交叉桩等。
2 特点与优势
解释群桩基础相对于单桩基础的特点和优势。
3 适用场景
指出适用步骤
1
勘察与设计要求
详述群桩基础设计前的勘察与设计要
桩基选择
2
求。
介绍如何根据工程需求选择适当的类
型和数量。
3
布置方案
阐述合理的桩位布置方案设计,包括
计算和验算
4
桩间距、桩径等。
讲解群桩基础的计算和验算方法及步 骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pmax
l
h
BL h A
N A
1
eA W
R
fa
(N.0.2-2)
A=ab
(N.0.2-3)
当桩的斜度
4
时
a
L0
dLeabharlann 2ltan 4
(N.0.2-4)
当桩的斜度
4
时
b
B0
d
2l
tan
4
(N.0.2-5)
a L0 d 2l tan
l— 桩的深度(m);
—承台底面以上土的重度(kN/m3);
L — 承台长度(m);
107
《公路桥涵地基与基础设计规范》报批稿
B — 承台宽度(m); N — 作用于承台底面合力的竖向分力(kN); A— 假定的实体基础在桩端平面处的计算面积(m2); a,b— 假定的实体基础在桩端平面处的计算宽度和长度(m); L0 — 外围桩中心围成的矩形轮廓长度(m); B0 — 外围桩中心围成的矩形轮廓宽度(m); d——桩的直径(m); W — 假定的实体基础在桩端平面处的截面抵抗矩(m3); e — 作用于承台底面合力的竖向分力对桩端平面处计算面积重心轴的偏心距(m); — 基桩所穿过土层的平均土内摩擦角(°); 1l1 、2l2 、…nln — 各层土的内摩擦角与相应土层厚度的乘积; fa —桩端平面处修正后的地基承载力特征值(kPa),按本规范第 4.3.4 条、第 4.3.5 条规定
采用,并应按本规范第 3.0.7 条予以提高; R ——抗力系数,见本规范第 3.0.7 条。
(a)
(b) 图 N.0.1 群桩作为整体基础计算示意
(c)
108
《公路桥涵地基与基础设计规范》报批稿
附录 N 群桩作为整体基础的计算
N.0.1 群桩(摩擦桩)作为整体基础时,桩基可视为图 N.0.1 中 acde 范围内的实体基础。
N.0.2 整体基础计算应符合下列规定:
1 轴心受压时,
p
l
h
BL h A
N A
fa
(N.0.2-1)
2 偏心受压时,除满足第 1 款外,尚应满足下列条件:
b B0 d 2l tan
1l1
2l2 nln l
(N.0.2-6) (N.0.2-7) (N.0.2-8)
式中:p—桩端平面处的平均压应力(kPa);
pmax —桩端平面处的最大压应力(kPa); — 承台底面至桩端平面包括桩的重力在内的土的平均重度(kN/m3);