高等数学下册复旦大学出版社第七章答案(黄立宏著)
高等数学下册黄立宏黄云清答案详解

习题九答案1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ,,343αβγ===的方向导数。
解:(1,1,2)(1,1,2)(1,1,2)cos cos cos u u u uy l x z αβγ∂∂∂∂=++∂∂∂∂22(1,1,2)(1,1,2)(1,1,2)πππcos cos cos 5.(2)()(3)343xy xz y yz z xy =++=---2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。
解:{4,3,12},13.AB AB ==AB 的方向余弦为4312cos ,cos ,cos 131313αβγ=== (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105u yz x u xz y u xyz∂==∂∂==∂∂==∂ 故4312982105.13131313u l ∂=⨯+⨯+⨯=∂ 3. 求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。
解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为2222220,x y b x y y a b a y''+==-所以在点处切线斜率为2.b y a a '==-法线斜率为cos a bϕ=.于是tan sin ϕϕ==∵2222,,z z x y x a y b∂∂=-=-∂∂∴2222z la b ⎛∂=--=∂⎝ 4.研究下列函数的极值: (1)z =x 3+y 3-3(x 2+y 2); (2)z =e 2x (x +y 2+2y ); (3)z =(6x -x 2)(4y -y 2); (4)z =(x 2+y 2)22()ex y -+;(5)z =xy (a -x -y ),a ≠0.解:(1)解方程组22360360x yz x x z y y ⎧=-=⎪⎨=-=⎪⎩ 得驻点为(0,0),(0,2),(2,0),(2,2).z xx =6x -6, z xy =0, z yy =6y -6在点(0,0)处,A =-6,B =0,C =-6,B 2-AC =-36<0,且A <0,所以函数有极大值z (0,0)=0. 在点(0,2)处,A =-6,B =0,C =6,B 2-AC =36>0,所以(0,2)点不是极值点. 在点(2,0)处,A =6,B =0,C =-6,B 2-AC =36>0,所以(2,0)点不是极值点.在点(2,2)处,A =6,B =0,C =6,B 2-AC =-36<0,且A >0,所以函数有极小值z (2,2)=-8.(2)解方程组222e (2241)02e (1)0x x xy z x y y z y ⎧=+++=⎪⎨=+=⎪⎩ 得驻点为1,12⎛⎫-⎪⎝⎭. 22224e (21)4e (1)2e x xx x xy xyy z x y y z y z =+++=+=在点1,12⎛⎫-⎪⎝⎭处,A =2e,B =0,C =2e,B 2-AC =-4e 2<0,又A >0,所以函数有极小值e 1,122z ⎛⎫=-- ⎪⎝⎭.(3) 解方程组22(62)(4)0(6)(42)0x y z x y y z x x y ⎧=--=⎪⎨=--=⎪⎩ 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Z xx =-2(4y -y 2), Z xy =4(3-x )(2-y ) Z yy =-2(6x -x 2)在点(3,2)处,A =-8,B =0,C =-18,B 2-AC =-8×18<0,且A <0,所以函数有极大值z (3,2)=36.在点(0,0)处,A =0,B =24,C =0,B 2-AC >0,所以(0,0)点不是极值点. 在点(0,4)处,A =0,B =-24,C =0,B 2-AC >0,所以(0,4)不是极值点.在点(6,0)处,A =0,B =-24,C =0,B 2-AC >0,所以(6,0)不是极值点. 在点(6,4)处,A =0,B =24,C =0,B 2-AC >0,所以(6,4)不是极值点.(4)解方程组2222()22()222e(1)02e(1)0x y x y x x y y x y -+-+⎧--=⎪⎨--=⎪⎩得驻点P 0(0,0),及P (x 0,y 0),其中x 02+y 02=1,在点P 0处有z =0,而当(x ,y )≠(0,0)时,恒有z >0, 故函数z 在点P 0处取得极小值z =0.再讨论函数z =u e -u由d e (1)d u z u u-=-,令d 0d zu =得u =1, 当u >1时,d 0d z u <;当u <1时,d 0d zu>,由此可知,在满足x 02+y 02=1的点(x 0,y 0)的邻域内,不论是x 2+y 2>1或x 2+y 2<1,均有2222()1()e e xy z x y -+-=+≤.故函数z 在点(x 0,y 0)取得极大值z =e -1(5)解方程组(2)0(2)0x yz y a x y z x a y x =--=⎧⎨=--=⎪⎩得驻点为 12(0,0),,33a a P P ⎛⎫⎪⎝⎭z xx =-2y , z xy =a -2x -2y , z yy =-2x .故z 的黑塞矩阵为 222222ya x y H a x y x ---⎡⎤=⎢⎥---⎣⎦于是 122033(),().0233aa a H P H P a aa ⎡⎤--⎢⎥⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥--⎢⎥⎣⎦ 易知H (P 1)不定,故P 1不是z 的极值点,H (P 2)当a <0时正定,故此时P 2是z 的极小值点,且3,2733aa a z ⎛⎫= ⎪⎝⎭,H (P 2)当a >0时负定,故此时P 2是z 的极大值点,且3,2733aa a z ⎛⎫= ⎪⎝⎭.5. 设2x 2+2y 2+z 2+8xz -z +8=0,确定函数z =z (x ,y ),研究其极值。
高等代数第7章习题参考答案

第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V中,A,其中V是一固定的向量;2) 在线性空间V中,A其中V是一固定的向量;3) 在P中,A;4) 在P中,A;5) 在P[] 中,A;6) 在P[] 中,A其中P是一固定的数;7) 把复数域上看作复数域上的线性空间,A。
8) 在P中,A X=BXC其中B,CP 是两个固定的矩阵.解1) 当0时, 是;当0时, 不是。
2) 当0时, 是;当0时,不是。
3)不是.例如当(1,0,0), k 2时, k A( ) (2,0,0) , A (k ) (4,0,0) ,A(k ) k A( ) 。
4)是.因取(x1,x2,x3), (y1,y2,y3), 有A( ) = A(x1 y1,x2 y2,x3 y3)= (2x1 2y1 x2 y2,x2 y2 x3 y3,x1 y1)= (2x1 x2,x2 x3,x1) (2y1 y2,y2 y3,y1)= A + A ,A(k ) A(kx1,kx2 ,kx3)(2kx1 kx2 ,kx2 kx3,kx1)(2kx1 kx2 ,kx2 kx3,kx1)= k A( ) ,故A是P 上的线性变换。
5) 是.因任取f(x) P[x], g(x) P[x],并令u(x) f (x) g(x) 则A(f (x) g(x))= A u(x)=u(x 1)= f(x 1) g(x 1)=A f(x)+ A(g(x)),再令v(x) kf (x)则A(kf (x)) A(v(x)) v(x 1) kf(x 1) k A(f(x)),故A为P[x] 上的线性变换。
6)是.因任取f(x) P[x], g(x) P[x]则.A(f(x) g(x))=f(x0) g(x0 ) A(f(x)) A(g(x)),A(kf (x)) kf (x0 ) k A(f (x)) 。
7)不是,例如取a=1,k=I ,则A(ka)=-i , k( A a)=i, A( ka) k A(a) 。
高等数学第七章课后习题解答

习题1.在空间直角坐标系中,指出下列各点位置的特点.()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-;()2,3,1--M 到x 轴的距离为()132322=-+;()2,3,1--M 到y 轴的距离为()()52122=-+-;()2,3,1--M 到z 轴的距离为()103122=+-.3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3;()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.【解】 ()5,3,4-A 到坐标原点距离为()25534222=+-+;()5,3,4-A 到x 轴的距离为()345322=+-;()5,3,4-A 到y 轴的距离为415422=+; ()5,3,4-A 到z 轴的距离为()53422=-+.6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即()()()()=-+-+--22270230y ()()()()22270130--+-+-y解得 23=y .所以,所求之点为.0,23,0⎪⎭⎫ ⎝⎛C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()103321017222=-+-+-==AB c ;AC 边长()()()()3312311222=-+-+--=b ; BC 边长()()()()1173110371222=-+-+--=a .由余弦定理知cos ∠BAC ()010321171032222222<⨯⨯-+=-+=bc a c b ,所以,∠BAC 为钝角.8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等.【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即()()()()=-+--+-2225011y x ()()()222443-+-+-z y x()()()222164-+-+-=z y x解得 5,16-==y x .所以,所求之点为().0,5,16-D习题1.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示DA CD BC AB ,,,.【解】记平行四边形ABCD 的对角线的交点为O .()b a b a BD AC OD OC DC AB -=-=-=-==2121212121; 同理可求出,()b a a b OC BO BC +=+=+=212121;()a b AB CD -=-=21;()b a BC DA +-=-=21.2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()n m n m n m 733232-=+--=.3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示EF DE CD BC ,,,.【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO 及ABCO 均为平行四边形.由向量加法的平行四边形法则知,b a AF AB AO BC +=+==; b AF CD ==;a BA BA AO DE -=-===;().b a BC EF +-=-=5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,0==y x a a .(3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】(1)c {}{}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.(2()()26134222=-+-+=.故,⎭⎬⎫⎩⎨⎧--==261,263,2640c c ,所以,向量c 的方向余弦为.261cos ,263cos ,264cos -=-==γβα(3).向量c 的单位向量为⎭⎬⎫⎩⎨⎧--±261,263,264.8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以2632nm =-=-,解得 .1,4-==n m9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有λ=--=+=-1279182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x .又已知34=,故有 ()()()341298222=++λλλ. ③③式化简得4115628922=⇒=λλ,解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x因此AM {}24,18,16-=,()17,17,18-=M .10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值.【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得()()9447222=++-+z ,化简得082=+z z ,解之,得 0=z 或.8-=z11.已知点()1,2,41M 和点()2,0,32M ,计算向量21M M 的模、方向余弦和方向角. 【解】{}{}1,2,112,20,4321--=---=M M ;()()2121222=+-+-=.因为{}⎭⎬⎫⎩⎨⎧--=--==21,22,211,2,12121021M M M M .所以21M M 的方向余弦是.21cos ,22cos ,21cos =-=-=γβα 方向角为.3cos ,43,32πγπβπα===12.求与下列向量a 同方向的单位向量0a . (1){}1,4,2-=a ;(2)k j i a ++-=32. 【解】(1()21142222=+-+=,所以{}⎭⎬⎫⎩⎨⎧-=-==211,214,2121,4,22110a a .(2()14132222=++-=,所以.141,143,1421410⎭⎬⎫⎩⎨⎧-==a a 习题1.设向量k j i a 23--=,k j i b -+=2.求:(1)b a .;(2)b a ⨯;(3)()()b a 32⨯-;(4)()b a 2⨯;(5)向量b a ,的夹角. 【解】(1)()()()3122113.=-⨯-+⨯-+⨯=b a ;(2)k j i j b a 7521++=-=⨯;(3)()()()1836.63.2-=⨯-=-=-b a b a ;(4)()()k j i b a b a 1421022++=⨯=⨯;(5)()()14213222=-+-+=()6121222=-++=,故21236143.,cos =⨯==⎪⎪⎭⎫ ⎝⎛∧b a b a ,所以向量b a ,的夹角为.2123arccos ,=⎪⎪⎭⎫ ⎝⎛∧b a2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得()0.=++c b a a ;()0.=++c b a b ; ()0.=++c b a c .即0..=++c a b a ; ②0..=+c b a b ; ③0..=++b c a c ; ④ 将②、③、④相加得()03...2=+++a c c b b a所以,.23...-=++a c c b b a3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ∆的面积. 【解】(1)AB AC⨯{}16,12,151612153405=++=--=k j i kj .25161215222=++=. 所以,同时与AB 及AC 垂直的单位向量为{}⎭⎬⎫⎩⎨⎧±=±=⨯±2516,2512,25116,12,15251AC AB .(2)ABC ∆的面积225==. 4.设{}2,5,3-=a ,{}4,1,2=b ,则当实数λ与μ有什么关系时,能使b a μλ+与z 轴垂直?【解】{}μλμλμλμλ42,5,23+-++=+b a .要使b a μλ+与z 轴垂直,只须b a μλ+与{}1,0,0=k 垂直,于是有()042.=+-=+μλμλk b a ,即 .2μλ=5.设质量为100kg 的物体从点()8,1,31M 沿直线移动到点()2,4,1M ,计算重力所做的功.【解】{}6,3,21--==M M s ,{}{}980,0,01008.9,0,0=⨯-=F .所以,{}{}58806,3,2.980,0,0.=---==s F W (焦耳).6.已知{}3,2,1-=a ,{}1,4,2-=b ,{}0,2,4=c ,b a ⨯是否与c 平行?【解】{}0,5,1005104221--=+--=--=⨯k j i j i b a ;因为c b a 52-=⨯,所以,b a ⨯与c 平行.7.求一个单位向量使其同时垂直向量{}0,1,1=a 和{}1,1,0=b .【解】{}1,1,111-=+-==⨯k j i j b a .()3111222=+-+=. 所以同时垂直向量a 和b 向量的单位向量为 {}1,1,131-±=⨯±b .习题1.求过点()1,0,3-且与平面012573=-+-z y x 平行的平面方程.【解】已经平面的法向量为{}5,7,3-=n .据题意知,所求平面的法向量可也取作n .所以据平面的点法式方程,所求平面即为 ()()()()0150733=--+---z y x . 化简得 04573=-+-z y x .2.求过点()6,9,20-M 且与连接坐标原点O 及0M 的线段0OM 垂直的平面方程. 【解】据题意知,所求平面的法向量可也取作{}6,9,20-==OM n .所以据平面的点法式方程,所求平面即为 ()()()()0669922=----+-z y x . 化简得 0121692=--+z y x .3.求过点()1,1,1-、()2,2,2--和()2,1,1-三点的平面方程. 【解】据平面的三点式方程,所求平面为()()()0121111121212111=---------------z y x . 即 ()()()0161913=++-+--z y x . 化简得 023=--z y x .4.求平面0522:=++-z y x π与坐标面xoy 、yoz 及zox 的夹角的余弦. 【解】平面π的法向量为{}1,2,2-=n ;xoy 面的法向量为{}1,0,0=k . 由公式,平面π与xoy31=;同理, 平面π与yoz32=; 平面π与zox32-=.5.求点()1,2,1平面01022:=-++z y x π的距离. 【解】12211012221222=++-⨯+⨯+=d .6.求两平行平面0:11=+++D Cz By Ax π与0:22=+++D Cz By Ax π之间的距离.【解】在1π上任取一点()1111,,z y x M ,则1M 到2π的距离d 就是所求1π与2π之间的距离.由点到平面的距离公式得 2222111CB A D Cz By Ax d +++++=. ①又11π∈M ,故有 0:11111=+++D Cz By Ax π,即1D Cz By Ax -=++. ②将②代入①,立得 22212CB A D D d ++-=.7.一平面通过()1,1,11M 和()11,02-M 两点,且垂直于平面0=++z y x .求该平面方程.【解】已知平面0=++z y x 的法向量为{}1,1,1=n ,{}2,0,121--=M M .据题意,可取所求平面的法向量为{}1,1,2211120121--=--=--=⨯k j i kj in M M . 所以,所求平面方程为()()()011.11.2=-----z y x ,即 02=--z y x .8.求满足下列条件的平面方程:(1)过点()2,1,3--和z 轴;(2)过点()2,0,4-及()7,1,5且平行于x 轴;(3)过点()3,5,2-,且平行于zox 面;(4)过点()1,0,1-且同时平行于向量k j i a ++=2,j i b -=.【解】(1)根据题意,可设所求平面的一般式方程为0:=+By Ax π. ①又将点()2,1,3--的坐标代入①,得03=+-B A ,即 A B 3=.因此,所求平面π为.03=+Ay Ax ②注意到0≠A (否则π的法向量为零向量),所以②两边除以A ,得到 03:=+y x π.(2)根据题意,可设所求平面的一般式方程为0:=++D Cz By π. ①又将点()2,0,4-及()7,1,5的坐标分别代入①,得⎩⎨⎧=++=+-.07,02D C B D C ,故 ⎩⎨⎧-==.9,2C B C D .因此,所求平面π为.029=++-C Cz Cy ②注意到0≠C (否则π的法向量为零向量),所以②两边除以C ,得到 029:=++-z y π.(3)根据题意,可设所求平面的一般式方程为0:=+D By π. ①又将点()3,5,2-的坐标代入①,得05=+-D B ,即 B D 5=.因此,所求平面π为.05=+B By ②注意到0≠B (否则π的法向量为零向量),所以②两边除以B ,得到 05:=+y π.(4)根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.将点()1,0,1-的坐标代入①,得0=+-D C A . ② 又因为π同时平行于向量k j i a ++=2,j i b -=,故n 同时垂直于向量k j i a ++=2,j i b -=,于是有.02=++C B A ③ .0=-B A ④ ②、③、④联立得到A D A C AB 4,3,-=-==因此①成为043:=--+A Az Ay Ax π . ⑤ 注意到0≠A (否则π的法向量为零向量),所以⑤两边除以A ,得到 043:=--+z y x π.9.平面在y 、z 轴上的截距分别为30,10,且与{}3,1,2=r 平行,求该平面方程.【解】根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.因为π在y 、z 轴上的截距分别为30,10,故π过点()0,30,0及(),10,0,0.将此两点坐标代入①得030=+D B . ②及 010=+D C . ③又已知π与{}3,1,2=r 平行,故n 垂直于向量r ,于是有032=++C B A . ④②、③、④联立得到B A BC BD 5,3,30-==-=.因此①成为03035:=-++-B Bz By Bx π. ⑤注意到0≠B (否则π的法向量为零向量),所以⑤两边除以B ,得到 03035:=-++-z y x π.10.指出下列各平面的特殊位置,并画出各平面.(1)013=-x ;(2)012=-+z y ;(3)02=+z x ;(4)135=-+z y x .【解】(1)因方程中z y ,前面的系数为零,故平面013=-x 平行于yoz 面;(2)因方程中x 前面的系数为零,故平面012=-+z y 平行于x 轴;(3)因方程中没有常数项,且y 前面的系数为零,故平面02=+z x 通过y 轴;012=-+z y 02=+z x ;(4)135=-+z y x 可化为113151=-++z y x ,故135=-+z y x 是在x 轴、y 轴、z 轴上的截距分别为51、31和1-的平面. 习题1.用点向式方程及参数式方程表示直线⎩⎨⎧=++=+-.42,1:z y x z y x L 【解】任取方程组的一组解⎪⎩⎪⎨⎧===.1,1,1z y x 则有,L 过点()1,,1,10M .可取直线的方向为{}3,1,232121121-=++-=-=⨯k j i j in n . 所以,所求直线L 的点向式方程为 311121-=-=--z y x . 进一步,L 的参数式方程为⎪⎩⎪⎨⎧+=+=-=.31,1,21t z t y t x2.求过()1,2,31-P 、()2,0,12-P 两点的直线方程.【解】可取直线的方向为 {}1,2,421-==P P s . 故所求直线为.112243-=+=--z y x 3.求过点()3,1,4-且平行于直线51123-==-z y x 的直线方程.【解】根据题意知,可取所求直线的方向为{}5,1,2=s .故所求直线为 .531124-=+=-z y x 4.求过()1,32-且垂直于平面0132=+++z y x 的直线方程.【解】可取直线的方向为 {}1,3,2=s .故所求直线为.113322-=+=-z y x 5.求过点()2,1,00M 且与直线21111z y x =--=-垂直相交的直线方程. 【解】 过点()2,1,0且与直线21111z y x =--=-垂直的平面π为 ()()()02210.1:=-+---z y x π.即 032:=-+-z y x π . ① 化直线21111z y x =--=-为参数式得 ⎪⎩⎪⎨⎧=-=+=.2,1,1t z t y t x ②将②代入①,有()()()032211=-+--+t t t . ③ 解得 21=t . 故直线21111z y x =--=-与平面π的交点为⎪⎭⎫ ⎝⎛1,21,231M . 因此所求直线的方向为 ⎭⎬⎫⎩⎨⎧--==1,21,2310M M s ∥{}2,1,3-. 故所求直线为.221130-=-=--z y x6. 过点()0,2,10-M 向平面012=+-+z y x 作垂线,求垂足坐标.【解】 过点()0,2,10-M 且与平面012=+-+z y x 垂直的直线L 为 .102211:--=-=+z y x L ① 化直线L 为参数式得⎪⎩⎪⎨⎧-=+=+-=.,22,1t z t y t x ②将②代入平面012=+-+z y x 方程中,得()()()012221=+--+++-t t t . ③解得 32-=t . 故垂足坐标为⎪⎭⎫ ⎝⎛-32,32,351M . 7.求直线⎩⎨⎧=-+-=-+-,0123,09335:1z y x z y x L 与⎩⎨⎧=-++=+-+.01383,02322:2z y x z y x L 的夹角θ. 【解】1L 的方向为{}1,4,34323351-=-+=--=k j i j is ; 2L 的方向为{}10,5,101051083222-=+-==k j i j is ∥{}2,1,2-. 因为()()0211423.21=⨯-+-⨯+⨯=s s ,所以1L 与2L 垂直,从而2πθ=.8.求直线21121:+=-=-z y x L 与平面02:=+-z y x π的夹角θ. 【解】1L 的方向为{}2,1,2-=s ,平面π的法向量为{}2,1,1-=n . ()()7221112.=⨯+-⨯-+⨯=n s .()3212222=+-+=. ()6211222=+-+=.故637sin ⨯==θ,所以,637arcsin ⨯=θ.9.求过点()2,0,10-M 且垂直于平面032:=+-z y x π的直线方程.【解】根据题意知,所求直线L 的方向向量即为平面π之法向量,即 {}3,12-=s . 所以,由点向式方程知,所求直线为321021:+=--=-z y x L . 10.设平面π过直线130211:1--=-=-z y x L ,且平行于直线11122:2z y x L =-=+,求平面π的方程.【解】显然面π过点()3,,2,10M . 可取面π的法向量为{}1,3,13120121-=+-==⨯=k j i j is s n . 所以,平面π的方程为 ()()()03.12.31.1=-+---z y x .化简得023:=++-z y x π.11.求过点()1,2,10P 和直线⎩⎨⎧=--=-.032,6:z y x z x L 的平面π的方程. 【解】直线L 的参数方程为⎪⎩⎪⎨⎧-=+-==.6,9,:x z x y x x L显然L 过点()6,9,01-P ,且L 的方向为{}1,11-=s .根据题意,可取平面π的法向量为{}6,6,0660117110--=--=--=⨯=k j i j is P P n ∥{}1,1,0. 所以,平面π的方程为 ()()()01.12.11.0=-+-+-z y x .化简得03:=-+z y π.习题1.指出下列方程在平面解析几何与空间解析几何中分别表示何种几何图形.(1)1=-y x ;(2)x y 22=;(3)122=-y x ;(4)1222=+y x . 【解】(1)1=-y x 在平面解析几何中表示一条直线,在空间解析几何中表示一张平行于z 轴的平面;(2)x y 22=在平面解析几何中表示一条抛物线,在空间解析几何中表示一张抛物柱面;(3)122=-y x 在平面解析几何中表示一条双曲线,在空间解析几何中表示一张双曲柱面;(4)1222=+y x 在平面解析几何中表示一条椭圆曲线,在空间解析几何中表示一张椭圆柱面.2.写出下列曲线绕指定坐标轴旋转一周而得到的旋转曲面的方程.(1)zox 面上的抛物线x z 52=绕x 轴旋转一周;(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周;(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周.【解】(1)zox 面上的抛物线x z 52=绕x 轴旋转一周得到的曲面是 ()x z y 5222=+±,即 x z y 522=+.(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周得到的曲面是 ()36942222=-+±y z x ,即36494222=+-z y x .(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周而得到的曲面是 ()013222=+-+±z y x ,即()()222134-=+z y x . 3.说明下列旋转曲面是怎样形成的.(1)1994222=++z y x ;(2)14222=+-z y x ;(3)1222=--z y x ; 【解】(1)1994222=++z y x 由曲线⎪⎩⎪⎨⎧==+,0,19422z y x 绕x 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==+,0,19422y z x 绕x 轴旋转一周而形成. (2)14222=+-z y x 由曲线⎪⎩⎪⎨⎧==-,0,1422z y x 绕y 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==-,0,1422x y z 绕y 轴旋转一周而形成. (3)1222=--z y x 由曲线⎩⎨⎧==-,0,122z y x 绕x 轴旋转一周而形成;或由曲线⎩⎨⎧==-,0,122y z x 绕x 轴旋转一周而形成. 4.指出下列各方程所表示的曲面.(1)14416916222=++z y x ;(2)144944222=+-z y x ;(3)z y x 729422=-;(4)16922=+z y ;(5)22z y x --=;(6)224y z x =+;(7)36249222=++z y x ;(8)444222=-+x y z .【解】(1)原方程可化为()1169222=++y z x . 所以,原方程表示的是旋转椭球面.(2)原方程可化为 1163838222=+-z y x . 所以,原方程表示的是双叶双曲面.(3)原方程可化为81822y x z -= 所以,原方程表示的是双曲抛物面,即马鞍面.(4)原方程可化为 11691622=+z y . 所以,原方程表示的是椭圆柱面.(5)原方程可化为()22z y x +-=.所以,原方程表示的是旋转抛物面.(6)原方程可化为4122z y x -=.所以,原方程表示的是双曲抛物面,即马鞍面. (7)原方程可化为11894222=++z y x . 所以,原方程表示的是椭球面. (8)原方程可化为1141222=-+x z y . 所以,原方程表示的是单叶双曲面.习题1.求球心在()3,2,1,半径为3的球面与平面5=z 的交线方程(写出一般式方程和参数式方程),并求出该曲线绕z 轴旋转一周而成的旋转曲面的方程. 【解】(一)球心在()23,1,半径为3的球面方程为 ()()()9321222=-+-+-z y x .故球面与平面5=z 的交线的一般式方程为()()()⎩⎨⎧==-+-+-Γ.5,9321:222z z y x即()()⎩⎨⎧==-+-Γ.5,521:22z y x化为参数式方程为[]π2,0.5,sin 52,cos 51:∈⎪⎪⎩⎪⎪⎨⎧=+=+=Γt z t y t x .(二)利用公式()()()()()[][]()πθβαθθ2,0,,.,sin ,cos 2222∈∈⎪⎪⎩⎪⎪⎨⎧=+=+=t t z z t y t x y t y t x x .Γ绕z 轴旋转一周而成的旋转曲面的方程为 [][]()πθπθθ2,0,2,0.5,sin sin 54cos 5210,cos sin 54cos 5210∈∈⎪⎪⎩⎪⎪⎨⎧=++=++=t z t t y t t x .2.分别求出母线平行于x 轴、y 轴且通过曲线()()⎪⎩⎪⎨⎧=+-=++Γ2,01,162:222222z y x z y x 的柱面方程. 【解】(一)(1)、(2)联立消去x ,得 16322=-z y .所以,母线平行于x 轴且通过曲线Γ的柱面为16322=-z y . (二)(1)、(2)联立消去y ,得 162322=+z x .所以,母线平行于x 轴且通过曲线Γ的柱面为162322=+z x . 3.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】(一)(1)、(2)联立消去z 得 22243R y x =+. 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得 R z 21=. 所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧== (三)(1)、(2)联立消去x 得 R z 21=. 所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧== 5.画出下列各曲面所围立体的图形. (1)0,22==z x y 及1224=++zy x ; (2)0,,222==+=z y x y x z 及1=x . 【解】略.6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 7.写出圆锥面22:y x z S +=的参数方程.【解】().20,0.,sin ,cos πθθθ≤≤+∞<<⎪⎩⎪⎨⎧===r r z r y r x习题1.设向量值函数()k t j t i t t r ++=sin cos ,求()t r t 4lim π→. 【解】()t r t 4lim π→k j i k t j t i t t t t 42222lim sin lim cos lim 444ππππ++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=→→→. 2.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-='t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±='r 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为 ()()(){}|1,,='''=t t z t y t x s {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x s '''={}{}20023,2,13,2,1|0t t t t t t ===.由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为 ()()(){}|,,='''=t t z t y t x s {}{}3,2,13,sin cos 2,cos |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为 322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .6.已知(){}t t t t r 2,1,12-+=表示空间一质点在时刻t 的位置,求质点在时刻t 的速度和加速度向量,并求质点在指定时刻1=t 的速率和运动方向. 【解】(一)时刻t 的速度向量为()()()()(){}2,2,12,1,12t t t t t r t v =⎭⎬⎫⎩⎨⎧''-'+='=; 时刻t 的加速度向量为()()()()(){}{}0,2,02,2,1='''=''=t t r t a .(二)1=t 的速度为(){}2,2,11=v )32211222=++=. 1=t 的速度为(){}2,2,11=v()⎭⎬⎫⎩⎨⎧=32,32,311.复习题71.填空题(1)设b a ,为非零向量,若0.=b a ,则必有a ⊥b .(2)设b a ,为非零向量,若0=⨯b a ,则必有a ∥b .(3)若直线l 的方向向量s 与平面π的法向量n 互相平行,则直线l 与平面π必 垂直.(4)点()1,5,3P 到平面07623=+++z y x 的距离732. (5)若动()z y x M ,,到定点()5,0,0的距离等于它到x 轴的距离,则该动点的轨迹方程为25102-=-z x .(6)直线⎪⎩⎪⎨⎧+=--=+=.31,1,2t z t y t x 与平面0765=-+-z y x 的位置关系是相交但不垂直.【解】直线l 的方向向量为{}3,1,1-=s .平面的法向量为{}6,5,1-=n .因为024.≠=n s ,且s 与n s .的坐标分量不成比例, 所以直线l 与平面π相交. 2.判断题.(1)若c a b a ..=,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (2)若c a b a ⨯=⨯,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (3)若c a b a ..= ① 且c a b a ⨯=⨯ ② ,则必有c b =.(⨯)【解】取0=a ,j b =,k c =,即知上述命题是错误的 .【书后答案有误】. 【注意:如果假定c b a ,,均为非零向量,则上述命题是正确的,其理由如下: 由①式得 ()0.=-c b a ,说明a 与c b -垂直;由②式得 ()0=-⨯c b a ,说明a 与c b -平行. 因为a 为非零向量,故c b -必为零向量,从而c b =. (4)设b a ,为非零向量,则必有a b b a ..=.(√) (5)设b a ,为非零向量,则必有a b b a ⨯=⨯..(⨯)3.已知直线⎩⎨⎧=+--=+++.03102,0123:z y x z y x l 平面024:=+-z y x π,则直线l 与平面π的位置关系为(B )A. 平行于平面π C. 在平面π上B. 垂直于平面π D. 与平面π斜交.【解】在直线l 上任取一点⎪⎭⎫⎝⎛-0,71,7100M .直线l 的方向向量为k j i j i n n s 71428123121-+-=-=⨯=∥{}1,2,4-. 平面的法向量为{}1,2,4-=n .因为s ∥n ,所以直线l 与平面π垂直.4.设c b a u 2+-=,c b a v ---=3,试用c b a ,,表示v u 32-. 【解】v u 32-()c b a 22+-=()c b a ----33c b a 775++=.5.设点C 为线段AB 上一点,且AC CB 2=,O 为AB 外一点,记OA a =,OB b =,OC c =,试用b a ,来表示c .【解】由题意知,a b OA OB AB -=-=,a b AB AC 313131-==. 所以,a b a a b OA AC AO AC c 32313131+=+⎪⎭⎫ ⎝⎛-=+=-=.6.已知k j i a +-=32,k j i b 3+-=,j i c 2-=.计算: (1)()()b c a c b a ..-; (2)()()c b b a +⨯+. 【解】(1)()()8311312.=⨯+-⨯-+⨯=b a ; ()()8302312.=⨯+-⨯-+⨯=c a .所以,()()()()k j k j b c b c b c a c b a 24838888..--=--=-=-=-.(2)k j i j ib a +--=--=⨯581132;k j i j ic a -+=--=⨯22132;k j i j ic b -+=--=⨯362111. 所以,()()c b b b c a b a c b b a ⨯+⨯+⨯+⨯=+⨯+()k j i +--=58 ()k j i -++2 ()k j i -++36 k j --=. 【或者这样做:k j i b a 443+-=+,k j i c b 332+-=+. 所以()()c b b a +⨯+.3243k j j i--=--=】 7.已知{}2,1,2=a ,{}10,1,4-=b ,a b c λ-=,且a ⊥c ,求实数λ. 【解】{}λλλλ210,1,24----=-=a b c .因为a ⊥c ,所以 ()()()λλλ210211242.0-⨯+--⨯+-⨯==c a ,即0927=-λ .解之得 .3=λ8.设{}1,2,3-=a ,{}2,1,1-=b ,求:(1)()()b a 72⨯;(2)i a ⨯. 【解】(1)k j i j i b a 5731123--=-=⨯{}5,7,3--=. 所以,()()b a 72⨯()b a ⨯=14{}{}70,98,425,7,314--=--=.(2){}2,1,020001123--=--=-=⨯k j i kji i a . 9.3=,1=6π=,计算:(1)b a +与b a -之间的夹角;(2)以b a 2+与b a 3-为邻边的平行四边形的面积.【解】232313,.cos .=⨯⨯=⎪⎪⎭⎫ ⎝⎛=∧b a b a . ① (1+()71232322=+⨯+===;-()11232322=+⨯-===; ()()().213 (2)2=-=-=-+b b a a b a b a设b a +与b a -之间的夹角为θ,则有()(72172cos =⨯==b a b a θ,所以72arccos =θ.(2+()1314234322=⨯+⨯+===;-()319236322=⨯+⨯-===; ()()().2916233.6..3.222-=⨯--=--=-+b b b a a a b a b a设b a 2+与b a 3-之间的夹角为θ,则有()(392931329cos -=⨯-==θ,故 2613539291cos 1sin 22=⎪⎪⎭⎫⎝⎛-=-=θθ. 所以由三角形的面积公式知,以b a 2+与b a 3-为邻边的平行四边形的面积为.32526135313sin 2=⨯⨯=⎥⎦⎤⨯-+=θS10.已知点()0,0,1A 及()1,2,0B ,试在z 轴上求一点C ,使ABC ∆的面积最小. 【解】过点()0,0,1A 及()1,2,0B 直线l 的方向即为{}1,2,1-==AB s .l 的方程为 1211:zy x l ==--. 设点()z C,0,0,则{}2,1,22101---=--=⨯z z ji s AC . 点C 距l 的距离为()()()6212222-+-+-==z z d 65245152+⎪⎭⎫ ⎝⎛-=z明显地,当51=z 时,d 取到最小值55254=.所以,ABC ∆的面积最小值为 53055262155221=⨯⨯==∆S ABC . 所求点.51,0,0⎪⎭⎫ ⎝⎛C11.求过点()2,1,3--且与平面01235=-+-z y x 平行的平面方程. 【解】可取所求平面的法向量与已知平面相同,即为{}3,5,1-=n . 所以,所求平面方程为()()()0231.53.1=+++--z y x ,即 .0235=-+-z y x12.求过点()1,2,1且垂直于平面0=+y x 和05=+z y 的平面方程. 【解】可取所求平面的法向量为k j i j in n n 5501121+-==⨯=. 所以,所求平面方程为()()()0152.11.1=-+---z y x ,即 .045=-+-z y x 13.求满足下列条件的平面方程.(1)过点()2,1,1--M 和()1,1,3N 且垂直于平面0532:=-+-z y x π; (2)过点()3,3,2-M 且平行于xoy 面. 【解】(1)可取所求平面的法向量为k j i j is MN n 63122122--=-=⨯=∥{}2,1,4--. 所以,所求平面方程为()()()02.21.11.4=+-+--z y x ,即 .0924=---z y x(2)根据题意,可设所求平面的一般式方程为 .0=+D Cz将点()3,3,2-M 的坐标代入平面方程得.03=+D C 即 ()03≠-=C C D . 所以,所求平面为 .03=-C Cz 化简得.03=-z14.求过点()3,0,2-且与直线⎩⎨⎧=+-+=-+-.01253,0742:z y x z y x l 垂直的平面方程.【解】直线l 的方向为k j i j in n s 111416532121++-=-=⨯=. 所以,所求平面方程为()()()03.110142.16=++-+--z y x ,即 .065111416=+++-z y x15.求过点()1,3,20-M 和直线⎩⎨⎧=+-=--.062,0165:z y y x l 的平面方程.【解】化直线l 的为参数式方程⎪⎩⎪⎨⎧+==+=.62,,165:y z y y y x l .因此直线l 过点()6,0,161M .可取所求平面的法向量为{}1,3,131531410--=--==⨯=k j i j is M M n . 所以,所求平面方程为()()()01.13.32.1=--+--z y x ,即 .0103=---z y x 【书后答案有误】. 16.求过点()1,1,1M 且与直线42135:-=+=-zy x l 平行的直线方程. 【解】根据题意知,可取所求直线的方向为{}4,2,3-=s .所以,所求直线为412131--=-=-z y x . 17.求过点()4,2,00M 且与两平面12:1=+z x π和23:2=-z y π都平行的直线方程.【解】根据题意知,可取所求直线的方向为{}1,3,232100121-=++-==⨯=k j i j in n s . 所以,所求直线为143220-=-=--z y x . 18.求下列旋转曲面方程.(1)⎩⎨⎧==.0,22x y z 绕y 轴旋转一周; (2)⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周. 【解】(1)由公式,知⎩⎨⎧==.0,22x y z 绕y 轴旋转一周生成曲面 ()y zx 2222=+±,即 222z xy += ,为椭圆抛物面.(2)由公式,知⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周生成曲面 ()142222=++±z yx ,即 14222=++z y x ,为椭球面. 19.指出下列各方程所表示的是何种曲面.(1)11694222=++z y x ; (2)94322y x z +=; (3)64416222=-+z y x ; (4)3694222-=+-z y x . 【解】(1)表示椭球面; (2)表示椭圆抛物面;(3)可化为164164222=-+z y x ,故(3)表示单叶双曲面; (4)可化为14369222-=-+z y x ,故(4)表示双叶双曲面. 20.求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=Γ.,1,1:2t z t t y t t x ① 对应于1=t 处的切线方程.【解】将1=t 代入① ,得切点坐标为⎪⎭⎫⎝⎛1,2,21.又切向量为()|12,1,1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛+=t tt t t t s ()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+==2,1,412,1,11|122t t t t ∥{}8,4,1-. 所以,曲线Γ对应于1=t 处的切线方程为8142121-=--=-z y x .。
高等数学下册复旦大学出版社答案黄立宏著

D
r0 πr 2
r 0
lim ( , )( x0 , y0 )
f ( ,)
f (x0, y0 )
5. 画出积分区域,把 D f (x, y)d 化为累次积分:
(1) D {(x, y) | x y 1, y x 1, y 0};
(2) D {(x, y) | y x 2, x y2}
1
11
D1 : 4 y 2 , 2 x y,
如图 10-15 所示:
1 D2 : 2 y 1, y x y.
图 10-15
积分区域 D 亦可表示为:
1 x 1, 2
于是:
x2 y x.
1
yy
1
yy
1
xy
1
yx
2 1
dy
1
e x dx
1 dy y
e x dx
1 dx
解:(1)因为当 (x, y) D 时,有 0 x 2, 0 y 2
因而 0 xy 4 .
从而 2 4 xy 2 2
故
D 2d D 4 xyd D 2 2d
即 2D d D 4 xyd 2 2D d
而 D d (σ 为区域 D 的面积),由σ =4
得
8 D 4 xyd 8 2 .
2
所以
1
dy
32 y
f (x, y)dx
1
dx
x2
f (x, y)dy
3
dx
. 1 (3 x )
2 f (x, y)dy
0
y
0
0
1
0
(4) 相应二重积分的积分区域 D 为:0 x π, sin x y sinx .如
高等数学下册复旦大学出版社 答案 黄立宏著

习题七1. 在空间直角坐标系中,定出下列各点的位置:A (1,2,3);B (-2,3,4);C (2,-3,-4);D (3,4,0);E (0,4,3);F (3,0,0).解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限;点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上.2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0;在yOz 面上的点,x =0; 在zOx 面上的点,y =0.3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0;y 轴上的点,x =z =0;z 轴上的点,x =y =0.4. 求下列各对点之间的距离: (1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4); (3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3).解:(1)s ==(2) s ==(3) s ==(4) s ==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故 02s =x s ==y s ==5z s ==.6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解:设此点为M (0,0,z ),则222222(4)1(7)35(2)z z -++-=++--解得 149z =即所求点为M (0,0,149).7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB = c ,BC = a 表示向量1D A ,2D A ,3D A 和4D A .解:1115D A BA BD =-=-- c a2225D A BA BD =-=-- c a3335D A BA BD =-=-- c a444.5D A BA BD =-=-- c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯=12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP ==12Pr j 2.z z a PP ==-(2) 12PP =(3) 12cos x aPP α==12cos ya PP β==12cos zaPP γ==(4) 12012PP PP ===+e j. 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||=Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ===a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有cos (1,1)3x a ia a i a iπ⋅====⋅求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则22cos 42a b a b π⋅=⇒=⋅ 则214y a =求得12y a =± 又1,a = 则2221x y z a a a ++=从而求得11{,,}222a =± 或11{,,}222-±18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM的坐标.解:设向径OM={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}.19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB在向量CD上的投影.解:AB={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|; (2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k12|| ||==l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯ .证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =--{2,0,3}BC =-22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y zx y zi j ka b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()() 则C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()() xy z xy z xyza a ab b b C C C = 若 ,,C a b共面,则有 a b ⨯ 后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z xy za a a ab b b b C C C ⨯⋅=() a xy z xy z xy z b b b b C C C C a a a ⨯⋅=() b xy z xy z xy z C C C C a a a a b b b ⨯⋅=() 由行列式性质可得:xy z x y z x y z xy z x y z xy z xyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a ?a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =. 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅ , 而11948222BCD S BC BD i j k =⨯=--+=又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB = ,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥ ,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2} 故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=得b =2. 故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x – y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)(4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面.解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||4θ⋅====n nn n解得k=44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面. 解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=046. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量.解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点: (1)11126x y z -+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x t y t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k --={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为 234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离. 解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d == 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ) 3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-1259. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形:(1) x 2+y 2+z 2=a 2与z =0,z =2a (a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点: (1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2).(2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0;(3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y +==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y += 故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.故曲线在xOy平面上的投影方程为2215 ()24x yz⎧-+=⎪⎨⎪=⎩。
《微积分》课后答案第7章(复旦大学版)解析

第七章
习题 7-1 1. 略. 2. 求点(a,b,c)关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标. 解:(1)点(a,b,c)关于 xoy 面的对称点是(a,b,-c); 关于 xoz 面的对称点是(a,-b,c); 关于 yoz 面的对称点是(-a,b,c); (2)点(a,b,c)关于 x 轴的对称点是(a,-b,-c); 关于 y 轴的对称点是(-a,b,-c); 关于 z 轴的对称点是(-a,-b,c); (3)点(a,b,c)关于原点的对称点是(-a,-b,-c); 3. 自点 P0(x0, y0, z0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.
2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证:(如上题图),依题意有 AM MC, DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则
0 ( x0 , y0 , z0 ) 作 xoy 面的垂线,垂足坐标是 ( x0 , y0 , 0) ; 解:自点 P
作 xoz 面的垂线,垂足是 ( x0 , 0, z0 ) ; 作 yoz 面的垂线,垂足是 (0, y0 , z0 ); 自点 P 0 ( x0 , y0 , z0 ) 作 x 轴的垂线,垂线是 ( x0 , 0, 0);
解得 b , c
5 3
38 5 38 ,故所求点的坐标为 0, , . 3 3 3
1
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
高等数学下第七章
一、单项选择题1.数z =的定义域是( ) (A )x y +>0 (B ) x y +≠1(C ) 1x y +> (D )ln()0x y +≠2. 计算()00lim sin x y xy xy →→=() (A) 0 (B) 1 (C) 1- (D) 不存在3. 下列函数的定义域是有界闭区域的是( )(A) (,))=-f x y x y (B) sin()(,)+=+x y f x y x y(C) 1(,)=f x y x(D) (,)=f x y 4. 偏导数00(,)x f x y ,00(,)y f x y 存在是函数),(y x f z =在点),(00y x 连续的( )(A )必要条件; (B )充分条件;(C )充要条件; (D )即非充分以非必要条件.5. 函数(,)f x y xy =在条件1x y +=下的极值点为( )(A) (0,1) (B) (1,0) (C) 11(,)22 (D) 12(,)336. 偏导数00(,)x f x y ,00(,)y f x y 存在是函数),(y x f z =在点),(00y x 可微的( )(A )必要条件; (B )充分条件; (C )充要条件; (D )即非充分以非必要条件.7. 函数)4ln(1),(2222y x y x y x f --+-+=的定义域是( )(A){}22 (,)1 2 x y x y <+<; (B){}22 (,)1 4 x y x y ≤+<; (C){}22 (,)1 2 x y xy <+≤; (D){}22 (,)1 4 x y x y ≤+≤. 8. 若二元函数),(y x f z =在点),(y x 可微,则(,)f x y 在点),(y x 下列结论不一定成立的是 ( )(A )连续; (B )偏导数存在;(C )偏导数连续; (D )d d d z z z x y x y∂∂=+∂∂.9. 设二元函数),(y x f z =有二阶连续偏导数,且d (,)d (,)d z P x y x Q x y y =+,则Q P x y∂∂-∂∂=( ) (A)1-; (B) 0; (C) 1; (D) 2.10. 设可微函数),(y x f 在点),(00y x 取得极小值, 则下列结论成立的是 ( )(A )0(,)f x y 在0y y =处导数为0 ;(B )0(,)f x y 在0y y =处导数大于0;(C )0(,)f x y 在0y y =处导数小于0;(D )0(,)f x y 在0y y =处导数不存在.11. (),f x y 在点()00,x y 处具有偏导数是该函数(,)f x y 在点),(00y x 连续的( )(A )必要条件; (B )充分条件;(C )充要条件; (D )既非充分也非必要条件.12. 设22,yu u x y ∂==∂( ) (A)()21ln y y x -; (B)ln y x x ; (C)2ln y x x ; (D)()21y y y x --. 13. 设22(,)f x y xy x y +=+, 则=),(y x f ( )(A) 22x y +; (B) 22x y -; (C) 22x xy y -+; (D) 22x xy y ++.14. 0x y →→=( ) (A) 1; (B) 2; (C) 不存在; (D) ∞. 15. 02lim sin()x y x xy →→=( ) (A) 不存在; (B) 1; (C) 0; (D)12. 16. 设2(,)(2)arctan f x y x y y x=+-,则(1,2)x f =( ) (A)1; (B)2x ; (C)2; (D)0.17. 设函数),(y x f z =可微,则00(,)0x f x y =,00(,)0y f x y =是函数在点),(00y x 处有极值的( )(A )必要条件; (B )充分条件;(C )充要条件; (D )即非充分以非必要条件.18. 二元函数332233z x y x y =+--的极小值点为( )(A) (0,0); (B) (2,2); (C) (0,2); (D) (2,0)19. 已知理想气体的状态方程为pV =RT (R 为常数), 则p V T V T p ∂∂∂⋅⋅=∂∂∂( ) (A) 1; (B) -1; (C) 0; (D) 不存在.20. 偏导数00(,)x f x y ,00(,)y f x y 存在是函数),(y x f z =在点),(00y x 可微的( )(A )必要条件; (B )充分条件;(C )充要条件; (D )即非充分以非必要条件.21. 函数),(y x f z =在点),(00y x 连续是偏导数00(,)x f x y ,00(,)y f x y 存在的( )(A )充分条件;(B )必要条件; (C )充要条件; (D )即非充分也非必要条件.22. 某公司生产甲,乙两种型号的产品,总成本为22(,)2034,C x y x xy y =+++其中x ,y ,是日产量,分别当3,5x y ==时,这两种型号产品的边际成本为( )(A) 23,43; (B) 43,23; (C) 43,63; (D) 63,43.23. 过)0,0,1(1M , 2(0,2,0)M ,3(0,0,3)M 的平面方程是( )(A) 230x y z ++=(B) 320x y z ++= (C) 023y z x ++= (D) 032x y z ++=. 24. 偏导数00(,)x f x y ,00(,)y f x y 存在是函数),(y x f z =在点),(00y x 连续的( )(A )必要条件; (B )充分条件;(C )充要条件; (D )即非充分以非必要条件.25. 设22),(y x y x y x f +=-+ 则=),(y x f ( ) (A) xy ; (B)22y x +; (C) 222y x +; (D) 222y x -.26. 设)(xy yf z = 则=∂∂-∂∂yz y x z x ( ) (A))(xy f ; (B) 0; (C))(xy yf -; (D))(xy xf .27. 设22(,)3f x y x y x y +-=+, 则=),(y x f ( ) (A)222y x +; (B)22x y +; (C)22x xy y -+; (D)22x xy y ++. 28. 偏导数00(,)x f x y ,00(,)y f x y 存在是函数),(y x f z =在点),(00y x 连续的( )(A )必要条件; (B )充分条件;(C )充要条件; (D )既非充分亦非必要条件.29. 偏导数),(y x f x ,),(y x f y 在),(00y x 存在且连续是函数),(y x f z =在点),(00y x 可微的( )(A )必要条件; (B )充分条件;(C )充要条件; (D )既非充分亦非必要条件.二、填空题1、 设sin 2y z e x =,则201x y z x y ==∂=∂∂___________.2、 设()ln u x yz =-,则d u =____________.3、若=z 则d z = .4、 在空间坐标系中,过点P (2, 0, 0),Q (0, 3, 0),R (0, 0, 1)的平面方程为_____________.5、 若sin()x u e yz =, 则在点1(1,,)22π处d u = . 6、 在空间坐标系中,过点(2,0,0),(0,2,0)和(0,0,2)的平面方程为_____________.7、若22(,,)x yz f x y z e ++=, 则(2,0,1)y f =____________. 8、设2sin 2,x z e y -=则2z x y∂∂∂=_____________. 9、若3(,,)cos(2)z f x y z x y e =++, 则(0,1,2)x f =____________.10、设235432z x xy x y =+-+则2z x y ∂∂∂=_____________.11、极限()()(),3,0sin lim x y xy y→=___________. 12、设cos 2,x z e y -=则d z =____________.13、若2lnxy u z =, 则du =____________. 14、22ln(1)zx y =++,则在点(1,1)处的全微分d z = 15、sin()xy z e =, 则d z = .16、设cos3,x z e y -=则2z x y∂∂∂=_____________. 17、设yx z e =,则22z y∂=∂ 18、sin()z x x y =+,则2z x y∂=∂∂ . 19、若(,,)ln()f x y z x yz =+, 则(1,0,2)z f =____________.20、设sin 2,xz e y =则2z x y ∂∂∂=_____________. 21、过点P (3, 0, 0),Q (0, 2, 0),R (0, 0, 1)的平面方程为____________22、若sin z x y =, 则d z =____________.23、若(,,)sin(2)f x y z xy z =+, 则(1,0,0)y f =__________________24、若cos z y x =, 则d z =____________.25、若xyz e =, 则在点(1,3)处全微分d z =____________. 26、设ln(),z x x y =-则2z x y∂∂∂=_____________. 27、二元函数843),(23+--+=y x y x y x f 的极小值为____________. 28、设ln()sin z xy x =⋅, 则2z x y∂∂∂=_____________.29、设v u z 2=,而y x u sin =,y x v cos ln =,则x z ∂∂=____________. 30、设x ez y x sin 2+=, 则2z x y ∂∂∂=_____________.三、计算题1、设22(3)y z x y =+,求,z z x y∂∂∂∂. 四、综合应用题 1、生产某产品要用A 、B 两种材料,设该产品的产量Q 与原料A 、B 的数量,x y (单位:t )之间有关系式20.005Q x y =.要用15000元购买原料,已知A 、B 原料的单价分别为100元/t 、200元/t ,试问购进两种原料各多少吨可以使产品的产量最大?2、某工厂生产甲、乙两种小汽车,已知甲的售价为9万元/台,乙的售价为10万/台,当甲生产x 台、乙生产y 台时的总成本函数为 22+33(,)30032100xy x y C x y x y +=+++, 问甲、乙两种产品的产量是多少时,利润最大?最大值为多少?3、设12,Q Q 依次是商品甲、乙的需求量,其需求函数依次为11282Q p p =-+,2121025Q p p =+-又设总成本函数为1232C Q Q =+,其中12,p p 分别是甲、乙的价格,问甲、乙两种商品的价格12,p p 定为多少时,可使总利润最大?4、设某工厂生产甲、乙两种产品,产量分别为x 和y (单位:千件),利润函数为22(,)81642L x y x y x y =+---(单位:万元)已知生产这两种产品时,每千件产品均需消耗某种原料2000公斤,现有该原料12000公斤,问两种产品各生产多少千件时,总利润最大?最大利润是多少?5、某企业为销售产品作两种形式的广告宣传,当广告宣传费用分别为x 、y (单位:万元)时,销售量是10(5)5(10)Q x x y y =+++,若销售产品所得的利润是销量的15减去广告费,现要使用15万元的广告费,应如何分配使广告产生的利润最大,最大利润是多少?6、某牧场出售牛排和牛皮两种产品,已知牛排需求量是牛皮需求量的两倍,牛排和牛皮的需求函数分别为11221102,140P Q P Q =-=-其中,1P 与2P 分别为牛排和牛皮的价格,1Q 与2Q 分别为牛排和牛皮的需求量.总成本为()22121122,2200C Q Q Q QQ Q =+++,试问牛排和牛皮的价格各定为多少时,总利润最大?7、某公司通过报纸和网络两种媒体做广告,已知销售收入R (单位:万元)与报纸广告费x (单位:万元)和网络广告费y (单位:万元)之间的关系为22(,)1514328210R x y x y xy x y =++---若广告费用总预算是3万元,求使利润最大的广告策略?8、某同学现有400元钱,他决定用来购买x 张计算机磁盘和y 盒录音磁带。
高等数学(下)习题参考答案
《高等数学》(下)习题参考答案第七章 空间解析几何与矢量代数习题一、 1.(,,),(,,),(,,)x y z x y z x y z ------; 2.k j i 573--;3.2y z +=或210x y z +-=; 4.圆, 圆柱面; 5.2340x y z --+=. 二、 1. 2. 3. 4. 5.B C B A C 三、 1.219u =;11232.cos cos cos 222343πππαβγαβγ=-=-====;3.4-;4.32550x y z +-+=;5.3πθ=; 6.Pr 2j βα=;7.2OABS ∆= 2228.9x y z ++=; 222289.0x x y z ⎧-+=⎨=⎩; 10.⎪⎭⎫ ⎝⎛--8343,8356,83273; 11.0x y z -+=.第八章 多元函数微分学习题一 一、 1、yyx +-112; 2、},0,0|),{(2y x y x y x ≥≥≥; 3、1,2; 4、⎪⎪⎭⎫ ⎝⎛++++xy xy xy xy x 1)1ln()1(,12)1(-+x xy x ; 5、22812y x -,22812x y -,xy 16-. 二、1. 2. 3. 4. 5.D D B B A三、 111ln ln ln z z z z y y z y z uuuy x x y z x x y x y xyz--∂∂∂===∂∂∂、 2、)ln (1z x y z y x x u x z y +=∂∂-,)ln (1z x y z y x yux z y +=∂∂-,)ln (1y z x z y x z u x z y +=∂∂-2222222222222222223z xy z xy x x y y x y z y x x y x y ∂∂==-∂+∂+∂-=∂∂+、()()()4、xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-5、dy dx 3231+习题二 一、1、)()(y x f xy y x yf +'++,)()()()(y x f xy y x f y x y x f +''++'+++;2、2242232f y x f y x ''+'; 3、dy f f dx f f ⎪⎪⎭⎫ ⎝⎛+''-''-12121; 4、y x y x -+; 5、x y z z z -ln ln ,yyz xy z ln 2-二、1、C ;2、A ;3、C ;4、B ;5、C 三、 1、321f yz f y f x u '+'+'=∂∂,32f xz f x yu '+'=∂∂,3f xy z u '=∂∂ 3、212f x f y x z '+'=∂∂,22122211124)(2f xy f y x f xy f yx z''-''-+''+'=∂∂∂ 6、)()(1)](1)[(v g u f v g u f x z ''+'+'=∂∂,)()(1)](1)[(v g u f v g u f y z ''+'+'-=∂∂ 7、2222111133332sin cos 2cos x y x y x y zf x f x e f x f e e f x+++∂''''''''=-⋅+⋅+⋅+⋅+∂; 332232313122sin cos sin cos f e f y e f e f x e y x f y x zy x y x y x y x ''+''⋅-'+''⋅+''-=∂∂∂++++ 8、2222222222222222222221213394133u u u u u u ux x u u u u u u uy y u u u ux y ζηζζηηζηζζηηζζηη∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=--=++∂∂∂∂∂∂∂∂∂∂∂∂=---∂∂∂∂∂∂ 习题三 一、12121281610148x y z x y z ---==-+-=-2、042=-+y x ,2112zy x =-=-3.1+4.326i j k --5.(3,2)大 36二、1. 2. 3. 4. 5.B D A C C 三、(1,2)2zl∂=∂、13(,1)2-、极小值2e-2433p p 、22222222221212121251122022020x y zx y z x y z z x y x y z F x y z x y z z x y x y z F x x F y y F z x λλλλλλλλ=++=+++==+++--+++-=-+=⎧⎪=-+=⎨⎪=++=⎩2、设椭圆上点为(x,y,z),则原点到椭圆上这点的距离平方为d ,其中,,满足和令(,,)()()==11求解方程,最长距离为d d 6、在点)1,1(-处有极小值:-2;极大值:6.第九章 重积分 习题一一、1.()2aba b + 2、⎰⎰e ey dx y x f dy ),(10;3、)1(214--e ;4、1210cos sin (cos ,sin )d f d πθθθρθρθρρ+⎰⎰;5、⎰⎰-+--2211111),(x x dy y x f dx二、1. 2. 3. 4. 5.C A B D C三、1.[36,100]ππ; 62.55; 3.49; 4.e e 2183-; 5.2643π;6.38; 7.π6; 8.)0(32f 'π. 习题二 一、1、⎰⎰⎰+----111112222),,(y x x xdz z y x f dy dx ; 2、π32; 3、θϕϕd drd r dv sin 2=;4、⎰⎰⎰adr r f r d d 0224020)(sin ππϕϕθ; 5、dxdy y z x z dS 221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 二、1. B ;2.B ;3.D ;4.C ;5.B三、1.)852(ln 21-; 2.481; 3.467a π; 4.6π; 5.)22(162-π; 3232001()6.()2[()],lim (0)33t t F t F t r h h f r dr h hf t πππ+→=+=+⎰; 27.2()a a π-.第十章 习题一 一、填空题 1、23202(2sin 2cos 2)sin 2ta t t t t dt π--+⎰; 2、2; 3、34/3;4、⎰; 5、π2二、选择题1、(B);2、(A);3、(C );4、(A );5、(A );6、(C )三、计算题1、242-⎪⎭⎫ ⎝⎛+a e a π; 2、9四(略)五1、π2-;2、1/2 六、⎰++Lds xxQP 2412七、⎰Γ++++ds yx yRxQ P 2294132习题二一、选择题 1、(B ); 2、(D ); 3、(B ); 4、(D ); 5、(C ) 二、8 三、1、42R π-;2、241π;3、281a m π四、3cos 42cos 9+ 五、y x y x u 2),(=六、283a π七、八(略) 习题三一、填空题1、π8;2、321; 3、π8-; 4、dS R Q P ⎰⎰∑++53223; 5、22a π 二、选择题1、(D );2、(B );3、(C );4、(C ) 三、计算题 1、427-; 2、π221+ 四、 1、π23; 2、81五、552a π六、π32第十一章 习题一 一、判断题1、√;2、×;3、√;4、×;5、√;6、× 二、填空题1、0;2、1>p 且.const p =;3、1>p ,10≤<p ,0≤p ;4、 ,2,1,1=≥+n u u n n 且0lim =∞→n n u三、选择题 1、(C ); 2、(A ); 3、(C ); 4、(A ); 5、(C ) 四(略) 五、1、发散;2、收敛 六、1、发散;2、收敛 七、1、发散;2、收敛八、当b a >时,收敛;当b a <时,发散;当b a =时,可能收敛,也可能发散. 九、1、收敛;2、收敛 十(略) 习题二一、判断题1、×;2、√;3、√;4、×;5、√ 二、填空题1、⎪⎭⎫⎢⎣⎡-21,21; 2、)5,1[-; 3、)1,1[-,)1ln(x --; 4、22,2)1(1)1(2ln 011≤<-⋅+-+∑∞=++x x n n n n n; 5、26,)4(3121011-<<-+⎪⎭⎫ ⎝⎛-∑∞=++x x n nn n三、选择题1、(D );2、(B );3、(B );4、(C );5、(C ) 四、1、)3,3[-;2、)3,1[;3、]1,1[- 五、 1、)1,1(,)1(1)(2-∈-=x x x s ;2、)1,1(,arctan 21)]1ln()1[ln(41)(-∈+--+=x x x x x s六、2(1)(),(1,1](1)n nn f x x x x n n ∞=-=+∈--∑七、)1,1(,)1(2131)(01-∈⎪⎭⎫⎝⎛-+=∑∞=+x x x f nn n n八、)1,1(,)1ln(arctan 21222-∈+-++x x x x xx 第十二章 习题一 一、判断题1、×;2、√;3、√;4、×;5、× 二、填空题1、2)(ln 21)(x x f =;2、x cxe y -=;3、x y 2=;4、x x x y 91ln 31-=;5、yP x Q ∂∂=∂∂ 三、1、C y x =⋅tan tan ;2、C e e y x =-⋅+)1()1( 四、22sec )1(=⋅+y e x 五、s cm /3.269 六、1、Cx y x =-332;2、223x y y -= 七、)ln 41(x x y -= 八、 1、)(sin C x ey x+=-; 2、322Cy y x +=; 3、)cos 1(1x y --=ππ 九、⎪⎪⎭⎫ ⎝⎛-+=-t m ke k m k t k k v 2122121 十、xx x f 3132)(+=十一、)1,1[,)1ln()(1-∈--=∑∞=x x e x f x n n习题二一、选择题 1、(C ); 2、(B ); 3、(D ); 4、(C ); 5、(B ); 6、(A ); 7、(D ) 二、填空题1、3221)3(C x C x C e x y x +++-=;2、22121C x x e C y x +--=; 3、)1ln(1+-=ax ay三、1、x x e C e C y 221-+=;2、x C x C y sin cos 21+=;3、x C x C e C e C y x x sin cos 4321+++=-;4、4x x y e e -=- 四、⎪⎭⎫ ⎝⎛-+=+-++-tk k tk k k eek k v x 1221222424122014五、)sin (cos 21)(x e x x x ++=ϕ 六、u u f ln )(= 七、1)(21)(++=-x xe e x s。
高等数学第七章习题册答案
高等数学第七章习题册答案高等数学第七章习题册答案高等数学是大学数学的一门重要课程,其中第七章涉及到的内容主要是微分方程和级数。
习题册是学生们用来巩固和提高自己数学水平的重要工具。
在这篇文章中,我将为大家提供高等数学第七章习题册的答案,希望能够帮助大家更好地理解和掌握这一章的知识。
1. 题目:求微分方程$\frac{dy}{dx}=2x+3$的通解。
解答:首先将微分方程化为标准形式$\frac{dy}{dx}-2x=3$,然后求出其齐次方程$\frac{dy}{dx}-2x=0$的通解$y_c=Ce^{2x}$,其中$C$为常数。
接下来,我们需要求出非齐次方程$\frac{dy}{dx}-2x=3$的一个特解$y_p$。
根据常数变易法,我们可以猜测特解的形式为$y_p=Ax+B$,其中$A$和$B$为待定常数。
将$y_p$代入非齐次方程,得到$\frac{d(Ax+B)}{dx}-2x=3$,整理后可得$A=2$和$B=-3$,即特解$y_p=2x-3$。
最后,将齐次方程的通解和非齐次方程的特解相加,即可得到原微分方程的通解$y=y_c+y_p=Ce^{2x}+2x-3$。
2. 题目:求微分方程$\frac{d^2y}{dx^2}-4\frac{dy}{dx}+4y=0$的通解。
解答:首先将微分方程化为特征方程$r^2-4r+4=0$,解得$r=2$,因此特征根为重根$r_1=r_2=2$。
根据特征根的重根性质,我们可以得到齐次方程的通解$y_c=(C_1+C_2x)e^{2x}$,其中$C_1$和$C_2$为常数。
接下来,我们需要求出非齐次方程的一个特解$y_p$。
根据待定系数法,我们可以猜测特解的形式为$y_p=Ae^{2x}$,其中$A$为待定常数。
将$y_p$代入非齐次方程,得到$4Ae^{2x}-4\cdot2Ae^{2x}+4Ae^{2x}=0$,整理后可得$A=0$,即特解$y_p=0$。
高等数学教材第七章答案
高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。
解答:首先计算 $\frac{\partial z}{\partial x}$。
根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。
同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。
1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。
解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。
对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:利用三角形法则得证.见图 7-1
图 7-1
9. 设 u a b 2c, v a 3b c. 试用 a, b, c 表示 2u 3v.
解:
2u 3v 2(a b 2c) 3(a 3b c)
2a 2b 4c 3a 9b 3c
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到 x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).
5a 11b 7c
10. 把△ABC 的 BC 边分成五等份,设分点依次为 D1,D2,D3,D4,再把各分点与 A 连接,
试以 AB c , BC a 表示向量 D1A , D2 A , D3 A 和 D4 A .
解:
D1 A
BA
BD1
c
1 5
a
2
D2 A BA BD2 c 5 a
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
21
21
21
15. 求出向量 a= i +j+k, b=2i-3j+5k 和 c =-2i-j+2k 的模,并分别用单位向量 ea , eb , ec 来表达
向量 a, b, c.
解: | a | 12 12 12 3
的起点 A 的坐标.
解:设此向量的起点 A 的坐标 A(x, y, z),则
AB {4, 4,7} {2 x, 1 y,7 z}
解得 x=-2, y=3, z=0 故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
az Pr jz P1P2 2.
(2) P1P2 (7 4)2 (1 0)2 (3 5)2 14
(3) cos ax 3 P1P2 14
故 s0 42 ( 3 2) 52 5 2
sx (4 4)2 (3 0)2 (5 0)2 34
sy 42 (3 3)2 52 41
sz 42 (3)2 (5 5)2 5 .
6. 在 z 轴上,求与两点 A(-4,1,7)和 B(3,5,-2)等距离的点. 解:设此点为 M(0,0,z),则
cos ay 1 P1P2 14
cos 2 P1P2
{
3, 14
1 , 2 } 14 14
3 i 14
1 j 14
2 k. 14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余 弦. 解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢?
答: 在 xOy 面上的点,z=0;
在 yOz 面上的点,x=0;
在 zOx 面上的点,y=0.
3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢?
答:x 轴上的点,y=z=0;
y 轴上的点,x=z=0;
(4)2 12 (7 z)2 32 52 (2 z)2 解得 z 14
9 即所求点为 M(0,0, 14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角 三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形.
D3 A
BA
BD3
c
3 5
a
D4 A
BA
BD4
c
4 5
a.
11. 设向量 OM 的模是 4,它与投影轴的夹角是 60°,求这向量在该轴上的投影.
解:设 M 的投影为 M ,则
1
Pr
ju OM
OM
cos 60 4 2
2.
12. 一向量的终点为点 B(2,-1,7),它在三坐标轴上的投影依次是 4,-4 和 7,求这向量
| b | 22 (3)2 52 38
| c | (2)2 (1)2 22 3
a 3ea , b 38eb, c 3ec.
16. 设 m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量 a=4m+3n-p 在 x 轴上的投影及在 y 轴上的
分向量.
解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k
在 x 轴上的投影 ax=13,在 y 轴上分向量为 7j.
17.解:设 a {ax , ay , az}则有
cos 3
a i ai
ax ( a
1, i
1)
求得
ax
1 2
.
设 a 在 xoy 面上的投影向量为 b 则有 b {ax , ay , 0}
则 cos a b 2 ax2 ay2
习题七
1. 在空间直角坐标系中,定出下列各点的位置:
A(1,2,3); B(-2,3,4); C(2,-3,-4);
D(3,4,0); E(0,4,3); F(3,0,0).
解:点 A 在第Ⅰ卦限;点 B 在第Ⅱ卦限;点 C 在第Ⅷ卦限;
点 D 在 xOy 面上;点 E 在 yOz 面上;点 F 在 x 轴上.
z 轴上的点,x=y=0.
4. 求下列各对点之间的距离:
(1) (0,0,0),(2,3,4);
(2) (0,0,0), (2,-3,-4);
(3) (-2,3,-4),(1,0,3);
(4) (4,-2,3), (-2,1,3).
解:(1) s 22 32 42 29
(2) s 22 (3)2 (4)2 29