2013年全国高校自主招生数学模拟试卷9
2013年全国高校自主招生数学模拟试卷及答案

2013年全国高校自主招生数学模拟试卷一 参考答案一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( B ) A.71 B. 71-C.21 D. 21-解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A −PB −C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( A)A. ]31,31[-B. ]21,21[-C. ]31,41[- D. [−3,3] 解:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( D ) A.8152 B.8159 C.8160 D.8161 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。
2013届高校自主招生数学模拟试卷(9)

2013 年全国高校自主招生数学模拟试卷 9
命题人:武汉六中 曾建国
1. 把圆 x +(y-1) =1 与椭圆 9x +(y+1)2=9 的公共点,用线段连接起来所得到的图形为( ) (A)线段 (B)不等边三角形 (C)等边三角形 (D)四边形 1 2. 等比数列{an}的首项 a1=1536,公比 q=- ,用 πn 表示它的前 n 项之积。则 πn(n∈N*)最大的是( ) 2 (A)π9 (B)π11 (C)π12 (D)π13 3. 存在整数 n,使 p+n+ n是整数的质数 p( ) (A)不存在 (B)只有一个 (C)多于一个,但为有限个 (D)有无穷多个 1 4. 设 x∈(- ,0),以下三个数 α1=cos(sinxπ),α2=sin(cosxπ),α3=cos(x+1)π 的大小关系是( ) 2 (A)α3<α2<α1 (B)α1<α3<α2 (C)α3<α1<α2 (D)α2<α3<α1 1 2 5. 如果在区间[1,2]上函数 f(x)=x +px+q 与 g(x)=x+ 2在同一点取相同的最小值,那么 f(x)在该区间上的 x 11 3 3 53 3 13 3 ) (A) 4+ 2+ 4 (B) 4- 2+ 4 (C) 1- 2+ 4 (D)以上答案都不对 2 2 2 6. 高为 8 的圆台内有一个半径为 2 的球 O1, 球心 O1 在圆台的轴上, 球 O1 与圆台的上底面、 侧面都相切, 圆台内可再放入一个半径为 3 的球 O2, 使得球 O2 与球 O1、圆台的下底面及侧面都只有一个公共点, 除 球 O2,圆台内最多还能放入半径为 3 的球的个数是( ) (A) 1 (B) 2 (C) 3 (D) 4 1 7. 集合{x|-1≤log110<- ,x∈N*}的真子集的个数是 . 2 x _ π 8. 复平面上,非零复数 z1,z2 在以 i 为圆心,1 为半径的圆上,z1· z2 的实部为零,z1 的辐角主值为 , 6 则 z2=_______. 9. 曲线 C 的极坐标方程是 ρ=1+cosθ,点 A 的极坐标是(2,0),曲线 C 在它所在的平面内绕 A 旋转一周, 则它扫过的图形的面积是_______. 10.已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体, 并且该六面体的最短棱的长为 2,则最远的两顶点间的距离是________. 11.从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每 面恰染一种颜色,每两 个具有公共棱的面染成不同的颜色。则不同的染色方法共有_______种.(注:如果我们对两个相同的 正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色 都相同,那么,我们就说这两个正方体的染色方案相同.) 12.在直角坐标平面上以(199,0)为圆心,199 为半径的圆周上整点(横、纵坐标皆为整数)的个数为__ __. x2 y2 13.在直角坐标系 xOy 中,直线 x-2y+4=0 与椭圆 + =1 交于 A,B 两点,F 是椭圆的左焦点. 9 4 求以 O,F,A,B 为顶点的四边形的面积. 最大值是(
2013年全国高校自主招生数学模拟试卷一

2013年全国高校自主招生数学模拟试卷一命题人:南昌二中 高三(01)班 张阳阳一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71B. 71-C. 21D. 21-2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( )A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3]3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( ) A.8152 B.8159 C.8160 D.8161 4. 设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x−c )=1对任意实数x 恒成立,则acb cos 的值等于( ) A. 21-B. 21C. −1D. 15. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( ) A. 62 B. 66 C. 68 D. 74 二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
2013年全国高校自主招生数学模拟试卷2

2013年全国高校自主招生数学模拟试卷二一、填空题(64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn,则数列}{n a 中整数项的个数为 . 二、解答题(56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方. (1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2013年全国高校自主招生数学模拟试卷二参考答案1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)2-∞-+∞. 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式)cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ ). 因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形:(1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案; (2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面A B D 所成角为θ,可求得32s i n ,31c o s ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM . 由余弦定理得231312)3(1222=⋅⋅⋅-+=MN ,故2=MN .四边形DMON 的外接圆的直径3322sin ===θMNOD .故球O 的半径3=R .7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得 BC DOP MN0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x , 11)(24212121=+++⋅=⋅y y y y x x .因为︒=∠90ACB ,所以0=⋅,即有0)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.8.15. 提示:=n a C65400320020023n n n--⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数.因此,整数项的个数为15114=+.9.因为)21()(++-=b b f a f ,所以 |)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a , 所以21+=+b a 或1)2)(1(=++b a ,又因为b a <,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a . 从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f . 又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b , 故16210)2(6=+++b b .解得31-=b 或1-=b (舍去). 把31-=b 代入1)2)(1(=++b a 解得52-=a .所以 52-=a ,31-=b .10.(1)由原式变形得112)1)(1(211--++-=++n n n n n t a a t a ,则2111)1(212)1(21111+-+-+=-++=-+++n n n n n n n n n t a t a t a a t a . 记n n n b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b . 又211,211111=+=+b b b n n ,从而有221)1(111n n b b n =⋅-+=, 故 n t a n n 211=-+,于是有 1)1(2--=nt a n n .(2)nt n t a a n n n n )1(21)1(211--+-=-++ [])1)(1()1()1()1(211--++++-+++++-=n n n t t n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n n n n n n t t t t t n n t t t nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n t t t t t t n n t , 显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y k P B P A . 则PA PB k k +==,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+P B P A k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==P B P A k k . 直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 6021249PAB S PA PB ∆=⋅⋅⋅︒==。
2013年全国高校自主招生数学模拟试卷5

2013年全国高校自主招生数学模拟试卷五一.选择题(本题满分36分,每小题6分)1.设锐角使关于x 的方程x 2+4x cos+cos=0有重根,则的弧度数为( )A .6B .12或512 C .6或512 D .122.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4]4.设点O 在ABC 的内部,且有→OA +2→OB +3→OC=→0,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .535.设三位数n=¯¯¯abc,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n有( )A.45个B.81个C.165个D.216个6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C为PA的中点,则当三棱锥O-HPC的体积最大时,OB的长为( )A.53B.253C.63D.263二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy中,函数f(x)=a sin ax+cos ax(a>0)在一个最小正周期长的区间上的图像与函数g(x)=a2+1的图像所围成的封闭图形的面积是;8.设函数f:R→R,满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=;9.如图,正方体ABCD-A1B1C1D1中,二面角A-BD1—A1的度数是;10.设p是给定的奇质数,正整数k使得k2-pk也是一个正整数,则B1A1B CD A C1D1k= ;11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ; 三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数的和大于2n ,则算过关.问:⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少?14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P到直线BC 的距离是该点到直线AB 、AC 距离的等比中项.⑴ 求点P 的轨迹方程;⑵ 若直线L 经过ABC 的内心(设为D ),且与P 点轨迹恰好有3个公共点,求L 的斜率k 的取值范围.15.已知,是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )=2x -tx 2+1的定义域为[,].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364.2013年全国高校自主招生数学模拟试卷四参考答案一.选择题(本题满分36分,每小题6分)1.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为( )A .6B .12或512 C .6或512 D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B .2.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233]解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4]解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .4.设点O 在ABC 的内部,且有→OA +2→OB +3→OC=→0,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .5.设三位数n=¯¯¯abc ,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .6.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为S B 11OABC( )A .53B .253 C .63 D .263 解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2. 而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则 V P —AOB =16R3sin cos =112R3sin2,V B -PCO =124R 3sin2.PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3.∴ 令y=sin23+cos2,y =2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33,∴ OB=263,选D .ABPOH C二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy 中,函数f (x )=a sin ax +cos ax (a >0)在一个最小正周期长的区间上的图像与函数g (x )= a 2+1的图像所围成的封闭图形的面积是 ;解:f (x )=a 2+1sin(ax +),周期=2a,取长为2a,宽为2a 2+1的矩形,由对称性知,面积之半即为所求.故填2aa 2+1.又解:∫1a 2+1[1-sin(ax +)]dx=a 2+1a ∫20(1-sin t )dt=2paa 2+1.8.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;解:令x=y=0,得,f (1)=1-1-0+2,f (1)=2.令y=1,得f (x +1)=2f (x )-2-x +2,即f (x +1)=2f (x )-x .①又,f (yx +1)=f (y )f (x )-f (x )-y +2,令y=1代入,得f (x +1)=2f (x )-f (x )-1+2,即f (x +1)=f (x )+1.②比较①、②得,f (x )=x +1.9.如图,正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1—A 1的度数M NB 1A 1B C D AC 1D 1是 ;解:设AB=1,作A 1M ⊥BD 1,AN ⊥BD 1,则BN ·BD 1=AB2,BN=D 1M=NM=33.A 1M=AN=63.∴ AA 12=A 1M2+MN 2+NA 2-2A 1M ·NA cos ,12=23+23+13-223cos ,cos =12.=60.10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ;解:设k 2-pk=n ,则(k -p2)2-n 2=p 24,(2k -p +2n )(2k -p -2n )=p 2,k=14(p +1)2.11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;解:1a n +1=2a n +13,令b n =1a n +13,得b 0=23,b n =2b n -1,b n =232n .即1a n=2n +1-13,n∑i=01a i =13(2n +2-n -3).12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ;解:当∠MPN 最大时,⊙MNP 与x 轴相切于点P (否则⊙MNP 与x 轴交于PQ ,则线段PQ 上的点P 使∠MP N 更大).于是,延长NM 交x 轴于K (-3,0),有KM ·KN=KP 2,KP=4.P (1,0),(-7,0),但(1,0)处⊙MNP 的半径小,从而点P 的横坐标=1. 三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数的和大于2n ,则算过关.问:⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少?解:⑴ 设他能过n 关,则第n 关掷n 次,至多得6n 点, 由6n >2n ,知,n ≤4.即最多能过4关.⑵ 要求他第一关时掷1次的点数>2,第二关时掷2次的点数和>4,第三关时掷3次的点数和>8.第一关过关的概率=46=23;MNPKOxy第二关过关的基本事件有62种,不能过关的基本事件有为不等式x+y ≤4的正整数解的个数,有C 24个 (亦可枚举计数:1+1,1+2,1+3,2+1,2+2,3+1)计6种,过关的概率=1-662=56;第三关的基本事件有63种,不能过关的基本事件为方程x +y +z ≤8的正整数解的总数,可连写8个1,从8个空档中选3个空档的方法为C 38=876321=56种,不能过关的概率=5663=727,能过关的概率=2027; ∴连过三关的概率=23562027=100243. 14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P到直线BC 的距离是该点到直线AB 、AC 距离的等比中项.⑴ 求点P 的轨迹方程;⑵ 若直线L 经过ABC 的内心(设为D ),且与P 点轨迹恰好有3个公共点,求L 的斜率k 的取值范围.解:⑴ 设点P 的坐标为(x ,y ), AB 方程:x-1+3y4=1,4x -3y +4=0, ①BC 方程:y=0, ②D-111B CA yxOK PAC 方程:4x +3y -4=0, ③∴ 25|y |2=|(4x -3y +4)(4x +3y -4)|, 25y 2+16x 2-(3y -4)2=0,16x 2+16y 2+24y -16=0,2x 2+2y 2+3y -2=0. 或25y 2-16x 2+(3y -4)2=0,16x 2-34y 2+24y -16=0, 8x 2-17y 2+12y -8=0.∴ 所求轨迹为圆:2x 2+2y 2+3y -2=0, ④或双曲线:8x 2-17y 2+12y -8=0. ⑤ 但应去掉点(-1,0)与(1,0).⑵ABC 的内心D (0,12):经过D 的直线为x=0或y=kx +12. ⑥(a ) 直线x=0与圆④有两个交点,与双曲线⑤没有交点; (b ) k=0时,直线y=12与圆④切于点(0,12),与双曲线⑤交于(±582,12),即k=0满足要求.(c ) k=±12时,直线⑥与圆只有1个公共点,与双曲线⑤也至多有1个公共点,故舍去.(c ) k 0时,k 12时,直线⑥与圆有2个公共点,以⑥代入⑤得:(8-17k 2)x 2-5kx -254=0.当8-17k 2=0或(5k)2-25(8-17k 2)=0,即得k=±23417与k=±22.∴ 所求k 值的取值范围为{0,±23417,±22}. 15.已知,是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )= 2x -t x 2+1的定义域为[,].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364. 解:⑴+=t ,=-14.故<0,>0.当x 1,x 2∈[,]时,∴ f (x )= 2(x 2+1)-2x (2x -t )(x 2+1)2=-2(x 2-xt )+2(x 2+1)2.而当x ∈[,]时,x 2-xt <0,于是f (x )>0,即f (x )在[,]上单调增. ∴ g (t )=2-t2+1-2-t2+1=(2-t )(2+1)-(2-t )(2+1)(2+1)(2+1)=(-)[t (+)-2+2]22+2+2+1=t2+1(t2+52)t2+2516=8t2+1(2t2+5)16t2+25⑵g(tan u)=8sec u(2sec2u+3)16sec2u+9=16+24cos2u16cos u+9cos3u≥16616+9cos2u,∴1g(tan u1)+1g(tan u2)+1g(tan u3)≤1166[163+9(cos2u1+cos2u2+cos2u3)]=1166[75-9(sin2u1+sin2u2+sin2u3)]而13(sin2u1+sin2u2+sin2u3)≥(sin u1+sin u2+sin u33)2,即9(sin2u1+sin2u2+sin2u3)≥3.∴1g(tan u1)+1g(tan u2)+1g(tan u3)≤1166(75-3)=364.由于等号不能同时成立,故得证.。
2013届高三数学全国高校自主招生模拟试卷(带答案)

2013届高三数学全国高校自主招生模拟试卷(带答案)2013年全国高校自主招生数学模拟试卷四一、选择题(本题满分36分,每小题6分)1.已知△ABC,若对任意t∈R,→BA-t→BC≥→AC,则△ABC一定为A.锐角三角形B.钝角三角形C.直角三角形D.答案不确定2.设logx(2x2+x-1)>logx2-1,则x的取值范围为A.12<x<1B.x>12且x≠1C.x>1D.0<x<13.已知集合A={x|5x-a≤0},B={x|6x-b>0},a,b∈N,且A∩B∩N ={2,3,4},则整数对(a,b)的个数为A.20B.25C.30D.424.在直三棱柱A1B1C1-ABC中,∠BAC=π2,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为A.15,1)B.15,2)C.1,2)D.15,2)5.设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件6.数码a1,a2,a3,…,a2006中有奇数个9的2007位十进制数-2a1a2…a2006的个数为A.12(102006+82006)B.12(102006-82006)C.102006+82006D.102006-82006二、填空题(本题满分54分,每小题9分)7.设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是.8.若对一切θ∈R,复数z=(a+cosθ)+(2a-sinθ)i的模不超过2,则实数a的取值范围为.9.已知椭圆x216+y24=1的左右焦点分别为F1与F2,点P在直线l:x-3y+8+23=0上.当∠F1PF2取最大值时,比|PF1||PF2|的值为.10.底面半径为1cm的圆柱形容器里放有四个半径为12cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水cm3.11.方程(x2006+1)(1+x2+x4+…+x2004)=2006x2005的实数解的个数为.12.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为.三、解答题(本题满分60分,每小题20分)13.给定整数n≥2,设M0(x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.14.将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=1≤i <j≤5Σxixj.问:⑴当x1,x2,x3,x4,x5取何值时,S取到最大值;⑵进一步地,对任意1≤i,j≤5有xi-xj≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值.说明理由.15.设f(x)=x2+a.记f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,M={a∈R|对所有正整数n,fn(0)≤2}.证明,M=-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C.解:令∠ABC=α,过A作AD⊥BC于D,由→BA-t→BC≥→AC,推出→BA2-2t→BA•→BC+t2→BC2≥→AC2,令t=→BA•→BC→BC2,代入上式,得→BA2-2→BA2cos2α+→BA2cos2α≥→AC2,即→BA2sin2α≥→AC2,也即→BAsinα≥→AC.从而有→AD≥→AC.由此可得∠ACB=π2.答B.解:因为x>0,x≠12x2+x-1>0,解得x>12且x≠1.由logx(2x2+x -1)>logx2-1,+x2-x)><x<1,2x3+x2-x<2或x>1,2x3+x2-x>2.解得0<x<1或x>1.所以x的取值范围为x>12且x≠1.答C.解:5x-;6x-b>>b6.要使A∩B∩N={2,3,4},则1≤b6<2,4≤a5<5,即6≤b<12,20≤a<25.所以数对(a,b)共有C61C51=30个.答A.解:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,则F(t1,0,0)(0<t1<1),E(0,1,12),G(12,0,1),D(0,t2,0)(0<t2<1).所以→EF=(t1,-1,-12),→GD=(-12,t2,-1).因为GD⊥EF,所以t1+2t2=1,由此推出0<t2<12.又→DF=(t1,-t2,0),→DF=t12+t22=5t22-4t2+1=5(t2-25)2+15,从而有15≤→DF<1.答A.解:显然f(x)=x3+log2(x+x2+1)为奇函数,且单调递增.于是若a+b≥0,则a≥-b,有f(a)≥f(-b),即f(a)≥-f(b),从而有f(a)+f(b)≥0.反之,若f(a)+f(b)≥0,则f(a)≥-f(b)=f(-b),推出a≥-b,即a+b≥0.答B.解:出现奇数个9的十进制数个数有A=C2006192005+C2006392003+…+C200620059.又由于(9+1)2006=k=0Σ2006C2006k92006-k以及(9-1)2006=k=0Σ2006C2006k(-1)k92006-k从而得A=C2006192005+C2006392003+…+C200620059=12(102006-82006).填0,98].解:f(x)=sin4x-sinxcosx+cos4x=1-12sin2x-12sin22x.令t=sin2x,则f(x)=g(t)=1-12t-12t2=98-12(t+12)2.因此-1≤t≤1ming(t)=g(1)=0,-1≤t≤1maxg(t)=g(-12)=98.故,f(x)∈0,98].填-55,55].解:依题意,得+cosθ)2+(2a--2sinθ)≤3-5a2.-25asin(θ-φ)≤3-5a2(φ=arcsin55)对任意实数θ成立.-,故a的取值范围为-55,55].填3-1..解:由平面几何知,要使∠F1PF2最大,则过F1,F2,P三点的圆必定和直线l相切于点P.直线l交x轴于A(-8-23,0),则∠APF1=∠AF2P,即∆APF1∽∆AF2P,即|PF1||PF2|=|AP||AF2|⑴又由圆幂定理,|AP|2=|AF1|•|AF2|⑵而F1(-23,0),F2(23,0),A(-8-23,0),从而有|AF1|=8,|AF2|=8+43.代入⑴,⑵得,|PF1||PF2|=|AF1||AF2|=88+43=4-23=3-1.填(13+22)π.解:设四个实心铁球的球心为O1,O2,O3,O4,其中O1,O2为下层两球的球心,A,B,C,D分别为四个球心在底面的射影.则ABCD是一个边长为22的正方形。
2013年全国高校自主招生数学模拟试卷三
2013年全国高校自主招生数学模拟试卷三一、选择题(36分)1.函数在上的最小值是()A.0 B.1 C.2 D.32.设,,若,则实数的取值范围为()A. B. C. D.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数的期望为 ()A. B. C. D.4.若三个棱长均为整数(单位:cm)的正方体的表面积之和为564cm2,则这三个正方体的体积之和为()A. 764 cm3或586 cm3B. 764 cm3C. 586 cm3或564 cm3D. 586 cm35.方程组的有理数解的个数为()A. 1B. 2C. 3D. 46.设的内角所对的边成等比数列,则的取值范围是()A. B.C. D.二、填空题(54分,每小题9分)7.设,其中为实数,,,,若,则 .8.设的最小值为,则.9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 种.10.设数列的前项和满足:,,则通项 =.11.设是定义在上的函数,若,且对任意,满足,,则 =.12.一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.12.一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.14.解不等式.15.如题15图,是抛物线上的动点,点在轴上,圆内切于,求面积的最小值.2013年全国高校自主招生数学模拟试卷三参考答案1[解]当时,,因此,当且仅当时上式取等号.而此方程有解,因此在上的最小值为2.[解法一] 因有两个实根,,故等价于且,即且,解之得.[解法二](特殊值验证法)令,排除C,令,排除A、B,故选D。
[解法三](根的分布)由题意知的两根在内,令则解之得:2[解法一] 依题意知,的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为 .若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 , , ,故.[解法二] 依题意知,的所有可能值为2,4,6.令表示甲在第局比赛中获胜,则表示乙在第局比赛中获胜.由独立性与互不相容性得,,,故.3[解] 设这三个正方体的棱长分别为,则有,,不妨设,从而,.故.只能取9,8,7,6.若,则,易知,,得一组解.若,则,.但,,从而或5.若,则无解,若,则无解.此时无解.若,则,有唯一解,.若,则,此时,.故,但,故,此时无解.综上,共有两组解或体积为 cm3或 cm3.4[解] 若,则解得或若,则由得.①由得.②将②代入得.③由①得,代入③化简得 .易知无有理数根,故,由①得,由②得,与矛盾,故该方程组共有两组有理数解或5[解] 设的公比为,则,而 .因此,只需求的取值范围.因成等比数列,最大边只能是或,因此要构成三角形的三边,必需且只需且.即有不等式组即解得从而,因此所求的取值范围是.6[解] 由题意知,由得,,因此,,.7[解],(1) 时,当时取最小值;(2) 时,当时取最小值1;(3) 时,当时取最小值.又或时,的最小值不能为,故,解得, (舍去).8[解法一] 用4条棍子间的空隙代表3个学校,而用表示名额.如表示第一、二、三个学校分别有4,18,2个名额.若把每个“ ”与每个“ ”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“ ”之间的23个空隙中选出2个空隙插入“|”,故有种.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为,则每校至少有一个名额的分法数为不定方程 .的正整数解的个数,即方程的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.9[解] ,即 2= ,由此得 2 .令, ( ),有,故,所以.10[解法一] 由题设条件知,因此有,故.[解法二] 令,则,,即,故,得是周期为2的周期函数,所以.11[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为,作平面 //平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如答12图2.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答12图2中阴影部分). 又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.三、解答题(本题满分60分,每小题20分)12[证] 的图象与直线的三个交点如答13图所示,且在内相切,其切点为,.…5分由于,,所以,即. …10分…15分. …20分[解法一] 由,且在上为增函数,故原不等式等价于. 即 . …5分分组分解 ,, …10分所以 , . …15分所以,即或.故原不等式解集为. …20分[解法二] 由,且在上为增函数,故原不等式等价于. …5分即,, …10分令,则不等式为,显然在上为增函数,由此上面不等式等价于, …15分即,解得 ( 舍去),故原不等式解集为. …20分13[解] 设,不妨设.直线的方程: ,化简得.又圆心到的距离为1,, …5分故,易知,上式化简得,同理有. …10分所以,,则因是抛物线上的点,有,则,. …15分所以 .当时,上式取等号,此时.因此的最小值为8. …20分。
2013年全国高校自主招生数学模拟试卷
2013年全国高校自主招生数学模拟试卷命题人:南昌二中 高三(01)班 张阳阳一、选择题(本题满分36分,每小题6分)1.已知△ABC ,若对任意t ∈R ,||→BA -t →BC ≥||→AC ,则△ABC 一定为A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定 2.设log x (2x 2+x -1)>log x 2-1,则x 的取值范围为A .12<x <1B .x >12且x ≠1 C . x >1 D . 0<x <13.已知集合A ={x |5x -a ≤0},B ={x |6x -b >0},a ,b ∈N ,且A ∩B ∩N ={2,3,4},则整数对(a ,b )的个数为A .20B .25C .30D .42 4.在直三棱柱A 1B 1C 1-ABC 中,∠BAC =π2,AB =AC =AA 1=1.已知G 与E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为A .[15,1)B .[15,2)C .[1,2)D .[15,2)5.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的A . 充分必要条件B . 充分而不必要条件C . 必要而不充分条件D . 既不充分也不必要条件 6.数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数-2a 1a 2…a 2006的个数为A .12(102006+82006)B .12(102006-82006) C .102006+82006 D .102006-82006二、填空题(本题满分54分,每小题9分)7. 设f (x )=sin 4x -sin x cos x +cos 4x ,则f (x )的值域是 .8. 若对一切θ∈R ,复数z =(a +cos θ)+(2a -sin θ)i 的模不超过2,则实数a 的取值范围为 .9.已知椭圆x 216+y 24=1的左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上.当∠F 1PF 2取最大值时,比|PF 1||PF 2|的值为 .10.底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3.11.方程(x 2006+1)(1+x 2+x 4+…+x 2004)=2006x 2005的实数解的个数为 . 12. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 .三、解答题(本题满分60分,每小题20分)13. 给定整数n ≥2,设M 0(x 0,y 0)是抛物线y 2=nx -1与直线y =x 的一个交点. 试证明对任意正整数m ,必存在整数k ≥2,使(x 0m ,y 0m )为抛物线y 2=kx -1与直线y =x 的一个交点.14.将2006表示成5个正整数x 1,x 2,x 3,x 4,x 5之和.记S =1≤i <j ≤5Σx i x j .问:⑴ 当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最大值;⑵ 进一步地,对任意1≤i ,j ≤5有||x i -x j ≤2,当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最小值.说明理由.15.设 f (x )=x 2+a . 记f 1(x )=f (x ),f n (x )=f (f n -1(x )),n =1,2,3,…,M ={a ∈R |对所有正整数n ,||f n (0)≤2}.证明,M =[-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C .解:令∠ABC =α,过A 作AD ⊥BC 于D ,由||→BA -t →BC ≥||→AC ,推出||→BA 2-2t →BA · →BC +t 2||→BC 2≥||→AC 2,令t =→BA · →BC ||→BC2,代入上式,得||→BA 2-2||→BA 2cos 2α+||→BA 2cos 2α≥||→AC 2,即 ||→BA 2sin 2α≥||→AC 2,也即||→BA sin α≥||→AC .从而有||→AD ≥||→AC .由此可得∠ACB =π2.答B .解:因为⎩⎨⎧x >0,x ≠12x 2+x -1>0,解得x >12且x ≠1.由log x (2x 2+x -1)>log x 2-1,⇒ log x (2x 3+x 2-x )>log x 2⎩⎨⎧0<x <1,2x 3+x 2-x <2或⎩⎨⎧x >1,2x 3+x 2-x >2.解得0<x <1或x >1. 所以x 的取值范围为x >12且x ≠1.答C . 解:5x -a ≤0x ≤a5;6x -b >0x >b6.要使A ∩B ∩N ={2,3,4},则 ⎩⎨⎧1≤b6<2,4≤a 5<5,即⎩⎨⎧6≤b <12,20≤a <25.所以数对(a ,b )共有C 61C 51=30个. 答A .解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,则F (t 1,0,0)(0<t 1<1),E (0,1,12),G (12,0,1),D (0,t 2,0)(0<t 2<1).所以→EF =(t 1,-1,-12),→GD =(-12,t 2,-1).因为GD ⊥EF ,所以t 1+2t 2=1,由此推出0<t 2<12.又→DF =(t 1,-t 2,0),||→DF =t 12+t 22=5t 22-4t 2+1=5(t 2-25)2+15,从而有15≤||→DF <1.答A .解:显然f (x )=x 3+log 2(x +x 2+1)为奇函数,且单调递增.于是若a +b ≥0,则a ≥-b ,有f (a )≥f (-b ),即f (a )≥-f (b ),从而有f (a )+f (b )≥0. 反之,若f (a )+f (b )≥0,则f (a )≥-f (b )=f (-b ),推出a ≥-b ,即a +b ≥0. 答B .解:出现奇数个9的十进制数个数有A =C 20061 92005+C 20063 92003+…+C 200620059.又由于(9+1)2006=k =0Σ2006C 2006k 92006-k以及(9-1)2006=k =0Σ2006C 2006k(-1)k 92006-k 从而得A =C 20061 92005+C 20063 92003+…+C 200620059=12(102006-82006). 填[0,98].解:f (x )=sin 4x -sin x cos x +cos 4x =1-12sin2x -12sin 22x .令t =sin2x ,则f (x )=g (t )=1-12t -12t 2=98-12(t +12)2.因此-1≤t ≤1min g (t )=g (1)=0,-1≤t ≤1max g (t )=g (-12)=98. 故,f (x )∈[0,98].填[-55,55].解:依题意,得|z |≤2(a +cos θ)2+(2a -sin θ)2≤42a (cos θ-2sin θ)≤3-5a 2. -25a sin(θ-φ)≤3-5a 2(φ=arcsin 55)对任意实数θ成立. 25|a |≤3-5a 2|a |≤55,故 a 的取值范围为[-55,55]. 填3-1..解:由平面几何知,要使∠F 1PF 2最大,则过F 1,F 2,P 三点的圆必定和直线l 相切于点P .直线l 交x 轴于A (-8-23,0),则∠APF 1=∠AF 2P ,即∆APF 1∽∆AF 2P ,即|PF 1||PF 2|=|AP ||AF 2|⑴ 又由圆幂定理,|AP |2=|AF 1|·|AF 2|⑵而F 1(-23,0),F 2(23,0),A (-8-23,0),从而有|AF 1|=8,|AF 2|=8+43. 代入⑴,⑵得,|PF 1||PF 2|=|AF 1||AF 2|=88+43=4-23=3-1.填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形。
2013年全国高校自主招生数学模拟试卷12
2013年全国高校自主招生数学模拟试卷十二一、选择题(36分)1.已知数列{x n }满足x n +1=x n -x n -1(n ≥2),x 1=a , x 2=b , 记S n =x 1+x 2+ +x n ,则下列结论正确的是(A )x 100=-a ,S 100=2b -a (B )x 100=-b ,S 100=2b -a (C )x 100=-b ,S 100=b -a (D )x 100=-a ,S 100=b -a2.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得AE EB =CFFD =λ (0<λ<+∞),记f (λ)=αλ+βλ其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则(A ) f (λ)在(0,+∞)单调增加(B ) f (λ)在(0,+∞)单调减少(C ) f (λ) 在(0,1)单调增加,而在(1,+∞单调减少 (D ) f (λ)在(0,+∞)为常数3.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有(A )2个 (B )3个 (C )4个 (D )5个4.在平面直角坐标系中,若方程m (x 2+y 2+2y +1)=(x -2y +3)2表示的曲线为椭圆,则m 的取值范围为(A )(0,1) (B )(1,+∞) (C )(0,5) (D )(5,+∞)5.设f (x )=x 2-πx ,α = arcsin 13,β=arctan 54,γ=arcos(-13),δ=arccot(-54),则 (A )f (α)>f (β)>f (δ)>f (γ) (B ) f (α)> f (δ)>f (β)>f (γ) (C ) f (δ)>f (α)>f (β)>f (γ) (D ) f (δ)>f (α)>f (γ)>f (β)6.如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有 (A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 二.填空题(每小题9分,共54分)1.设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1.则x +y = .2.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使得|AB | =λ的直线l 恰有3条,则λ= .3.已知复数z 满足⎪⎪⎪⎪2z +1z =1,则z 的幅角主值范围是 .4.已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S 、A 、B 、C 四点均在以O 为球心的某个球面上,则点O 到平面ABC 的距离为 .5.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共 种.6.设a =log z +log[x (yz )-1+1],b =log x -1+log(xyz +1),c =log y +log[(xyz )-1+1],记a ,b ,c 中EFB C D A最大数为M ,则M 的最小值为 . 三、(20分)设x ≥y ≥z ≥π12,且x +y +z =π2,求乘积cos x sin y cos z 的最大值和最小值. 四、(20分)设双曲线xy =1的两支为C 1,C 2(如图),正三角形PQR 的三顶点位于此双曲线上. (1)求证:P 、Q 、R 不能都在双曲线的同一支上;(2)设P (-1,-1)在C 2上, Q 、R 在C 1上,求顶点Q 、R 的坐标. 五、(20分)设非零复数a 1,a 2,a 3,a 4,a 5满足 其中S 为实数且|S |≤2.求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.2013年全国高校自主招生数学模拟试卷十二参考答案一、选择题(每小题6分,共36分)1.已知数列{x n }满足x n +1=x n -x n -1(n ≥2),x 1=a , x 2=b , 记S n =x 1+x 2+ +x n ,则下列结论正确的是(A )x 100=-a ,S 100=2b -a (B )x 100=-b ,S 100=2b -a (C )x 100=-b ,S 100=b -a (D )x 100=-a ,S 100=b -a解:x 1=a ,x 2=b ,x 3=b -a ,x 4=-a ,x 5=-b ,x 6=a -b ,x 7=a ,x 8=b ,….易知此数列循环,x n +6=x n ,于是x 100=x 4=-a ,又x 1+x 2+x 3+x 4+x 5+x 6=0,故S 100=2b -a .选A .2.如图,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得AE EB =CFFD =λ (0<λ<+∞),记f (λ)=αλ+βλ其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则(A ) f (λ)在(0,+∞)单调增加 (B ) f (λ)在(0,+∞)单调减少(C ) f (λ) 在(0,1)单调增加,而在(1,+∞单调减少 (D ) f (λ)在(0,+∞)为常数解:作EG ∥AC 交BC 于G ,连GF ,则AE EB =CG GB =CFFD ,故GF ∥BD .故∠GEF=αλ,∠GFE=βλ,但AC ⊥BD ,故∠EGF=90°.故f (λ)为常数.选D .3.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有(A )2个 (B )3个 (C )4个 (D )5个解:设首项为a ,公差为d ,项数为n ,则na +12n (n -1)d=972,n [2a +(n -1)d ]=2×972,即n 为2×972的大于3的约数.∴ ⑴ n=972,2a +(972-1)d=2,d=0,a=1;d ≥1时a <0.有一解;⑵n=97,2a +96d=194,d=0,a=97;d=1,a=a=49;d=2,a=1.有三解; ⑶n=2×97,n=2×972,无解.n=1,2时n <3..选C4.在平面直角坐标系中,若方程m (x 2+y 2+2y +1)=(x -2y +3)2表示的曲线为椭圆,则m 的取值范围为(A )(0,1) (B )(1,+∞) (C )(0,5) (D )(5,+∞)解:看成是轨迹上点到(0,-1)的距离与到直线x -2y +3=0的距离的比:x 2+(y +1)2|x -2y +3|12+(-2)2=5m <1⇒m >5,选D .5.设f (x )=x 2-πx ,α = arcsin 13,β=arctan 54,γ=arcos(-13),δ=arccot(-54),则E FBCDA(A )f (α)>f (β)>f (δ)>f (γ) (B ) f (α)> f (δ)>f (β)>f (γ) (C ) f (i )>f (α)>f (β)>f (γ) (D ) f (δ)>f (α)>f (γ)>f (β) 解:f (x )的对称轴为x=π2,易得, 0<α<π6<π4<β<π3<π2<γ<2π3<3π4<δ<5π6.选B .6.如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D . 二.填空题(每小题9分,共54分)1.设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1. 则x +y = .解:原方程组即⎩⎨⎧(x -1)3+1997(x -1)+1=0,(1-y )3+1997(1-y )+1=0.取 f (t )=t 3+1997t +1,f '(t )=3t 2+1987>0.故f (t )单调增,现x -1=1-y ,x +y=2. 2.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使得|AB | =λ的直线l 恰有3条,则λ= .解:右支内最短的焦点弦=2b 2a =4.又2a=2,故与左、右两支相交的焦点弦长≥2a=2,这样的弦由对称性有两条.故λ=4时设AB 的倾斜角为θ,则右支内的焦点弦λ=2ab 2a 2-c 2cos 2θ=41-3cos 2θ≥4,当θ=90°时,λ=4.与左支相交时,θ=±arccos23时,λ=⎪⎪⎪⎪2ab 2a 2-c 2cos 2θ=⎪⎪⎪⎪41-3cos 2θ=4.故λ=4. 3.已知复数z 满足⎪⎪⎪⎪2z +1z =1,则z 的幅角主值范围是 .解:⎪⎪⎪⎪2z +1z =1⇔4r 4+(4cos2θ-1)r 2+1=0,这个等式成立等价于关于x 的二次方程4x 2+(4cos2θ-1)x +1=0有正根.△=(4cos2θ-1)2-16≥0,由x 1x 2=14>0,故必须x 1+x 2=-4cos2θ-14>0. ∴cos2θ≤-34.∴ (2k +1)π-arccos 34≤2θ≤(2k +1)π+arccos 34. ∴ kπ+π2-12arccos 34≤θ≤kπ+π2+12arccos 34,(k=0,1)B‘C’D’A‘BCDASQ PR acb4.已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S 、A 、B 、C 四点均在以O 为球心的某个球面上,则点O 到平面ABC 的距离为 .解:SA=SB=SC=2,⇒S 在面ABC 上的射影为AB 中点H ,∴ SH ⊥平面ABC .∴ SH 上任意一点到A 、B 、C 的距离相等. ∵ SH=3,CH=1,在面SHC 内作SC 的垂直平分线MO 与SH 交于O ,则O 为SABC 的外接球球心.SM=1,∴SO=233,∴ OH=33,即为O 与平面ABC 的距离.5.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共 种.解:青蛙跳5次,只可能跳到B 、D 、F 三点(染色可证). 青蛙顺时针跳1次算+1,逆时针跳1次算-1,写5个“□1”,在□中填“+”号或“-”号:□1□1□1□1□1规则可解释为:前三个□中如果同号,则停止填写;若不同号,则后2个□中继续填写符号.前三□同号的方法有2种;前三个□不同号的方法有23-2=6种,后两个□中填号的方法有22种.∴ 共有2+6×4=26种方法.6.设a =log z +log[x (yz )-1+1],b =log x -1+log(xyz +1),c =log y +log[(xyz )-1+1],记a ,b ,c 中最大数为M ,则M 的最小值为 .解:a=log(x y +z ),b=log(yz +1x ),c=log(1yz +y ).∴ a +c=log(1yz +1x +yz +x )≥2log2.于是a 、c 中必有一个≥log2.即M ≥log2,于是M 的最小值≥log2.但取x=y=z=1,得a=b=c=log2.即此时M=log2.于是M 的最小值≤log2. ∴ 所求值=log2. 三、(本题满分20分)设x ≥y ≥z ≥π12,且x +y +z=π2,求乘积cos x sin y cos z 的最大值和最小值. 解:由于x ≥y ≥z ≥π12,故π6≤x ≤π2 -π12×2=π3.∴ cos x sin y cos z=cos x ×12[sin(y +z )+sin(y -z )]=12cos 2x +12cos x sin(y -z )≥12cos 2π3 =18 .即最小值.(由于π6 ≤x ≤π3 ,y ≥z ,故cos x sin(y -z )≥0),当y=z=π12 ,x=π3 时,cos x sin y cos z=18 . ∵ cos x sin y cos z=cos z ×12[sin(x +y )-sin(x -y )]=12cos 2z -12cos z sin(x -y ).O M2HSA B C 212由于sin(x -y )≥0,cos z >0,故cos x sin y cos z ≤12cos 2z=12cos 2π12 =12(1+cos π6)=2+ 38 . 当x= y=5π12 ,z=π12 时取得最大值. ∴ 最大值2+38,最小值18.四、(本题满分20分)设双曲线xy =1的两支为C 1,C 2(如图),正三角形PQR 的三顶点位于此双曲线上. (1)求证:P 、Q 、R 不能都在双曲线的同一支上;(2)设P (-1,-1)在C 2上, Q 、R 在C 1上,求顶点Q 、R 的坐标.解:设某个正三角形的三个顶点都在同一支上.此三点的坐标为P (x 1,1x 1),Q (x 2,1x 2),R (x 3,1x 3).不妨设0<x 1<x 2<x 3,则1x 1>1x 2>1x 3>0.k PQ =y 2-y 1x 2-x 1=-1x 1x 2;k QR =-1x 2x 3;tan ∠PQR=-1x 1x 2 +1x 2x 31+1x 1x 3x 22<0,从而∠PQR 为钝角.即△PQR 不可能是正三角形.⑵ P (-1,-1),设Q (x 2,1x 2),点P 在直线y=x 上.以P 为圆心,|PQ |为半径作圆,此圆与双曲线第一象限内的另一交点R 满足|PQ |=|PR |,由圆与双曲线都是y=x 对称,知Q 与R 关于y=x 对称.且在第一象限内此二曲线没有其他交点(二次曲线的交点个数).于是R (1x 2,x 2).∴ PQ 与y=x 的夹角=30°,PQ 所在直线的倾斜角=75°.tan75°=1+331-33=2+3.PQ 所在直线方程为y +1=(2+3)(x +1),代入xy=1,解得Q (2-3,2+3),于是R (2+3,2-3).五、(本题满分20分)设非零复数a 1,a 2,a 3,a 4,a 5满足 其中S 为实数且|S |≤2.求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.证明:设a 2a 1=a 3a 2=a 4a 3=a 5a 4=q ,则由下式得a 1(1+q +q 2+q 3+q 4)=4a 1q 4(1+q +q 2+q 3+q 4).∴ (a 12q 4-4) (1+q +q 2+q 3+q 4)=0,故a 1q 2=±2,或1+q +q 2+q 3+q 4=0.⑴ 若a 1q 2=±2,则得±2(1q 2+1q +1+q +q 2)=S .⇒S=±2[(q +1q )2+(q +1q )-1]=±2[(q +1q +12)2-54]. ∴ 由已知,有(q +1q +12)2-54∈R ,且|(q +1q +12)2-54|≤1.令q +1q +12=h (cos θ+i sin θ),(h >0).则h 2(cos2θ+i sin2θ)-54∈R .⇒sin2θ=0. -1≤h 2(cos2θ+i sin2θ)-54≤1.⇒14≤h 2(cos2θ+i sin2θ)≤94,⇒cos2θ>0.⇒θ=kπ(k ∈Z ) ∴ q +1q ∈R .再令q=r (cos α+i sin α),(r >0).则q +1q =(r +1r )cos α+i (r -1r )sin α∈R .⇒sin α=0或r=1.若sin α=0,则q=±r 为实数.此时q +1q ≥2或q +1q ≤-2.此时q +1q +12≥52,或q +1q +12≤-32.此时,由|(q +1q +12)2-54|≤1,知q=-1.此时,|a i |=2.若r=1,仍有|a i |=2,故此五点在同一圆周上.⑵ 若1+q +q 2+q 3+q 4=0.则q 5-1=0,∴ |q |=1.此时|a 1|=|a 2|=|a 3|=|a 4|=|a 5|,即此五点在同一圆上.综上可知,表示复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.。
2013年全国高校自主招生数学模拟试卷二
2013年全国高校自主招生数学模拟试卷二一、填空题(64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+b a ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答) 6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题(56分)9.(16分)设函数|)1l g (|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求ba ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn nn n n t a t t a ta ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(20分)作斜率为31的直线l 与椭圆C :143622=+yx交于B A ,两点(如图所示),且)2,23(P 在直线l的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上; (2)若︒=∠60APB,求△PAB的面积.2013年全国高校自主招生数学模拟试卷二参考答案1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)2-∞-+∞ . 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈=ux f .3.-1. 提示:由2211≤+b a ,得abb a 22≤+.又23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即abb a 22≥+. ①于是abb a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式)cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+. 又5371)(xx x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故∈+<<+k k k (45242ππθππZ ).因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ.5.15000. 提示:由题设条件可知,满足条件的方案有两种情形: (1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C种方案;(2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得32s i n ,31c o s ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM .由余弦定理得231312)3(1222=⋅⋅⋅-+=MN,故2=MN.四边形DMON 的外接圆的直径3322sin ===θMN OD .故球O 的半径3=R . 7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x ,11)(24212121=+++⋅=⋅y y y y x x .因为︒=∠90ACB ,所以0=⋅CB CA ,即有)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,AB CDO PMN即3161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t,否则01222=-⋅-t t,则点C 在直线012=--y x 上,从而点C 与点A或点B 重合.所以0342=++t t,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.8.15. 提示:=n a C65400320020023nnn --⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n .当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n时,=86a C5388620023-⋅⋅,在C!114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡,同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n时,=92a C10369220023-⋅⋅,在C!108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数.因此,整数项的个数为15114=+. 9.因为)21()(++-=b b f a f ,所以|)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a ,所以21+=+b a 或1)2)(1(=++b a ,又因为ba<,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而 2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a .从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f .又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b ,故16210)2(6=+++b b .解得31-=b或1-=b (舍去). 把31-=b代入1)2)(1(=++b a 解得52-=a.所以 52-=a ,31-=b.10.(1)由原式变形得112)1)(1(211--++-=++nn n n n t a a ta ,则2111)1(212)1(21111+-+-+=-++=-+++nn nn nn n n n t a t a t a a ta .记n nn b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b.又211,211111=+=+b b b nn ,从而有221)1(111n n b b n=⋅-+=,故nt a nn 211=-+,于是有1)1(2--=nt a nn .(2)nt n ta ann n n )1(21)1(211--+-=-++[])1)(1()1()1()1(211--++++-+++++-=n nn tt n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n nnnn ntt t t tn n t tt nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n ttt t ttn n t ,显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :mx y +=31,),(),,(2211y x B y x A .将mx y+=31代入143622=+yx中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y kPB PA. 则PA PB k k +=+=,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x)2(26)3)(22(2369322----+-⋅=m m m m122626312322=+-+--=m m m m ,从而,0=+PB PA k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB时,结合(1)的结论可知3,3-==PB PA k k .直线PA 的方程为:)23(32-=-x y ,代入143622=+yx中,消去y得)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x,即14)3313(231-=x.所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 60211)1)277249PAB S PA PB ∆=⋅⋅⋅︒=⋅⋅⋅=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32 33 3n 2.设 an 是(3 x)n 的展开式中 x 项的系数(n=2,3,4,…),则 lim (a +a +…+a ))=________.
n→∞
2 3 n
3.等比数列 a+log23,a+log43,a+log83 的公比是____________. 5-1 x2 y2 4.在椭圆a2+b2=1 (a>b>0)中,记左焦点为 F,右顶点为 A,短轴上方的端点为 B.若该椭圆的离心率是 2 , 则∠ABF=_________. 5.一个球与正四面体的六条棱都相切,若正四面体的棱长为 a,则这个球的体积是________. 6.如果:(1)a,b,c,d 都属于{1,2,3,4}; (2)ab,bc,cd,da; (3)a 是 a,b,c,d 中的最小值, ____ 那么,可以组成的不同的四位数abcd的个数是_________ 三、解答题(60 分,每小题 20 分) Sn 1.设 Sn=1+2+3+…+n,nN*,求 f(n)=(n+32)S 的最大值.
(C){x|x≤2}
α α α 2.设 sin>0,cos<0,且 sin3>cos3 ,则3的取值范围是( π π (A)(2k+6,2k+3), kZ 5π (C)(2k+ 6 ,2k+),k Z 2kπ π 2kπ π (B)( 3 + 6, 3 +3),kZ
)
π π 5π (D)(2k+4,2k+3)∪(2k+ 6 ,2k+),kZ
π α 2kπ π 2kπ π 解:满足 sin>0,cos<0 的 α 的范围是(2k+2,2k+π),于是3 的取值范围是( 3 +6, 3 +3), α α α π 5π π π 5π 满足 sin3>cos3的3的取值范围为(2k+4,2k+ 4 ).故所求范围是(2k+4,2k+3)∪(2k+ 6 ,2k+),kZ.选 D. 3.已知点 A 为双曲线 x2y2=1 的左顶点,点 B 和点 C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的 面积是( ) 3 (A) 3 ( B) 3 3 2 (C)3 3 (D)6 3
|25x-15y+12| |5(5x-3y+2)+2| 解:直线即 25x-15y+12=0.平面上点(x,y)到直线的距离= = . 5 34 5 34 ∵5x-3y+2 为整数,故|5(5x-3y+2)+2|≥2.且当 x=y=-1 时即可取到 2.选 B. π π 6.设 ω=cos5+isin5,则以,3,7,9 为根的方程是( )
二.填空题(本题满分 54 分,每小题 9 分) 1.arcsin(sin2000)=__________. π 解:2000°=180°×12-160°.故填-20°或-9. 32 33 3n 2.设 an 是(3 x)n 的展开式中 x 项的系数(n=2,3,4,…),则 lim (a +a +…+a ))=________.
n→∞
2 3 n
3 2· 3 18 2 - 解:an=3n 2Cn.∴ a = k-2 = ,故填 18. 3 n ( n - 1) n ( n -1) k 3.等比数列 a+log23,a+log43,a+log83 的公比是____________. a+log43 a+log83 (a+log43)-(a+log83) log43-log83 1 1 解:q=a+log 3=a+log 3= = = .填3. (a+log23)-(a+log43) log23-log43 3 2 4 5-1 x2 y2 4.在椭圆a2+b2=1 (a>b>0)中,记左焦点为 F,右顶点为 A,短轴上方的端点为 B.若该椭圆的离心率是 2 , 则∠ABF=_________. 解:c= 5-1 5+1 5+3 2 2 2 2 a ,∴ | AF | = a . | BF | =a , | AB | = | AO | +| OB | = 2 2 2 a. 5-1 2 2 a =ac,得解.
3 解:A(-1,0),AB 方程:y= 3 (x+1),代入双曲线方程,解得 B(2, 3), ∴ S=3 3.选 C. 4.给定正数 p,q,a,b,c,其中 pq,若 p,a,q 是等比数列,p,b,c,q 是等差数列,则一元二次方程 2 bx 2ax+c=0( ) (A)无实根 (B)有两个相等实根 (C)有两个同号相异实根 (D)有两个异号实根 2p+q p+2q 解:a2=pq,b+c=p+q.b= 3 ,c= 3 ; 1 1 2 2 2 4△=a -bc=pq-9(2p+q)(p+2q)=-9(p-q) <0.选 A. 5 4 5.平面上整点(纵、横坐标都是整数的点)到直线 y=3x+5的距离中的最小值是( 34 (A) 170 34 (B) 85 1 (C) 20 1 (D) 30 )
(A)x4+x3+x2+x+1=0 (B) x4x3+x2x+1=0 4 3 2 (C) x x x +x+1=0 (D) x4+x3+x2x1=0 解:ω5+1=0,故,3,7,9 都是方程 x5+1=0 的根.x5+1=(Байду номын сангаас+1)(x4-x3+x2-x+1)=0.选 B.
3/5
π π 6.设 ω=cos5+isin5,则以,3,7,9 为根的方程是( (A)x4+x3+x2+x+1=0 (C) x4x3x2+x+1=0 二.填空题(本题满分 54 分,每小题 9 分) 1.arcsin(sin2000)=__________.
(B) x4x3+x2x+1=0 (D) x4+x3+x2x1=0
张喜林制
[选取日期]
2013 年全国高校自主招生数学模拟试卷九
一、选择题(36 分,每小题 6 分) 1.设全集是实数,若 A={x| x-2≤0},B={x|10 (A){2} (B){1}
x2-2
=10x},则 A∩∁RB 是( (D) )
)
(C){x|x≤2}
α α α 2.设 sin>0,cos<0,且 sin3>cos3 ,则3的取值范围是( π π (A)(2k+6,2k+3), kZ 5π (C)(2k+ 6 ,2k+),k Z 2kπ π 2kπ π (B)( 3 + 6, 3 +3),k Z
n+1
1/5
1 13 2.若函数 f(x)=-2x2+ 2 在区间[a,b]上的最小值为 2a,最大值为 2b,求[a,b].
x2 y2 3.已知 C0:x2+y2=1 和 C1:a2+a2=1 (a>b>0).试问:当且仅当 a,b 满足什么条件时,对 C1 上任意一点 P,均 存在以 P 为顶点,与 C0 外切,与 C1 内接的平行四边形?并证明你的结论.
π π 5π (D)(2k+4,2k+3)∪(2k+ 6 ,2k+),k Z
3.已知点 A 为双曲线 x2y2=1 的左顶点,点 B 和点 C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的 面积是( ) 3 (A) 3
2
( B)
3 3 2
(C)3 3
(D)6 3
4.给定正数 p,q,a,b,c,其中 pq,若 p,a,q 是等比数列,p,b,c,q 是等差数列,则一元二次方程 bx 2ax+c=0( ) (A)无实根 (B)有两个相等实根 (C)有两个同号相异实根 (D)有两个异号实根 5 4 5.平面上整点(纵、横坐标都是整数的点)到直线 y=3x+5的距离中的最小值是( 34 (A) 170 34 (B) 85 1 (C) 20 ) 1 (D) 30 )
2/5
2013 年全国高校自主招生数学模拟试卷九
参考答案
一.选择题(本题满分 36 分,每小题 6 分) 1.设全集是实数,若 A={x| x-2≤0},B={x|10 (A){2} (B){1} 解:A={2},B={2,-1},故选 D.
x2-2
=10x},则 A∩∁RB 是( (D)
)
n+1 3 1 1 1 2 2 2
1 n(n+1) 解:Sn=2n(n+1),f(n)= (n+32)(n+1)(n+2) =
1 1 ≤ 64 50.(n=8 时取得最大值). n+ n +34
4/5
1 13 2.若函数 f(x)=-2x2+ 2 在区间[a,b]上的最小值为 2a,最大值为 2b,求[a,b]. 1 13 1 13 解:⑴ 若 a≤b<0,则最大值为 f(b)=-2b2+ 2 =2b.最小值为 f(a)=-2a2+ 2 =2a.即 a,b 是方程 x2+4x-13=0 的 两个根,而此方程两根异号.故不可能. 13 13 ⑵ 若 a<0<b,当 x=0 时,f(x)取最大值,故 2b= 2 ,得 b= 4 . 1 13 当 x=a 或 x=b 时 f(x)取最小值,①f(a)=-2a2+ 2 =2a 时.a=-2± 17,但 a<0,故取 a=-2- 17.由于|a|>|b|, 1 13 39 从而 f(a)是最小值.②f(b)=-2b2+ 2 =32=2a>0.与 a<0 矛盾.故舍. ⑶ 0≤a<b.此时,最大值为 f(a)=2b,最小值为 f(b)=2a. 1 13 1 13 ∴ -2b2+ 2 =2a.-2a2+ 2 =2b.相减得 a+b=4.解得 a=1,b=3. 13 ∴ [a,b]=[1,3]或[-2- 17, 4 ]. x2 y2 3.已知 C0:x2+y2=1 和 C1:a2+a2=1 (a>b>0).试问:当且仅当 a,b 满足什么条件时,对 C1 上任意一点 P,均 存在以 P 为顶点,与 C0 外切,与 C1 内接的平行四边形?并证明你的结论. 解:设 PQRS 是与 C0 外切且与 C1 内接的平行四边形.易知圆的外切平行四边形是菱形.即 PQRS 是菱形.于是 OP⊥OQ. 设 P(r1cosθ, r1sinθ), Q(r2cos(θ+90°), r2sin(θ+90°), 则在直角三角形 POQ 中有 r12+r22=r12r22(利用△POQ 的面积). 即 1 1 2+ 2=1. r1 r2 r1cos2θ r2sin2θ 1 cos2θ sin2θ 但 a2 + b2 =1,即 2= a2 + b2 , r1 1 sin2θ cos2θ 1 1 同理, 2= a2 + b2 ,相加得a2+b2=1. r2 1 1 1 cos2θ 反之, 若a2+b2=1 成立, 则对于椭圆上任一点 P(r1cosθ, r1sinθ), 取椭圆上点 Q(r2cos(θ+90°), r2sin(θ+90°), 则 2= a2 r1 sin2θ 1 sin2θ cos2θ 1 1 1 1 + b2 , , 2= a2 + b2 , ,于是 2+ 2=a2+b2=1,此时 PQ 与 C0 相切.即存在满足条件的平行四边形. r2 r1 r2 故证.