数学选修2-3复习题测评卷2(带答案)

合集下载

黑龙江高中数学选修2-3模块综合测试2 Word版含解析

黑龙江高中数学选修2-3模块综合测试2 Word版含解析

选修2-3模块综合测试(二)(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分)的解集为()1.方程C x14=C2x-414A.{4} B.{14}C.{4,6} D.{14,2}得x=2x-4或x+2x-4=14,解得x=4或x=6.经检验知x=4或解析:由C x14=C2x-414x=6符合题意.答案:C2.小王有70元钱,现有面值分别为20元和30元的两种I C电话卡.若他至少买一张,则不同的买法共有()A.7种B.8种C.6种D.9种解析:要完成的“一件事”是“至少买一张I C电话卡”,分3类完成:买1张I C卡、买2张I C卡、买3张I C卡.而每一类都能独立完成“至少买一张I C电话卡”这件事.买1张I C卡有2种方法,买2张I C卡有3种方法,买3张I C卡有2种方法.不同的买法共有2+3+2=7种.答案:A3.如果χ2=5.024,那么认为“X与Y有关系”的把握有()A.75% B.90%C.95% D.99%解析:∵χ2=5.024>3.841,∴有95%的把握认为“X与Y有关系”.答案:C4.已知离散型随机变量ξ的分布列如下,则其数学期望Eξ=()A.1C.2+3m D.2.4解析:由分布列的性质知0.5+m+0.2=1,解得m=0.3,所以Eξ=1×0.5+3×0.3+5×0.2=2.4.答案:D5.(2x -12x )6的展开式的常数项是( )A .20B .-20C .40D .-40解析:由题知(2x -12x)6的通项为T r +1=(-1)r C r 626-2r x 6-2r,令6-2r =0得r =3, 故常数项为(-1)3C 36=-20. 答案:B6.3个人坐在一排6个座位上,3个空位只有2个相邻的坐法种数为( ) A .24 B .36 C .48D .72解析:先将三个人排好,共有6种排法,空出4个位,再将空座位插空,有4×3=12种排法,故有6×12=72种排法.答案:D7.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A .110B .310C .35D .910解析:“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求的概率P =1-C 33C 35=1-110=910.答案:D8.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( )A .35B .25C .110D .59解析:记“第一次摸出正品”为事件A ,“第二次摸到正品”为事件B ,则P (A )=C 16C 19C 110C 19=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59. 答案:D9.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:A .99.9%B .99%C .95%D .90%解析:利用题中列联表,代入公式计算.χ2=100×(50×25-10×15)265×35×60×40≈22.16>6.635,所以我们有99%的把握认为吸烟量与年龄有关. 答案:B10.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布B (10,0.6),则Eη和Dη的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6解析:∵ξ~B (10,0.6) ∴Eξ=10×0.6=6, Dξ=10×0.6×0.4=2.4. ∵ξ+η=8, ∴η=-ξ+8,∴Eη=-Eξ+8=-6+8=2.Dη=(-1)2Dξ=2.4. 答案:B11.有10件产品,其中3件是次品,从中任取2件,若ξ表示取到次品的件数,则Dξ=( )A .35B .1115C .1415D .2875解析:ξ的所有可能取值是0,1,2.则 P (ξ=0)=C 27C 210=715.P (ξ=1)=C 17C 13C 210=715.P (ξ=2)=C 23C 210=115.所以,ξ的分布列为于是E ξ=0×715+1×715+2×115=35,D ξ= i =1n(x i -EX )2P i =2875.答案:D12.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( )A .15B .25C .35D .45解析:基本事件共有A 55=120种,同一科目的书都不相邻的情况可用间接法求解,即A 55-A 22A 22A 23×2-A 22A 22A 33=48,因此同一科目的书都不相邻的概率是25. 答案:B二、填空题(本大题共4小题,每小题5分,共20分)13.[2012·浙江高考]若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.答案:1014.设随机变量ξ的分布列为P (ξ=k )=k 15(k =1,2,3,4,5),则P (12<ξ<52)的值为__________.解析:P (12<ξ<52)=P (ξ=1)+P (ξ=2)=115+215=15.答案:1515.在某次学校的游园活动中,高二(2)班设计了这样一个游戏:在一个纸箱里放进了5个红球和5个白球,这些球除了颜色不同外完全相同,一次性从中摸出5个球,摸到4个或4个以上红球即为中奖,则中奖的概率是________.(精确到0.001)解析:设摸出的红球个数为X ,则X 服从超几何分布,其中N =10,M =5,n =5,于是中奖的概率为P (X ≥4)=P (X =4)+P (X =5)=C 45C 15C 510+C 55C 510≈0.103.答案:0.10316.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=________.解析:设“?”处的数值为x ,则“!”处的数值为1-2x ,则Eξ=1·x +2×(1-2x )+3x =x +2-4x +3x =2.答案:2三、解答题(本大题共6小题,共70分)17.(10分)某项化学实验,要把2种甲类物质和3种乙类物质按照先放甲类物质后放乙类物质的顺序,依次放入某种液体中,观察反应结果.现有符合条件的3种甲类物质和5种乙类物质可供使用.问:这个实验一共要进行多少次,才能得到所有的实验结果?解:由于要把2种甲类物质和3种乙类物质按照先放甲类物质后放乙类物质的顺序依次放入某种液体中,因此需要分步计数.由于同一类物质不同的放入顺序,反应结果可能会不同,因此这是一个排列问题.第1步,放入甲类物质,共有A 23种方案; 第2步,放入乙类物质,共有A 35种方案.根据分步乘法计算原理,共有A 23A 35=360种方案.因此,共要进行360次实验,才能得到所有的实验结果.18.(12分)[2014·深圳高二检测]在二项式(3x -123x )n 的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项. 解:T r +1=C r n(3x )n -r(-123x )r =(-12)r C r n x 13n -23r 由前三项系数的绝对值成等差数列,得 C 0n +(-12)2C 2n =2×12C 1n ,解这个方程得n =8或n =1(舍去). (1)展开式的第4项为: T 4=(-12)3C 38x 23=-73x 2.(2)当83-23r =0,即r =4时,常数项为(-12)4C 48=358. 19.(12分)[2014·湖南高考]某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立. (1)记H ={至少有一种新产品研发成功},则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615.故所求的分布列为数学期望为EX =0×215+100×315+120×415+220×615=300+480+132015=210015=140.20.(12分)某运动项目设计了难度不同的甲乙两个系列,每个系列都有K ,D 两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每位运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练的统计数据,某运动员完成甲系列和乙系列动作情况如下表:(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;(2)若该运动员选择乙系列,求其成绩ξ的分布列.解:(1)若该运动员希望获得该项目的第一名,应选择甲系列. 理由如下:选择甲系列最高得分为100+40>115, 可能获得第一名;而选择乙系列最高得分为90+20<115,不可能获得第一名. 记“该运动员完成K 动作得100分”为事件A , 记“该运动员完成D 动作得40分”为事件B ,则P (A )=34,P (B )=34,由事件A 与事件B 相互独立,记“该运动员获得第一名”为事件C ,法一:依题意得P (C )=P (AB )+P (A B )=34×34+14×34=34.∴该运动员获得第一名的概率为34.法二:由题意可知,该运动员只要D 动作得40分就获得第一名,则P (C )=P (B )=34.(2)若该运动员选择乙系列,ξ可能取得的值为50,70,90,110. 则P (ξ=50)=110×110=1100,P (ξ=70)=110×910=9100,P (ξ=90)=910×110=9100,P (ξ=110)=910×910=81100ξ的分布列为:21.(12分)km 时,租车费为10元;若行驶路程超出4 km ,则按每超出1 km 加收2元计费(超出不足1 km 的部分按1 km 计).从这个城市的民航机场到某宾馆的路程为15 km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按1 km 路程计费,不足5分钟的部分不计费),这个司机一次接送旅客的转换后的行车路程ξ是一个随机变量.设他所收费用为η.(1)求费用η关于行车路程ξ的关系式; (2)若随机变量ξ的分布列为求所收费用η(3)已知某旅客实付费用38元,而出租汽车实际行驶了15 km ,问出租车在途中因故停车累计多长时间?解:(1)依题意得η=2(ξ-4)+10, 即η=2ξ+2,ξ≥15,ξ∈N ;(2)Eξ=15×0.1+16×0.5+17×0.3+18×0.1=16.4.∵η=2ξ+2,∴Eη=E (2ξ+2)=2Eξ+2=34.8(元), 故所收费用η的数学期望为34.8元. (3)由38=2ξ+2,解得ξ=18,故停车时间t 转换的行车路程为18-15=3 km , ∴3×5≤t <4×5,即出租车在途中因故停车累计时间t ∈[15,20).22.(12分)[2013·安徽高考]某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责.已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X .(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (2)求使P (X =m )取得最大值的整数m .解:(1)因为事件A :“学生甲收到李老师所发信息”与事件B :“学生甲收到张老师所发信息”是相互独立的事件,所以A 与B 相互独立.由于P (A )=P (B )=C k -1n -1C k n =k n,故P (A )=P (B )=1-k n ,因此学生甲收到活动通知信息的概率P =1-(1-k n )2=2kn -k2n 2.(2)当k =n 时,m 只能取n ,有P (X =m )=P (X =n )=1.当k <n 时,整数m 满足k ≤m ≤t ,其中t 是2k 和n 中的较小者.由于“李老师和张老师各自独立、随机地发活动通知信息给k 位同学”所包含的基本事件总数为(C k n )2.当X =m 时,同时收到李老师和张老师转发信息的学生人数恰为2k -m ,仅收到李老师或仅收到张老师转发信息的学生人数均为m -k .由乘法计数原理知:事件{X =m }所含基本事件数为C k n C 2k -mk C m -k n -k =C k n C m -k kC m -k n -k .此时 P (X =m )=C k n C 2k -m k C m -k n -k (C k n )2=C m -k kC m -kn -k C k n . 当k ≤m <t 时,P (X =m )≤P (X =m +1)⇔C m -k k C m -kn -k ≤C m +1-kkC m +1-kn -k⇔(m -k +1)2≤(n -m )(2k -m ) ⇔m ≤2k -(k +1)2n +2.假如k ≤2k -(k +1)2n +2<t 成立,则当(k +1)2能被n +2整除时,k ≤2k -(k +1)2n +2<2k +1-(k +1)2n +2≤t .故P (X =m )在m =2k -(k +1)2n +2和m =2k +1-(k +1)2n +2处达最大值;当(k +1)2不能被n +2整除时,P (X =m )在m =2k -[(k +1)2n +2]处达最大值.(注:[x ]表示不超过x 的最大整数)下面证明k ≤2k -(k +1)2n +2<t .因为1≤k <n ,所以2k -(k +1)2n +2-k =kn -k 2-1n +2≥k (k +1)-k 2-1n +2=k -1n +2≥0.而2k -(k +1)2n +2-n =-(n -k +1)2n +2<0,故2k -(k +1)2n +2<n ,显然2k -(k +1)2n +2<2k .因此k ≤2k -(k +1)2n +2<1.。

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05 B .0.1C .0.15D .0.22.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭5.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列命题中真命题是( )(1)在18的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2) B .(1)(3)C .(2)(3)D .(1)(2)(3)7.设102x <<,随机变量ξ的分布列如下:ξ0 1 2P0.50.5x -x则当x 在10,2⎛⎫ ⎪⎝⎭内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ增大,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ减小,()D ξ增大8.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .389.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .110.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .511.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常12.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随着电商的兴起,物流快递的工作越来越重要了,早在周代,我国便已出现快递制度,据《周礼·秋官》记载,周王朝的官职中设置了主管邮驿,物流的官员“行夫”,其职责要求是“虽道有难,而不时必达”.现某机构对国内排名前五的5家快递公司的某项指标进行了3轮测试(每轮测试的客观条件视为相同),每轮测试结束后都要根据该轮测试的成绩对这5家快递公司进行排名,那么跟测试之前的排名比较,这3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为_________.14.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X表示这6位乘客在第20层下电梯的人数,则(4)P X==________.16.若随机变量3~34X B⎛⎫⎪⎝⎭,, 则方差()D x=____________.17.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____.18.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.19.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:月份x1 2 3 4 5 6 不“礼让斑马线"驾驶员人数y120105100859080(1)请根据表中所给前5个月的数据,求不“礼让行人”的驾驶员人数y 与月份x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nni i i ii i nniii i x x y yx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P Z P Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm ),身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180cm 以上(包括180cm )的志愿者中选出男、女各一人,设这2人身高相差cm ξ(0ξ≥),求ξ的分布列和数学期望(均值).23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下: 日组装个数 [)155,165[)165,175[)175,185[)185,195[)195,205[]205,215人数6123430108(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若A 项技术指标达标的概率为3,4B 项技术指标达标的概率为89,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设ξ表示其中合格品的个数,求ξ的分布列. 25.近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用x 表示活动推出的天数,y 表示每天使用刷脸支付的人次,统计数据如下表所示:(1)在推广期内,与y c d =⋅(均为大于零的常数)哪一个适宜作为刷脸支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为2元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有10%使用现金支付,使用现金支付的顾客无优惠;有40%使用扫码支付,使用扫码支付享受8折优惠;有50%使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据估计购买一瓶该饮料的平均花费.参考数据:其中1i i v g y =,7117i i v v ==∑参考公式:对于一组数据1122,),,(,)n n x v x v ,其回归直线ˆˆˆv a bx=+的斜率和截距的最小二乘估计公式分别为:1221ˆ,ni i i nii x v nxvbxnx==-=-∑∑ˆˆa v bx=-. 26.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数k 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元. 比较随机变量X 和Y 的数学期望的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.5.C解析:C【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.6.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.7.B解析:B 【分析】分别计算()E ξ和()D ξ的表达式,再判断单调性. 【详解】()00.51(0.5)20.5E x x x ξ=⨯+⨯-+=+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()E ξ增大()222210.5(0.50)(0.5)(0.51)(0.52)24D x x x x x x x ξ=⨯+-+-⨯+-++-=-++ ()25(1)4D x ξ=--+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()D ξ增大 故答案选B 【点睛】本题考查了()E ξ和()D ξ的计算,函数的单调性,属于综合题型.8.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10.C解析:C 【解析】1111632p =--=,111()0223623E X a a =⨯+⨯+⨯=⇒=∴222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=∴2(23)2()4D X D X -==点晴:本题考查的是离散型随机变量的期望,方差和分布列中各个概率之间的关系.先根据概率之和为1,求出p 的值,再根据数学期望公式,求出a 的值,再根据方差公式求出D (X ),继而求出D (2X-3).解决此类问题的关键是熟练掌握离散型随机变量的分布列与数学期望.11.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】根据题意求出家快递公司进行排名与测试之前的排名比较出现家公司排名不变的概率根据题意满足二项分布根据二项分布概率计算即可【详解】解:首先在一轮测试中家快递公司进行排名与测试之前的排名比较出现家解析:572【分析】根据题意求出5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率,根据题意满足二项分布,根据二项分布概率计算即可. 【详解】解:首先,在一轮测试中5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率为255522011206C A ⨯==, 其次,3轮测试每次发生上述情形的概率均为16P =, 故3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为223155()6672C ⨯⨯=. 故答案为:572. 【点睛】独立重复试验与二项分布问题的常见类型及解题策略:(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率;(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.14.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验, 故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.17.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.18.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510 , 39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,012345.考点:期望、方差的计算.19.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552.【解析】分析:由n次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P(ξ=4)=435⎛⎫⎪⎝⎭=0.129 6,P(ξ=3)=33432C?·55⎛⎫⎪⎝⎭=0.345 6,P(ξ=2)=222432C?·55⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=0.345 6,P(ξ=1)=31432C?·55⎛⎫⎪⎝⎭=0.153 6,P(ξ=0)=425⎛⎫⎪⎝⎭=0.025 6.由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)710p =;(2)分布列见解析,()116E ξ= 【分析】(1)根据分层抽样的比例关系得到人数,再计算概率得到答案.(2)ξ的可能取值为0,1,2,3,4,计算概率得到分布列,再计算数列期望得到答案. 【详解】(1)根据茎叶图:“高个子”有12个,“非高个子”有18个, 故抽取的“高个子”为125230⨯=个,抽取的“非高个子”有3个. 至少有一人是“高个子”的概率为232537111010C p C =-=-=. (2)身高180cm 以上(包括180cm )的志愿者中选出男,女各有3人和2人, 故ξ的可能取值为0,1,2,3,4, 故()1113206p ξ==⨯=,()11111321323p ξ=⨯+⨯==, ()1113226p ξ==⨯=, ()1113236p ξ==⨯=,()1113246p ξ==⨯=.故分布列为:故()01234636666E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了分层抽样,概率的计算,分布列,数学期望,意在考查学生的计算能力和综合应用能力. 23.(1)149204(2)(i )3173人(ii )75 【分析】(1)利用对立事件公式结合古典概型求解(2)(i )先求平均数185μ=,结合σ公式求得()10.68271980.158652P X ->==,再求人数;(ii )先由正态分布得日组装个数为185以上的概率为0.5.设三人中日组装个数超过185个的人数为ξ,增加的日工资总额为η,得到ξ服从二项分布,由50ηξ=求得期望【详解】(1)设至少有1人日组装个数少于165为事件A ,则()3123181491204C P A C =-=,(2)1606170121803419030200102108185100X ⨯+⨯+⨯+⨯+⨯+⨯==(个)又2169σ=,所以13σ=,所以185μ=,13σ=, 所以198μσ+=.(i )()10.68271980.158652P X ->==, 所以日组装个数超过198个的人数为0.15865200003173⨯=(人)(ii )由正态分布得,日组装个数为185以上的概率为0.5.设这三人中日组装个数超过185个的人数为ξ,这三人增加的日工资总额为η,则50ηξ=,且()~3,0.5B ξ,所以()30.5 1.5E ξ=⨯=,所以()()5075E E ηξ==. 【点睛】本题考查古典概型,考查正态分布的概率,考查二项分布,考查转化化归能力,其中确定人数与工资总额的函数关系是关键,是中档题 24.(1)3536;(2)见解析 【分析】(1)结合对立事件的概率关系可求出至少一项技术指标达标的概率; (2)由题意知,2~4,3B ξ⎛⎫⎪⎝⎭,从而可求出()0P ξ=,(1)P ξ=,()2P ξ=,()3P ξ=,()4P ξ=的值,从而可求出分布列.【详解】(1)设:M 一个工艺品经过检测至少一项技术指标达标,则38()1-11493635P M ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)依题意知2~4,3B ξ⎛⎫ ⎪⎝⎭,则411(0)381P ξ⎛⎫=== ⎪⎝⎭,1314218(1)3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()222421823327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()334213233381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭分布列为:本题考查了独立事件的概率,考查了离散型随机变量的分布列求解.本题关键是求出ξ每种可能取值下的概率.求离散型随机变量的分布列时,第一步写出变量的可能取值,第二步求出每种取值下的概率,第三步写出分布列.25.(1)x y c d =⋅适宜(2)23.210320y =⨯=,活动推出第8天使用刷脸支付的人次为320(3)平均花费为251150(元) 【分析】(1)直接根据统计数据表判断,x y c d =⋅适宜;(2)把x y c d =⋅,两边同时取常用对数,1gy 11gc gd x =+⋅,则lg y 与x 两者线性相关,根据已知条件求出lg y 关与x 的线性回归方程,进而转化为y 关与x 的线性回归方程;(3)记购买一瓶该饮料的花费为Z (元),则Z 的取值可能为:2,1.8,1.6,1.4,求出Z 的分布,进而求出Z 的期望. 【详解】(1)直接根据统计数据表判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;。

高中数学选修2—3测试卷含答案

高中数学选修2—3测试卷含答案

数学选修2—3测试试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,从中任选1人参加某项活动,则不同选法种数为 A .60 B .12 C .5 D .4 2.6(21)x -展开式中含2x 项的系数为A .240B .120C .60D .153.某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是 A .40.80.2⨯B .445C 0.8⨯ C .445C 0.80.2⨯⨯D .45C 0.80.2⨯⨯4.若随机变量XA .1B .0.8C .0.3D .0.25.由1,2,3,4组成没有重复数字的三位数,其中奇数的个数为 A .36 B .24 C .12 D .66.在10件产品中,有3件次品,从中任取4件,则恰有两件次品的取法种数为 A .63 B .96 C .210 D .2527.(A 版)已知某离散型随机变量X 服从的分布列如图,则随机变量X 的方差DX 等于 A .91 B .92 C .31 D .3(B 版)已知某离散型随机变量X 服从的分布列如图,则随机变量X 的方差()X D 等于 A .91 B .92 C .31 D .32 8.将4个不同的小球放入3个不同的盒中,每个盒内至少有1个球,则不同的放法种数为A .24B .36C .48D .969.一个口袋中装有10个球,其中有7个红球,3个白球.现从中任意取出3个球,则这3个都是红球的概率是 A .37B .710C .724D .112010.(A 版)把一枚硬币连续抛掷两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则()|PB A 等于A .12B .14C .16D .18(B 版)把一枚硬币连续抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,则()|PB A 等于A .12B .14C .16D .1811.在相关分析中,对相关系数r ,下列说法正确的是 A .r 越大,线性相关程度越强 B .r 越小,线性相关程度越强C .r 越大,线性相关程度越弱,r 越小,线性相关程度越强D .1r ≤且r 越接近1,线性相关程度越强,r 越接近0,线性相关程度越弱 12.(A 版)在独立性检验中,统计量2K 有三个临界值:2.706,3.841和6.635.当2 2.706K >时,有90%的把握说明两个事件有关;当2 3.841K >时,有95%的把握说明两个事件有关;当26.635K >时,有99%的把握说明两个事件有关,当22.706K ≤时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算220.87K =.根据这一数据分析,认为打鼾与患心脏病之间A .有95%的把握认为两者有关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病(B 版)在独立性检验中,统计量2χ有两个临界值:3.841和6.635.当23.841χ>时,有95%的把握说明两个事件有关,当26.635χ>时,有99%的把握说明两个事件有关,当23.841χ≤时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算220.87χ=.根据这一数据分析,认为打鼾与患心脏病之间 A .有95%的把握认为两者有关 B .约有95%的打鼾者患心脏病 C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病13.已知服从正态分布2(,)N μσ的随机变量,在区间(,)μσμσ-+,(2,2)μσμσ-+和(3,3)μσμσ-+内取值的概率分别为68.3%,95.4%和99.7%.某大型国有企业为10000名员工定制工作服,设员工的身高(单位:cm )服从正态分布()25173,N ,则适合身高在163183cm 范围内员工穿的服装大约要定制 A .6830套 B .9540套 C .9520套D .9970套14.如图,用5种不同的颜色给图中的3个格子涂色,每个格子涂一种颜色,要求相邻两格的颜色不同,则不同涂色方法的种数为A .125B .80C .60D .13二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.某班要从4名男生和2名女生中选派4人参加某项公益活动,如果要求至少有1名女生,那么不同的选法种数为 .(请用数字作答) 16.在5(23)x -的展开式中,各项系数的和为 . 17.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如右边的22⨯列联表所示(单位:人),则其中m = ,n = .18.已知在一场比赛中,甲运动员赢乙、丙的概率分别为,,比赛没有平局.若甲分别与乙、丙各进行一场比赛,则甲取得一胜一负的概率是 .三、解答题:本大题共3小题,共28分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)抛掷一枚质地均匀的硬币3次,记正面朝上的次数为X . (1)求随机变量X 的分布列; (2)求随机变量X 的均值、方差.20.(本小题满分10分)从4名男同学选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)若选出的3名女同学排在一起,共有多少种排法?(2)若选出的2名男同学不相邻,共有多少种排法?21.(本小题满分10分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(1)求在一轮比赛中甲、乙同时击中10环的概率;(2)求在一轮比赛中甲击中的环数多于乙击中环数的概率.数学选修模块测试样题参考答案数学选修2—3(人教版)一、选择题:本大题共14小题,每小题4分,共56分.1. B2. C3. C4. D5. C6. A7. B8. B 9. C 10. A 11. D 12. C 13. B 14. B提示:7.易知13m=,则12201333EX=⨯+⨯=,2221222(0)(1)33339DX=-⨯+-⨯=.8.分两步,第一步从四个小球中选两个小球,有24C种方法;第二步将两个小球看成一个整体,与其它两个小球放入三个盒中,有33A 种方法,共有2343C A 36⨯=种方法.14.方法1:分两类完成.第一类:每个格均不同色,共有35A 种涂色方法;第二类:两边的两格同色,共有1154C C ⨯种涂色方法.根据分类计数原理,共有311554A +C C 80⨯=种方法. 方法2:分两步完成.第一步先考虑中间一格的涂法,有5种涂色方法;第二步再涂两边两格的颜色,有4416⨯=种涂色方法.根据分步计数原理,共有51680⨯=种方法. 二、填空题:本大题共4小题,每小题4分,其中17题每空2分,共16分.15.14 16.1- 17.38,100 18.0.38提示:15.根据组合的知识和分类计数原理得:13222424C C +C C 14⋅⋅=.16.根据“赋值法”,令1x =,可得5(23)x -的展开式中各项系数的和为1-. 18.0.80.30.20.70.38⨯+⨯=.三、解答题:本大题共3小题,共28分. 19.(本小题满分8分) 解:(1)随机变量X 的取值可以为0,1,2,3.311(0)28P X ⎛⎫=== ⎪⎝⎭;31313(1)C 28P X ⎛⎫==⨯=⎪⎝⎭; 32313(2)C 28P X ⎛⎫==⨯= ⎪⎝⎭;311(3)28P X ⎛⎫=== ⎪⎝⎭.因此,随机变量X 的分布列为:……………………4分 (2)13310123 1.58888EX =⨯+⨯+⨯+⨯=. 22221331(0 1.5)(1 1.5)(2 1.5)(3 1.5)0.758888DX =-⨯+-⨯+-⨯+-⨯=.……………………8分20.(本小题满分10分)解:(1)从4名男生中选出2人,有24C 种方法,从6名女生中选出3人,有36C 种方法,根据分步计数原理,选出5人共有2346C C ⋅种方法.由于3名女生必须排在一起,可先将她们看成一个整体与2名男生进行排列,然后将3名女生进行排列,于是,所求的排法种数是23334633C C A A 620664320⋅⋅⋅=⨯⨯⨯=,故选出的5人中,3名女同学必须排在一起共有4320种排法.……………………5分 (2)在选出的5人中,若2名男生不相邻,则第一步先排3名女生,有33A 种排法,第二步让男生插空,有24A 种排法,因此所求的排法种数是23324634C C A A 6206128640⋅⋅⋅=⨯⨯⨯=,故选出的5人中,2名男同学不相邻共有8640种排法. ……………………10分 21.(本小题满分10分) 解:(1)记12A A ,分别表示甲击中9环,10环,12B B ,,3B 分别表示乙击中8环,9环,10环,记事件“甲、乙同时击中10环”为A ,事件“甲击中的环数多于乙击中的环数”为B ,则()23()P A P A B =⋅()()230.10.20.02P A P B =⋅=⨯=. ……………………5分 (2)分类:112122B A B A B A B =⋅+⋅+⋅,112122()()P A P A B A B A B =⋅+⋅+⋅ 112122()()()P A B P A B P A B =⋅+⋅+⋅112122()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ……………………10分。

高中数学选修2-3计数原理测试题(含答案)

高中数学选修2-3计数原理测试题(含答案)

高中数学选修2-3计数原理测试题(本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若m 为正整数,则乘积()()()=+++2021m m m m ( )A .20m AB .21m AC .2020+m AD .2120+m A2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A . 22 B . 30 C . 12 D . 153.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A .6 B .9 C .10 D .8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A .2024 B .264 C .132 D .1226. 在(a-b)99的展开式中,系数最小的项为( )A.T 49B.T 50C.T 51D.T 52 7. 数11100-1的末尾连续为零的个数是( )A.0B.3C.5D.78. 若425225+=x x C C ,则x 的值为 ( )A .4B .7C .4或7D .不存在9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A .34CB .3718C CC .3718C C -6D . 1248-C10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则nm等于( ) A .101B .51 C .103 D .52第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.设含有8个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则TS 的值为___________.12.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为 .13.在(x-1)11的展开式中,x 的偶次幂的所有项的系数的和为 .14. 六位身高全不相同的同学在“一滩”拍照留念,老师要求他们前后两排各三人,则后排每个人的身高均比前排同学高的概率是 . 15. 用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x .三、解答题(共计75分) 16.(12分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线? (2)以每三点为顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条? (4)分别以其中两点为起点和终点,最多可作出几个向量? 17.(12分)在二次项12)(n mbx ax (a >0,b >0,m,n ≠0)中有2m+n =0,如果它的展开式中系数最大的项恰是常数项,求它是第几项?18.(12分)由1,2,3,4,5,6,7的七个数字,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?(4)(1)中任意两偶然都不相邻的七位数有几个?19.(12分)2006年6月9日世界杯足球赛将在德国举行,参赛球队共32支,(1)先平均分成8个小组,在每组内进行单循环赛(即每队之间轮流比赛一次),决出16强(即取各组前2名)。

(完整版)选修2-3综合测试题带答案

(完整版)选修2-3综合测试题带答案

thin C.P(|ξ|<a)=1﹣2P(ξ<a)(a>0) D.P(|ξ|<a)=1﹣P(|ξ|>a)(a>0)
g and S .
nly o .
ne t从统计量中求出有 95%的把握认为吸烟与患肺病有关系,即表示有 5%的可能性使得推断出 hin 现错误,故 C 正确. g 故选:C. at a t 4.将 3 个不同的小球放入 4 个盒子中,则不同放法种数有( ) im A.81 B.64 C.12 D.14 e a 【考点】排列、组合及简单计数问题. nd 【分析】第一个小球有 4 众不同的方法,第二个小球也有 4 众不同的方法,第三个小球也有 A 4 众不同的放法,即每个小球都有 4 种可能的放法,根据分步乘法原理得到结果. ll t 【解答】解:本题是一个分步计数问题 hin 对于第一个小球有 4 众不同的方法, gs 第二个小球也有 4 众不同的方法, in 第三个小球也有 4 众不同的放法, th 即每个小球都有 4 种可能的放法, eir 根据分步计数原理知共有即 4×4×4=64 b 故选 B. ein g 5.以正方体的顶点为顶点的三棱锥的个数是( ) are A.C81C73 B.C84 C.C84﹣6 D.C84﹣12 go 【考点】计数原理的应用. od 【分析】从 8 个顶点中选 4 个,共有 C84 种结果,在这些结果中,有四点共面的情况,6 个 fo 表面有 6 个四点共面,6 个对角面有 6 个四点共面,用所有的结果减去不合题意的结果,得 r s 到结论. om 【解答】解:首先从 8 个顶点中选 4 个,共有 C84 种结果, e 在这些结果中,有四点共面的情况, thin 6 个表面有 6 个四点共面,6 个对角面有 6 个四点共面,
的方向为向上或向右,并且向上、向右移动的概率都是 .质点 P 移动 5 次后位 于点(2,3)的概率为( )

高二数学选修2-3排列组合测试题2

高二数学选修2-3排列组合测试题2

高二数学选修2-3排列组合测试题2一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18 B.24 C.30 D.362.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有()A.24种B.60种C.90种D.120种3.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人4.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()A.100 B.90 C.81 D.725.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有() A.30种B.35种C.42种D.48种6.(2010·全国Ⅱ理,6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) A.12种B.18种C.36种D.54种7.某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选的不同选法有16种,则小组中的女生数为() A.2 B.3 C.4 D.58.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为() A.300 B.216 C.180 D.1629.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有() A.252种B.112种C.20种D.56种10.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中任何两个数的和不等于11,则这样的的子集共有() A.10个B.16个C.20个D.32个11.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( ) A.30种B.35种C.42种D.48种12.已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有()二、填空题13.设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射的个数为____8____.14.设椭圆x2m+y2n=1的焦点在y轴上,m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆个数为________20________.15.已知m∈{3,4,5},n∈{0,2,7,8},r∈{1,8,9},则方程(x-m)2+(y-n)2=r2可以表示不同圆____36____个.16.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有____11____种.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17、六个人按照下列要求站成一排:(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙相邻,且丙、丁不相邻(5)甲、乙站两端;(6)甲、乙、丙按从左到右,从高到矮的顺序.(7)甲、乙之间恰好间隔两人;(8)甲不站左端、乙不站右端;18、有9本不同的书,按下列方式分配,有多少种不同的分配方式?(1)一人得4本,一人得3本,一人得2本;(2)甲得4本,乙得3本,丙得2本;(3)平均分成三份,每份3本;(4)甲、乙、丙分别得3本;19、用0,1,2,3,4,5这六个数字:(1)可以组成多少个数字不重复的三位数;(2)可以组成多少个数字不重复的四位偶数;(3)可以组成多少个数字不重复的五位奇数;(4)可以组成多少个数字不重复的能被5整除的数;(4)可以组成多少个数字不重复的小于1000的自然数;20、口袋中有10个编号不同的球,其中6个白球,4个红球,规定取到一个白球得1分,取到一个红球得2分,现从袋中任取4个球,欲使总分不少于5分,这样的取法有多少种?21、从7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种?(1)甲、乙两人必须当选;(2)甲、乙两人必不当选;(3)甲、乙两人不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体委等5种不同的工作,但体委必须由男生担任,班长必须由女生担任。

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测题(含答案解析)(2)

一、选择题1.已知随机变量ξ服从正态分布(1,2)N ,则(23)D ξ+=( ) A .4B .6C .8D .112.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.随机变量X 的取值为0,1,2,若1(0)5P X ==,()1E X =,则()D X =( )A .15B .25C D 4.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则( )A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ> D .()()D D ηξ<5.将4个文件放入到3个盒子中,随机变量X 表示盒子中恰有文件的盒子个数,则EX 等于( ) A .6227B .73C .6427D .65276.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( ) A .9mB .3mC .mD .32m +7.设X 为随机变量,且1:,3X B n ⎛⎫ ⎪⎝⎭,若随机变量X 的方差()43D X =,则()2P X == ( )A .4729B .16C .20243D .802438.设随机变量X 的分布列为()()1,2,32iP X i i a===,则()2P X ≥= ( ) A .16B .56 C .13D .239.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,(02)P ξ<<=( ). A .0.6 B .0.4C .0.3D .0.210.如果()20,X B p ,当12p =且()P X k =取得最大值时, k 的值是( )A .8B .9C .10D .1111.2017年5月30日是我国的传统节日端午节,这天小明的妈妈为小明煮了5个粽子,其中两个大枣馅三个豆沙馅,小明随机取出两个,事件A =“取到的两个为同一种馅”,事件B =取到的两个都是豆沙馅”,则(|)P B A =( ) A .34B .14C .110D .31012.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,若1()3E X =,则(31)D X +的值是______14.在高三的一个班中,有14的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生人数1(5,)4B ξ~,则()P k ξ=取最大值时k =_______.15.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为___________ 16.若随机变量~(2,)X B p ,随机变量~(3,)Y B p ,若4(2)9P X ==,则(21)E Y +的值为_______.17.(理)假设某10张奖券中有一等奖1张,奖品价值100元;有二等奖3张,每份奖品价值50元;其余6张没有奖.现从这10张奖券中任意抽取2张,获得奖品的总价值ξ不少于其数学期望E ξ的概率为_________.18.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是_______.19.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X 的均值EX=_____.20.设随机变量ξ的分布列为P (ξ=k )=300-30012C?33kkk ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭(k=0,1,2,…,300),则E (ξ)=____.三、解答题21.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色的单车的投放比例为2:1.监管部门为了了解两种颜色的单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同. (1)求抽取的5辆单车中有2辆是蓝色颜色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机地抽取一辆送技术部门作进一步抽样检测,并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机地抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车以ξ表示,求ξ的分布列. 22.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用,X Y 分别表示这4个人中去甲、乙两地的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望()E ξ.23.某省高考改革新方案,不分文理科,高考成绩实行“33+”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S ,从学生群体S 中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;(II)从所调查的50名学生中任选2名,记X 表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X 的分布列和数学期望;(III)将频率视为概率,现从学生群体S 中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y ,求事件“2y ≥”的概率.24.国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm )在区间[]165,175内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为[)165,167,[)167,169,[)169,171,[)171,173,[]173,175五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.(1)请根据频率分布直方图估计样本的平均数x 和方差2s (同一组中的数据用该组区间的中点值代表);(2)根据样本数据,可认为受阅女兵的身高X (cm )近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )求()167.86174.28P X <<;(ii )若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm 以上的概率.参考数据:若()2~,X N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=11510.7≈,100.95440.63≈,90.97720.81≈,100.97720.79≈.25.在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数X 的分布列; (2)取出的3个球中红球个数多于白球个数的概率.26.某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动. (1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由已知条件求得()2D ξ=,再由2(23)2()D D ξξ+=⨯,即可求解. 【详解】由题意,随机变量ξ服从正态分布(1,2)N ,可得()2D ξ=, 所以2(23)2()8D D ξξ+=⨯=. 故选:C . 【点睛】本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中解答中熟记方差的求法是解答的关键,着重考查了计算能力.2.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.3.B解析:B 【分析】设(1)P X p ==,(2)P X q ==,则由1(0)5P X ==,()1E X =,列出方程组,求出35p =,15q =,由此能求出()D X . 【详解】设(1)P X p ==,(2)P X q ==,1()0215E X p q =⨯++=①,又115p q ++=,② 由①②得,35p =,15q =, 2221312()(01)(11)(21)5555D X ∴=-+-+-=,故选:B . 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.4.D解析:D 【分析】根据题意,列表求得随机变量ξ及η的分布列,可知均为两点分布.由两点分布的均值及方差表示出()(),E D ξξ和()E η()D η,根据01p <<比较大小即可得解. 【详解】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<. 则随机变量ξ的分布列为:所以,1E p D p p ==- 随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E p ηξξ=-=-所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):则1121E p p p p p p =-+-=-()()()()22211121D p p p p p p p p η=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误. ()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确 故选:D 【点睛】本题考查了随机变量的分布列,两点分布的特征及均值和方差求法,属于中档题.5.D解析:D 【分析】本道题分别计算X=1,2,3对应的概率,然后计算数学期望,即可. 【详解】()()()21322213432423441141,2327327C C C A C C C P X P X +======, ()234344339C A P X ===列表:所以数学期望1232727927EX =⋅+⋅+⋅=,故选D . 【点睛】本道题考查了数学期望的计算方法,较容易.6.A解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .7.D解析:D 【解析】随机变量X 满足二项分布,所以1224(),3393D x npq n n ==⨯⨯==n=6,所以224612(2)()()33P X C ===80243,选D.8.B解析:B 【解析】 由概率和为1,可知1231222a a a++=,解得3a =,()P X 2≥=235(2)(3)666P X P X =+==+=选B. 9.C解析:C 【解析】∵P (ξ<4)=0.8,∴P (ξ>4)=0.2,由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3 10.C解析:C 【解析】因为()20,X B p ~,12p =,所以()20202020111222kkk k P X k C C -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当10k = 时20kC 取得最大值,故选C. 11.A解析:A 【解析】由题意,2223C +C 4P A ==1010(),23C 3P AB ==1010()P AB 3P A |B ==P A 4()()()∴,故选:A .【思路点睛】求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=n AB n A ()(),其中n(AB)表示事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数. 二是直接根据定义计算,P(B|A)=p AB p A ()(),特别要注意P(AB)的求法.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34,故选B .二、填空题13.5【分析】由离散型随机变量的分布列的性质可知结合数学期望公式和abc 成等差数列列出式子求出各个概率的值以及方差并代入即可【详解】abc 成等差数列又且联立以上三式解得:则故答案为:5【点睛】本题考查随解析:5 【分析】由离散型随机变量的分布列的性质可知, 1a b c ++=,结合数学期望公式和a ,b ,c 成等差数列列出式子,求出各个概率的值以及方差,并代入(31)D X +即可. 【详解】a ,b ,c 成等差数列,2b a c ∴=+, 又1a b c ++=,且1()3E X a c =-+=,联立以上三式解得:111,,632a b c ===, ()22211111151013633329D X ⎛⎫⎛⎫⎛⎫∴=--⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()25(31)3959D X D X +==⨯=,故答案为: 5. 【点睛】本题考查随机变量的分布列以及随机变量的方差的求法,解题时需认真审题,注意使用离散型随机变量的分布列的性质和数学期望的性质,结合等差数列合理运用.14.1【分析】可得则且计算可得【详解】解:依题意可得则且解得又所以故答案为:1【点睛】本题考查了二项分布列的概率计算公式组合数的计算公式考查了推理能力与计算能力属于中档题解析:1 【分析】1~(5,)4B ξ,可得5511()()(1)44k k k P k C ξ-==⨯-.则()(1)P k P k ξξ=≥=-且()(1)P k P k ξξ=≥=+计算可得.【详解】解:依题意,可得5511()()(1)44kk k P k C ξ-==⨯-则5C k3()45k-1()4k15C k -≥3()45(1)k --1()41k -,且5C k3()45k-1()4k ≥15C k +5(1)3()4k -+11()4k +, 解得12k ≤≤32,又*k N ∈,所以1k =. 故答案为:1 【点睛】本题考查了二项分布列的概率计算公式、组合数的计算公式,考查了推理能力与计算能力,属于中档题.15.3500【分析】设检测机器所需检测费为则的可能取值为200030004000分别求出相应的概率由此能求出所需检测费的均值【详解】设检测的机器的台数为则的所有可能取值为234所以所需的检测费用的均值为解析:3500 【分析】设检测机器所需检测费为X ,则X 的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值.【详解】设检测的机器的台数为X ,则X 的所有可能取值为2,3,4.1123223233522513133(2000),(3000),(4000)1101010105A C A A A P X P X P X A A +========--=所以所需的检测费用的均值为()133200030004000350010105E X =⨯+⨯+⨯=. 故答案为: 3500. 【点睛】本题考查离散型随机变量的分布列和均值,考查学生分析问题的能力,难度一般.16.5【分析】根据随机变量和求出从而确定随机变量再用均值公式求解【详解】因为随机变量所以所以所以随机变量所以所以故答案为:5【点睛】本题主要考查了随机变量的二项分布还考查了运算求解的能力属于基础题解析:5 【分析】根据随机变量~(2,)X B p ,和2224(2)9===P X C p 求出p ,从而确定随机变量~(3,)Y B p ,再用均值公式求解.【详解】因为随机变量~(2,)X B p ,所以2224(2)9===P X C p 所以23p =所以随机变量2~(3,)3Y B , 所以()2==E Y np所以(21)2()15+=+=E Y E Y 故答案为:5 【点睛】本题主要考查了随机变量的二项分布,还考查了运算求解的能力,属于基础题.17.【分析】奖品的总价值可能值为050100150分别求出求出期望即可求解【详解】奖品的总价值可能值为050100150其分布列为 150 获得奖品的总价值不少于其数学期望的概率即获解析:23【分析】奖品的总价值ξ可能值为0,50,100,150,分别求出()0P ξ=,5(0)P ξ=,0(0)1P ξ=,5(0)1P ξ=,求出期望,即可求解.【详解】奖品的总价值ξ可能值为0,50,100,150,262101()03C P C ξ===,11632105502()C C P C ξ===,1263210+101()50C C P C ξ===,132101(150)15C P C ξ===, 其分布列为()0501001505055515E ξ=⨯+⨯+⨯+⨯=,获得奖品的总价值ξ不少于其数学期望E ξ的概率, 即获得奖品的总价值ξ不少于50的概率为23. 故答案为:23【点睛】本题考查离散型随机变量的期望,求出随机变量的概率是解题的关键,属于中档题.18.46【分析】得分不低于300分包括得300分或得400分这两种情况是互斥的根据互斥事件和相互独立事件的概率公式得到答案【详解】解:设同学甲答对第i 个题为事件则且相互独立同学甲得分不低于300分对应于解析:46 【分析】得分不低于300分包括得300分或得400分,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到答案. 【详解】解:设“同学甲答对第i 个题”为事件(1,2,3)i A i =,则()10.8P A =,()20.6P A =,()30.5P A =,且1A ,2A ,3A ,相互独立,同学甲得分不低于300分对应于事件()()()123123123A A A A A A A A A ⋂⋂⋃⋂⋂⋃⋂⋂发生,故所求概率为()()()123123123P P A A A A A A A A A ⎡⎤=⋂⋂⋃⋂⋂⋃⋂⋂⎦⎣()()()123123123P A A A P A A A P A A A =⋂⋂+⋂⋂+⋂⋂ ()()()()()()()()()123123123P A P A P A P A P A P A P A P A P A =++0.80.60.50.80.40.50.20.60.50.46=⨯⨯+⨯⨯+⨯⨯=.故答案为0.46【点睛】本题考查相互独立事件同时发生的概率,考查应用概率知识解决实际问题的能力,是一个综合题,注意对题目中出现的“不低于”的理解19.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.20.【解析】分析:由二项分布的期望公式计算详解:由题意得ξ~B 所以E(ξ)=300=100点睛:本题考查二项分布的期望计算公式若则解析:【解析】分析:由二项分布的期望公式计算. 详解:由题意,得ξ~B 1300,3⎛⎫ ⎪⎝⎭,所以E (ξ)=30013⨯=100. 点睛:本题考查二项分布的期望计算公式.若(,)B n p ξ,则E np ξ=,(1)D np p ξ=-.三、解答题21.(1)80243;(2)分布列答案见解析. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为13,用X 表示“抽取的5辆单车中蓝颜色单车的个数”,则X 服从二项分布,即15,3XB ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有2辆是蓝颜色单车的概率为3225218033243P C ⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4,()103P ξ==,()2121339P ξ==⨯=,()221423327P ξ⎛⎫==⨯= ⎪⎝⎭, ()321833381P ξ⎛⎫==⨯= ⎪⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 22.(1)827;(2)19;(3)分布列答案见解析,数学期望:14881. 【分析】(1)参加甲游戏的概率P=13,设"这4个人中恰有k 人去参加甲游戏"为事件A k (k =0,1,2,3,4),可求这4个人中恰有2个人去参加甲游戏的概率()2P A ,计算即可得出结果; (2)由(1)可知求()()34P A P A +;(3)ξ的所有可能取值为0,2,4,写出其对应的概率和分布列. 【详解】依题意知,这4个人中每个人去甲地的概率为13,去乙地的概率为23.设“这4个人中恰有i 人去甲地”为事件0,1,2,3,4i A i =(),则4-412()()()33iiii P A C =.(1)这4个人中恰有2人去甲地的概率为22224128()()()3327P A C ==(2)设“这4个人中去甲地的人数大于去乙地的人数”为事件B ,则34B A A =⋃,由于3A 与4A 互斥,故3144443341211()()()3339PB P A PC C A =++==()()(). 所以这4个人中去甲地的人数大于去乙地的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于1A 与3A互斥,0A 与4A 互斥, 故28270PP A ξ===()(),1340812P P A P A ξ==+=()()(), 0417814P P A P A ξ==+=()()(). 所以ξ的分布列为:故1714827801818124Eξ=⨯+⨯+⨯=(). 【点睛】本小题主要考查古典概型及其概率计算公式、互斥事件、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力.应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,对二项分布的正确判读是解题的关键,属于一般难度题型. 23.(Ⅰ)2949; (Ⅱ)见解析; (Ⅲ)1116.【解析】试题分析:(Ⅰ)设“所选取的2名学生选考物理、化学、生物科目数量相等”为事件的概率,从而得到选考物理、化学、生物科目数量不相等的概率;(Ⅱ)由题意得到随机变量的取值,计算其概率,列出分布列,根据公式求解数学期望. (Ⅲ)由题意得所调查的学生中物理、化学、生物选考两科目的学生的人数,得到相应的概率,即可求解“2Y ≥”的概率. 试题(Ⅰ)记“所选取的2名学生选考物理、化学、生物科目数量相等”为事件A则()222525202502049C C C P A C ++== 所以他们选考物理、化学、生物科目数量不相等的概率为()29149P A -=(Ⅱ)由题意可知X 的可能取值分别为0,1,2()2225252025020049C C C P X C ++===, ()1111525202525025149C C C C P X C +=== ()115202504249C C P X C === 从而X 的分布列为()01249494949E X =⨯+⨯+⨯= (Ⅲ)所调查的50名学生中物理、化学、生物选考两科目的学生有25名 相应的概率为251502P ==,所以Y ~14,2B ⎛⎫⎪⎝⎭所以事件“2Y ≥”的概率为()223423444411111112112222216P Y C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≥=-+-+= ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 24.(1)170x =,2 4.6s =;(2)(i )0.8185;(ii )0.21 【分析】(1)由题意求出各组频率,由平均数公式及方差公式即可得解; (2)(i )由题意结合正态分布的性质即可得解;(ii )由题意结合正态分布的性质可得()174.280.0228P X >=,再由()10110.0228P =--即可得解.【详解】(1)由题知第三组的频率为750.375200=, 则第五组的频率为0.70.3750.12520.075--⨯=,第二组的频率为10.70.0520.2--⨯=,所以五组频率依次为0.1,0.2,0.375,0.25,0.075,故0.11660.21680.3751700.251720.075174170x =⨯+⨯+⨯+⨯+⨯=,22222(170166)0.1(170168)0.2(170172)0.25(170174)0.075s =-⨯+-⨯+-⨯+-⨯4.6=;(2)由题知170μ=, 2.14σ==≈,(i )()()167.86174.282P X P X μσμσ<<=-<<+()()()222P X P X P X μσμσμσμσμσμσ-<<+--<<+=-<<++0.95440.68260.68260.81852-=+=;(ii )()()10.9544174.2820.02282P X P X μσ->=>+==, 故10人中至少有1人的身高在174.28cm 以上的概率:()1010110.022810.977210.790.21P =--=-≈-=.【点睛】本题考查了频率分布直方图的应用,考查了正态分布的应用,属于中档题. 25.(1)详见解析;(2)13. 【分析】(1)优先表示随机变量可能的取值,显然该事件服从超几何分布,由其概率计算公式分别求得对应概率即可列出分布列;(2)事件“红球个数多于白球个数” 可以分解为,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,再由计数原理和古典概型概率公式分别计算概率,最后由相互独立事件的概率计算方式求得答案. 【详解】(1)题意知X 的所有可能取值为0,1,2,3,且X 服从参数为10N =,3M =,3n = 的超几何分布,因此 ()()337310C C 0,1,2,3C k k P X k k -===. 所以 ()0337310C C 3570C 12024P X ====, ()1237310C C 63211C 12040P X ====,()2137310C C 2172C 12040P X ====,()3037310C C 13C 120P X ===.故 X 的分布列为 :(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A , 由于事件1A ,2A ,3A彼此互斥,且123A A A A =++, 而()12341310C C 3C 20P A ==,()()27240P A P X ===,()()313120P A P X ===, 所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=. 答:取出的3个球中红球个数多于白球个数的概率为13. 【点睛】本题考查求超几何分布事件的分布列,还考查了相互独立事件的概率的计算,属于中档题. 26.(1)13;(2)15;(3)12.【分析】(1)将所有的基本事件一一列举出来,从中找出该事件所发生的基本事件,从而计算概率;(2)利用条件概率的公式即可计算结果; (3)与(2)解法相同. 【详解】(1)记4名男生为A ,B ,C ,D ,2名女生为a ,b , 从6名成员中挑选2名成员,有AB ,AC ,AD ,Aa ,Ab ,BC ,BD ,Ba ,Bb ,CD ,Ca ,Cb ,Da ,Db ,ab 共有15种情况,,记“男生甲被选中”为事件M ,不妨假设男生甲为A事件M 所包含的基本事件数为AB ,AC ,AD ,Aa ,Ab 共有5种,故()51153P M ==. (2)记“男生甲被选中”为事件M ,“女生乙被选中”为事件N , 不妨设女生乙为b , 则()115P MN =,又由(1)知()13P M =, 故()()()15P MN P N M P M ==. (3)记“挑选的2人一男一女”为事件S ,则()815P S =, “女生乙被选中”为事件N ,()415P SN =,故()() ()12 P SNP N SP S==.【点睛】本题考查了等可能事件的概率,列举法求古典概型的概率,条件概率的计算,属于中档题.。

(完整版)高二数学选修2-3测试题(含答案)经典.doc

10个白球,5个红球。从袋中任取
2
个球,所取的2个球中恰有
1个白球,1个红球的概率为(

A.1
B.
11
10
D.
5
21
C.
21
21

.(x2
x
y)5的展开式中,
x5y2的系数为( )
(A)10
(B)20
(C)30
(D)60

.一个家庭中有两个小孩, 已知其中有一个是女孩,
则这时另一个小孩是男孩的概率为
x
14.已知随机变量
X服从二项分布
B n, p,若E
X 30,
V
DX 20
,则p
1
.
3
15.用数字0,1,2,3,4,5组成没有重复数字的
,4位数,
其中偶数的个数为
.156
DE
16.有一小球从如图管道的入口
V处落下,在管道的每一个节A
B
C
点等可能地选择路径,则小球最后落到
C点处的概率是
3
(第16题)
11.
已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为
1,要使敌机
5
一旦进入这个区域内有
90%以上的概率被击中,至少需要布置高射炮的门数是(

(参考数据lg
2 0.301,lg3
0.4771

(A)8个
(B)9个
(C)10个
(D)11个
12.
某个部件由三个元件按下图方式连接而成,元件
18.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个
红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的

高中数学选修2-3测试题及答案


数为 ( )
A.24
B.18
C.12
D.6
4、两人进行乒乓球比赛,先赢 3 局者获胜,决出胜负为止,则所有可能出现的情形(各人输
赢局次的不同视为不同情形)共有 ( )
A.10 种
B.15 种
C.20 种
D.30 种
5、现安排甲、乙、丙、丁、戊 5 名同学参加上海世博会志愿者服务活动,每人从事翻译、导
(3)全部选法有 C512种,A,B 全当选有 C310种,
故 A,B 不全当选有 C512-C310=672 种.L L L 6 分
(4)注意到“至少有 2 名女生”的反面是只有一名女生或没有女生,故可用间接法进行,
∴有 C512-C15·C47-C57=596(种).L L L 9 分
(5)分三步进行:
18、(12 分)已知(1-2x)7=a0+a1x+a2x2+…+a7x7.求: (1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.
3
4 19、(12 分)某同学参加 3 门课程的考试 .假设该同学第一门课程取得优秀成绩的概率为 5,
∑x2i-10 x
2
y
55 =
950-10×55×91.7 38 500-10×552 ≈0.668.
i=1
aˆ = y - bˆ x =91.7-0.668×55=54.96.
因此,所求的回归直线方程为 yˆ =0.668x+54.96. L L 10 分 (3)当 x=200 时,y 的估计值为
156x2+
1 5 的展开式的常数项,而(a2 x
+1)n 展开式的二项式系数最大的项的系数等于 54,求 a 的值.

数学选修2-3真题及解析Ⅱ

数学选修2-3真题及解析Ⅱ单选题(共5道)1、在等差数列{an}中,a5=30,a8=15,则(x-1)5+(x-1)6的展开式中含x4项的系数是该数列的()A第13项B第9项C第7项D第6项2、已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A212B211C210D293、卖水果的某个体户,在不下雨的日子可赚100元,在雨天则要损失10元。

该地区每年下雨的日子约有130天,则该个体户每天获利的期望值是(1年按365天计算)()A90元B45元C55元D60.82元4、袋中有大小相同的5个钢球,分别标有1、2、3、4、5五个号码。

在有放回的抽取条件下依次取出2个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是[]A25B10C9D55、在学校的一次演讲比赛中,高一、高二、高三分别有1名、2名、3名同学获奖,将这六名同学排成一排合影,要求同年级的同学相邻,那么不同的排法共有A6种B36种C72种D120种简答题(共5道)6、一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率;(Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X,求随机变量X 的分布列.7、某生物兴趣小组对A、B两种植物种子的发芽率进行验证性实验,每实验一次均种下一粒A种子和一粒B种子.已知A、B两种种子在一定条件下每粒发芽的概率分别为.假设两种种子是否发芽互相不受影响,任何两粒种子是否发芽互相也没有影响.(1)求3粒A种子,至少有一粒未发芽的概率;(2)求A、B各3粒种子,A至少2粒发芽且B全发芽的概率;(3)假设对B种子的实验有2次发芽,则终止实验,否则继续进行,但实验的次数最多不超过5次,求对B种子的发芽实验终止时,实验次数ξ的概率分布和数学期望.8、一些棋手进行单循环制的围棋比赛,即每个棋手均要与其它棋手各赛一场,现有两名棋手各比赛3场后退出了比赛,且这两名棋手之间未进行比赛,最后比赛共进行了72场,问一开始共有多少人参加比赛?9、36.求:(12分)(1)甲独立解出该题的概率;(2)解出该题的人数的数学期望.10、2010年广州亚运会乒乓球团体赛中,每场比赛女选手采用三局两胜制,男选手采用五局三胜制,按选手实力估计,每位中国男、女选手战胜国外对应选手的概率大致为.(1)求中国某男选手甲以3:2战胜国外男选手乙的概率;(2)用概率知识解释每场比赛中,赛制对中国男选手有利还是对中国女选手更有利.(3)中国女选手丙与国外女选手丁比赛中,求丁获胜局数ξ的分布列和数学期望.填空题(共5道)11、1+3+32+…+399被4除,所得的余数为________.12、(x-)8的展开式中x2的系数为______.13、的展开式中的第四项是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化学习手册河北省邢台县会宁中学高二阶段复习练数学答案和解析1.【答案】D【解析】【分析】本题考查分步乘法计数原理应用问题,属基础题.由分步乘法计数原理计算即可.【解答】解:如果规定每位同学必须报名,则每人有且只有两个选择,故不同的报名方法共有种.故选D.2.【答案】D【解析】【分析】本题主要考查了离散型随机变量,属于基础题.由题意,得出总得分X的所有可能取值.【解答】解:选手甲可能回答的结果有全对,两对一错,两错一对,全错,共4种,相应得分为300分,100分,分,分,所以X的所有可能取值的个数是4,故选D.3.【答案】B【解析】【分析】本题考查了离散型随机变量的概率分布列及其性质,属于基础题.由,求出a的值,,代入即可.【解答】解:依题意,解得.所以.故选:B.4.【答案】A【解析】【分析】本题主要考查二项展开式的通项公式,项的系数的求解,属于基础题.由题意利用二项展开式的通项公式,求出展开式的系数.【解答】解:根据展开式的通项公式为,令,可得的系数是,故选:A.5.【答案】C【解析】【分析】本题主要考查组合及组合数公式的应用,属于基础题.由条件,解得,代入要求的式子运算求得结果.【解答】解:,解得.,故选C.6.【答案】A【解析】【分析】本题考查了回归直线方程,根据线性回归方程过样本的中心,求解即可.【解答】解:这个被墨水遮住的数为m,因为线性回归方程过样本的中心,所以,解得.故选A.7.【答案】D【解析】【分析】本题考查了利用排列组合求概率;先求出所有的事件数,再求出满足条件的事件数,从而求得结果.【解答】解:由题意,所有的事件数为,满足条件的事件数为,所以所求的概率为.故选D.8.【答案】B【解析】【分析】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望、方差的性质等基础知识,考查运算求解能力,是中档题.由随机变量X的分布列,求出,从而求出,由此能求出的值.【解答】解:由随机变量X的分布列,得:,解得,,.故选:B.9.【答案】C【解析】【分析】本题考查了独立性检验的应用.计算,结合临界值表可得答案.【解答】解:,故有的把握认为语文成绩是否优秀与性别有关系.故选:C.10.【答案】A【解析】【分析】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:由题意可得只有第六项的二项式系数最大,,故展开式的通项公式为,令,求得,故展开式中的常数项是,故选A.11.【答案】A【解析】【分析】本题考查概率的求法,是中档题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.【解答】解:甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.甲队以3:2获得比赛胜利是指前四局比赛甲、乙两队2:2平,第五局比赛甲胜,甲队以3:2获得比赛胜利的概率为:.故选A.12.【答案】D【解析】【分析】本题考查了二项分布列的性质,考查二项分布的期望与方差,考查了推理能力与计算能力,属于中档题.设A学生答对题的个数为m,得分5m,则同理,设B学生答对题的个数为n,得分5n,则,利用二项分布列的性质即可得出.【解答】解:设A学生答对题的个数为m,得分5m,则,,.设B学生答对题的个数为n,得分5n,则,,..故选:D.13.【答案】【解析】【分析】本题考查了正态分布的对称性特点,属于基础题.随机变量X服从正态分布,得到曲线关于称,根据曲线的对称性得到,根据概率的性质得到结果.【解答】解:随机变量服从正态分布,曲线关于对称,,则.故答案为:.14.【答案】24【解析】【分析】本题考查排列、组合的应用,注意优先分析受到限制的元素.个性化学习手册根据题意,设4名毕业生为甲、A、B、C,分2种情况讨论:,甲单独一人分配到B或C部门,,甲和其他人一起分配到B或C部门,由加法原理计算可得答案.【解答】解:根据题意,设4名毕业生为甲、A、B、C,分2种情况讨论:,甲单独一人分配到B或C部门,则甲有2种情况,将A、B、C分成2组,有种分组方法,再将2组全排列,分配到其他2个部门,有种情况,则此时有种安排方法;,甲和其他人一起分配到B或C部门,在A、B、C中任选1人,与甲一起分配到B或C部门,有种情况,将剩余的2人全排列,分配到其他2个部门,有种情况,则此时有种安排方法;则一共有种不同的安排方法;故答案为:2415.【答案】【解析】【分析】本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键.设已知第一次取出的是白球为事件A,第二次也取到白球为事件B,先求出的概率,然后利用条件概率公式进行计算即可.【解答】解:设已知第一次取出的是白球为事件A,第二次取到白球为事件B.则由题意知,,,所以已知第一次取出的是白球,则第二次也取到白球的概率为.故答案为.16.【答案】【解析】【分析】本题考查了相关指数,相关系数,回归直线方程和独立性检验的应用,属于基础题.利用相关指数的概念对进行判断利用相关系数的概念对进行判断利用回归直线方程对进行判断最后利用独立性检验的方法和步骤对进行判断,从而得结论.【解答】解:在线性回归模型中,相关指数越接近于1,表示解释变量x对于预报变量y的相关性越强,回归效果越好,因此正确两个变量相关性越强,则相关系数的绝对值就越接近于1,因此正确在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均减少个单位,因此正确对分类变量X与Y的随机变量的观侧值k来说,k越小,“X与Y有关系”的把握程度越小,因此不正确.故答案为.17.【答案】解:由题意,在中,令,得,,的展开式中共有13项,第7项的二项式系数最大,该项为,所求的系数为59136.【解析】本题主要考查了二项展开式的特定项与特定项的系数,属于基础题在中,令,得求得n的值,第7项的二项式系数最大,代入公式求解.18.【答案】解:Ⅰ经计算:,,,又,故线性回归方程为:.Ⅱ当使用年限为8年时,支出的维修费估计为万元.【解析】本题考查了求回归方程问题,考查函数求值,是一道常规题.Ⅰ分别求出x,y的平均数,求出b,a的值,求出回归方程即可;Ⅱ代入x的值,求出y的预报值即可.19.【答案】解:Ⅰ随机变量X表示所选3人中女生的人数,X可能取的值为0,1,2.,,,的分布列为:Ⅱ由知“所选3人中女生人数”的概率为.Ⅱ所选3人中女生人数,表示女生有1个人,或者没有女生,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.20.【答案】解:Ⅰ设双方10:10平后的第k个球甲获胜为事件2,3,,则.Ⅱ且甲获胜.【解析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.Ⅰ设双方10:10平后的第k个球甲获胜为事件2,3,,则,由此能求出结果.Ⅱ且甲获胜,由此能求出事件“且甲获胜”的概率.21.【答案】解:Ⅰ设至少有一种新产品研发成功的事件为事件A且事件B为事件A的对立事件,则事件B为一种新产品都没有成功,因为甲,乙研发新产品成功的概率分别为和.则,再根据对立事件的概率公式可得,故至少有一种新产品研发成功的概率为.Ⅱ由题可得设企业可获得利润为X,则X的取值有0,120,100,220,由独立试验的概率计算公式可得,,,,,所以X的分布列如下:则数学期望.【解析】本题主要考查对立事件的概率,离散型随机变量的分布列和数学期望,培养学生的计算能力,属于中档题.Ⅰ利用对立事件的概率公式,计算即可,Ⅱ求出企业利润的分布列,再根据数学期望公式计算即可.22.【答案】解:Ⅰ由频率分布直方图各小长方形面积总和为1,可知,解得;Ⅱ由频率分布直方图知,晋级成功的频率为,所以晋级成功的人数为人,根据上表数据代入公式可得,所以有超过的把握认为“晋级成功”与性别有关;Ⅲ由频率分布直方图知晋级失败的频率为,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为,所以X可视为服从二项分布,即,,故,,,,.所以X的分布列为:个性化学习手册数学期望为或.【解析】本题考查了频率分布直方图和离散型随机变量的分布列、数学期望的应用问题,属于中档题.Ⅰ由频率和为1,列出方程求a的值;Ⅱ由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;Ⅲ由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量X服从二项分布,计算对应的概率值,写出分布列,计算数学期望.。

相关文档
最新文档