《1 平行四边形的性质》教案4

合集下载

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案一、教学目标1. 知识目标:了解平行四边形的定义、判定方法和性质。

2. 技能目标:能够熟练运用平行四边形的性质解决相关问题。

3. 情感目标:培养学生对数学知识的兴趣,提高其学习成绩。

二、教学内容平行四边形的性质三、教学重点和难点1. 教学重点:平行四边形的概念、判定方法和性质。

2. 教学难点:平行四边形的性质运用。

四、教学方法板书讲解法、演示法、讨论法、练习法等。

五、教学过程1. 掌握平行四边形的定义和判定方法向学生介绍平行四边形的图像,即四边形的对边是平行的,并要求学生观察和辨认课桌、书架、地板等日常生活中出现的平行四边形。

讲解平行四边形的判定方法:(1) 两对对边分别相等;(2) 一组对边既相等又平行;(3) 对角线互相平分。

2. 确定平行四边形的性质接着,将平行四边形的每个性质都列举出来,并逐一讲解、证明和举例,包括:(1) 对边相等;(2) 对角线相交于中点;(3) 相邻角互补,对角线上的角互补;(4) 同底角相等;(5) 高相等。

3. 如何运用平行四边形的性质解决问题让学生通过练习来掌握平行四边形的应用方法。

设计一些实际问题,如:(1) 已知平行四边形的底边长和高,求其面积;(2) 在平行四边形中连接一对对角线,若交点到底边的距离为3,求对角线的长度;(3) 在平行四边形中,两条对角线的长度分别为6和12,求平行四边形的周长。

六、教学总结通过本节课的学习,学生掌握了平行四边形的定义、判定方法和性质,并能够熟练运用其性质解决相关问题。

这不仅提高了学生的数学水平,而且激发了他们对数学知识的兴趣。

七、教学反思本节课采用了多种教学方法,如板书、演示、讨论和练习,充分调动了学生的积极性和主动性,使他们更好地理解和掌握了平行四边形的性质。

课堂互动也很活跃,体现了学生的主体性和学习能力。

但仍需注意语言表述、演示效果和练习难度的合理性,保证教学的具体效果。

平行四边形性质教案

平行四边形性质教案

平行四边形性质教案【教案】教学目标:1. 了解平行四边形的性质。

2. 掌握平行四边形的判定条件。

3. 学会运用平行四边形的性质解决相关问题。

教学重点:1. 平行四边形的定义。

2. 平行四边形的判定条件。

3. 运用平行四边形的性质解决问题。

教学难点:1. 平行四边形的判定条件的理解和应用。

2. 运用平行四边形的性质解决复杂问题。

教学过程:一、导入(5分钟)1. 通过展示一张平行四边形的图形,帮助学生了解平行四边形的外形。

2. 引导学生思考平行四边形的性质。

二、讲解平行四边形的定义和性质(15分钟)1. 平行四边形的定义:具有两组对边平行的四边形称为平行四边形。

2. 平行四边形的性质:a. 对边平行:平行四边形的两组对边分别平行。

b. 对角线互相平分:平行四边形的对角线互相平分。

c. 对角线等分:平行四边形的对角线相等。

三、引入平行四边形的判定条件(10分钟)1. 判定条件一:有一组对边平行即可判定为平行四边形。

2. 判定条件二:任意一对对角线互相平分即可判定为平行四边形。

3. 引导学生理解并运用这些判定条件。

四、练习和讨论(20分钟)1. 给学生发放练习题,并解释问题的解题思路。

2. 引导学生一起讨论解题方法和答案。

五、拓展应用(15分钟)1. 提供一些拓展问题,要求学生运用平行四边形的性质解决。

2. 引导学生探究更多平行四边形相关的知识点。

六、归纳总结(10分钟)1. 总结平行四边形的定义和性质。

2. 让学生回答关键问题,巩固所学内容。

七、课堂作业(5分钟)1. 布置课后作业,要求学生练习运用平行四边形的性质解决问题。

2. 引导学生思考不同类型的平行四边形问题。

教学反思:本节课通过讲解平行四边形的定义和性质,引入平行四边形的判定条件以及运用平行四边形的性质解决问题,使学生逐步掌握平行四边形的相关知识。

课堂上通过练习和讨论的形式,提高了学生的动手能力和思维能力。

课后作业的布置可以进一步巩固学生对平行四边形的理解和应用能力。

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。

教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。

教学重点掌握平行四边形和梯形的特征。

教学难点理解平行四边形、长方形、正方形的关系。

教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。

教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。

2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。

3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。

比赛开始!(学生活动:画四边形)4、学生展示画图的结果。

师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。

本节课我们一起来研究平行四边形和梯形。

【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。

二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。

[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。

学生操作学具探究,同时教师巡视指导。

【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。

通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。

二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。

但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。

在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。

三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:平行四边形的性质及其应用。

2.难点:对角线的性质和判定平行四边形的方法。

五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。

六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。

2.课件:平行四边形的性质及其应用。

七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。

2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。

设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。

3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。

学生互相检查,教师巡回指导。

设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。

4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。

设计意图:巩固所学知识,提高学生的判断能力。

《平行四边形的性质》教学设计范文

《平行四边形的性质》教学设计范文

《平行四边形的性质》教学设计范文《平行四边形的性质》教学设计范文篇一:《平行四边形的性质》教学设计一、教学目标1知识目标经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质;探索并掌握平行四边形的对边相等,对角相等的性质。

2能力目标在进行探索的活动过程中发展学生的探究能力,提高学生运用数学知识解决河题的能力;3情感目标在探索讨论中养成与他人合作交流的习惯,增强克复困难的勇气和信心。

二、教学内容及重点、难点:教学内容:1平行四边形的概念2平行四边形的性质3平行四边形的概念、性质的应用。

教学重点:探索平行四边形的性质教学难点:通过操作、思考、升化、归纳出结论教学方法:探索归纳证明三、教学对象分析这节内容通过小制作拼图引出平行四边形的定义,让学生经历探索、猜想、证明的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的更多性质,教师在教学过程中,结合具体的背景适时的让学生提出问题并寻求搭档解决问题,满足学生多样化的要求,这节内容对以后的菱形、矩形、正方形内容的引入埋下伏笔。

四、教学策略及教学设计设置问题情境,从上海世博会引入课题。

1.用图片(东方之冠,日常生活中平行四边形图片)展示平行四边形,引出平行四边形的相关概念(定义,对边,对角,对角线)2.让学生进行如下操作后,思考以下问题:(动动手幻灯片展示)小组合作,探究新知(学生思考、操作后,教师用PPT展示)答:(1)AB=CD,AD=CB(2)∠1=∠3 ,∠2=∠4,∠B=∠D(3)AD//BC ,AB//CD3.针对学生指出 AD//BC,AD//CD分析究其原因。

让学生分析,分小组讨论。

得出结论:∠1和∠3 是内错角,∠2和∠4是内错角,依据“内错角相等,两直线平行”4.平行四边形的定义,即“两组对边分别平行的四边形是平行四边形”通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。

《平行四边形的性质》说课教案

平行四边形的性质教学目标•了解平行四边形的定义和特点•掌握判断平行四边形的方法•学会解决平行四边形的相关问题教学重点•平行四边形的定义及性质•判断平行四边形的条件教学难点•平行四边形的属性的证明和推理教学准备•教案、教材、黑板、粉笔、直尺、量角器教学过程导入(5分钟)•引入导数:根据学生的生活经验,让学生讨论什么是平行四边形,有哪些特点。

观察(10分钟)•展示一张平行四边形的图片,并请学生观察,找出其中的特点。

交流(15分钟)1.根据学生观察的结果,引导学生讨论平行四边形的定义和性质。

2.教师在黑板上示范画出一个平行四边形,让学生观察并回答以下问题:–这个图形有哪些特点?–边是否相等?角是否相等?–这个图形的对边是否平行?–这个图形的相邻两边的两个内角之和是多少?对角之和是多少?讲解(20分钟)1.引导学生总结平行四边形的性质,并记录到黑板上。

2.讲解平行四边形的定义:四条边两两平行的四边形就是平行四边形。

3.讲解平行四边形的性质:–对边相等:平行四边形的对边长度相等。

–对角分别共线:平行四边形的对角线交于一点,并且这两条对角线上的点到四边形的各个顶点的距离相等。

–相邻两边的内角和:平行四边形的相邻两边的内角和等于180度。

实践(30分钟)1.学生在教材中找到相关练习题,并独立完成。

2.学生互相交流解题思路,讨论解答方法。

总结(10分钟)•整理学生的讨论结果,总结平行四边形的定义和性质。

课后练习•教师布置相关的课后练习题,要求学生独立完成。

反思•学生是否能够准确理解平行四边形的定义和性质,并能够熟练运用解决问题?•学生在课堂上的讨论和交流是否充分,对于案例能否给出合理解答?以上是本次课程的教学设计,通过引导学生观察和思考,让他们主动参与讨论。

通过引入实例及解题演练,帮助学生深入理解平行四边形的定义和性质,并提高解决问题的能力。

最后,布置课后练习巩固学生的知识。

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。

2. 培养学生的观察力、思维能力和空间想象能力。

3. 通过实践操作,提高学生的动手能力和合作学习的能力。

二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。

2. 教学难点:理解和应用平行四边形的性质。

三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。

2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。

3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。

4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。

5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。

四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。

平行四边形的性质的教案(精选10篇)

平行四边形的性质的教案平行四边形的性质的教案(精选10篇)作为一位不辞辛劳的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

教案应该怎么写呢?下面是小编精心整理的平行四边形的性质的教案,欢迎阅读与收藏。

平行四边形的性质的教案篇1教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学准备:多媒体课件教学过程第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

)1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)小组活动3:用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?(1)让学生动手操作、复制、旋转、观察、分析;(2)学生交流、议论;(3)教师利用多媒体展示实践的过程。

第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。

)实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

《平行四边形的性质(第一课时)》教案

《平行四边形的性质(第一课时)》教案一、教学目标1、知识与技能:(1)理解平行四边形的定义。

(2)能够根据定义推导出平行四边形的边角性质。

(3)能运用平行四边形的性质,推理证明有关几何图形中线段相等和角相等的问题。

2、过程与方法:让学生经历从实际问题中抽象出平行四边形,体会对几何图形研究的步骤,定义---性质---判定3、情感、态度与价值观:(1)经历平行四边形的认知过程,使学生体验到对几何图形研究学习的兴趣。

(2)通过学习,培养学生合作交流意识和探索能力二、教学重点和难点1、教学重点:根据定义探究出平行四边形的边角关系的猜想,并能利用全等证明出猜想。

2、教学难点:利用定义和性质,理解平行线间的距离概念并能得出平行线间的距离相等。

三、学法引导1、教学方法:将观察、思考、讨论贯穿于整个教学环节中,采用启发式教学法。

2、学生学法:教给学生多观察、动脑想、大胆猜、勤钻研的研讨式学习法四、教学过程(一)情境引入1、(出示幻灯片)我们一起来观察生活中的四边形,想一想它们是什么几何图形的形象?2、拿出学生自己做的平行四边形,观察其特点,你能总结出平行四边形的定义吗?(二)新知探究1.平行四边形:两组对边分别平行的四边形。

记作:ABCD2、平行四边形的性质:(1)平行四边形的对边平行且相等。

几何语言:∵四边形ABCD是平行四边形∴AB//DC,AD//BCAB=CD,CB=AD(2)平行四边形的对角相等。

几何语言:∵四边形ABCD是平行四边形∴∠B=∠D,∠A=∠C(3)平行四边形的邻角互补。

几何语言:∵四边形ABCD是平行四边形∴∠A+∠B=180°,∠B+∠C=180°∠C+∠D=180°,∠D+∠A=180°3、(1)两条平行线之间的距离:两条平行线中,一条直线上的任一点到另一条直线的距离。

(2)性质:两平行线间的距离相等。

(三)典型示例:已知:如图ABCD,求证:(1)AB=CD,CB=AD,(2)∠B=∠D,∠A=∠C(3)∠A+∠B=180°,∠B+∠C=180°(四)小试牛刀如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.(五)课堂小结1、你能归纳出这节课的学习内容吗?2、你能谈谈这节课的收获和体会吗?五、作业布置《基础训练》六、板书设计平行四边形的性质(第一课时)知识点例题练习七、课后反思本节课课堂气氛较为活跃,基本达到了预期教学效果,但引导学生思维的语言不够精炼,时间把握的不够好,课堂不够紧凑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《1 平行四边形的性质》教案
第1课时
教学目标
1、理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
2、会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.
教学重点和难点
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
难点:运用平行四边形的性质进行有关的论证和计算.
教学过程
一、课堂引入
我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?
你能总结出平行四边形的定义吗?
(1)定义:两组对边分别平行的四边形是平行四边形.
(2)表示:平行四边形用符号“”来表示.
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.
①∵AB//DC,AD//BC,∴四边形ABCD是平行四边形(判定);
②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).
二、探索
平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.
(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)
(2)猜想:平行四边形的对边相等、对角相等.
下面证明这个结论的正确性.
已知:如图ABCD,
求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.
(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)
证明:连接AC,
∵AB∥CD,AD∥BC,
∴∠1=∠3,∠2=∠4.
又AC=CA,
∴△ABC≌△CDA(ASA).
∴AB=CD,CB=AD,∠B=∠D.
又∠1+∠4=∠2+∠3,
∴∠BAD=∠BCD.
由此得到:
平行四边形性质1:平行四边形的对边相等.
平行四边形性质2:平行四边形的对角相等.
三、例题分析
例:如图,在平行四边形ABCD中,AE=CF.
求证:AF=CE.
分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.
证明略.
四、随堂练习
1、填空:
(1)在ABCD中,∠A=︒
50,则∠B=____度,∠C=____度,∠D=____度.
(2)如果ABCD中,∠A-∠B=240,则∠A=__度,∠B=__度,∠C=__度,∠D=__度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB=____cm,BC=____cm,CD=____cm,CD=____cm.
2、如图,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足.求证:BE=DF.
3、在下列图形的性质中,平行四边形不一定具有的是().
(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒
360
4、在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有()
(A)4个(B)5个(C)8个(D)9个
5、如图,AD∥BC,AE∥CD,BD平分∠ABC.求证AB=CE.
第2课时
教学目标
1、理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
教学重点和难点
重点:平行四边形对角线互相平分的性质,以及性质的应用.
难点:综合运用平行四边形的性质进行有关的论证和计算.
教学过程
一、探究
请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O 旋转
180,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?
结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分.
二、例题分析
例1:已知:如图,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:OE=OF,AE=CF,BE=DF.
证明:在ABCD中,AB∥CD,
∴∠1=∠2.∠3=∠4.
又OA=OC(平行四边形的对角线互相平分),
∴△AOE≌△COF(ASA).
∴OE=OF,AE=CF(全等三角形对应边相等).
∵ABCD,∴AB=CD(平行四边形对边相等).
∴AB—AE=CD—CF.即BE=FD.
例2:已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC .求BC 、CD 、AC 、OA 的长以及ABCD 的面积.
分析:由平行四边形的对边相等,可得BC 、CD 的长,在R t △ABC 中,由勾股定理可得AC 的长.再由平行四边形的对角线互相平分可求得OA 的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD 的面积.(平行四边形的面积小学学过,再次强调“底”是对应着“高”说的,平行四边形中,任一边都可以作为“底”,“底””确定后,“高”也就随之确定了.)解略.
三、随堂练习
1、如图,ABCD 中,AE ⊥BD ,∠EAD =60°,AE =2cm ,AC +BD =14cm ,则△OBC 的周长是_______cm .
2、ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是________cm .
3、判断对错
(1)在ABCD 中,AC 交BD 于O ,则AO =OB =OC =OD . ( )
(2)平行四边形两条对角线的交点到一组对边的距离相等. ( )
(3)平行四边形的两组对边分别平行且相等. ( )
(4)平行四边形是轴对称图形. ( )
4、在四边形ABCD 中,AC =6、BD =4,则AB 的范围是________.
5、在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x +3),(x -4)和16,则这个四边形的周长是________.
6、公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC .求小路BC ,CD ,OC 的长,并算出绿地的面积.。

相关文档
最新文档