高数试题1
高数试题1

西安邮电学院课程考试试题1课程名称:高等数学 考试专业、年级:工科08级一、填空(每小题2分,共20分)1.若 ()⎪⎩⎪⎨⎧≤->=0cos 70tan 3sin x x e x xx x f x α 在0=x 处连续,则=α . 2.1()11f x x =+的可去间断点是=x .3. 函数 ()x f y ln =,其中f 可微,则=dy .4.曲线2x e y -=在区间 是凸的.5.()331-=x y 的铅直渐近线的方程是 .6. ()()=⎰⎰x f d d .7.⎰-=⎪⎭⎫ ⎝⎛++2222sin 1cos ππdx x x x x . 8.若反常积分⎰10dx x M q 收敛,M 为常数,则q . 9.抛物线24x x y -=在其顶点处的曲率半径=R .10.给定两点()()0,3,2,1,0,2N M -,在x 轴上有点A ,满足AN AM =,则点A 的坐标是 .二.求解下列各题(每小题5分,共30分)1.求极限x x x x x sin tan lim 20-→.2.已知,9lim =⎪⎭⎫ ⎝⎛-+∞→xx a x a x 求a 的值. 3.设()x x x f ⎪⎭⎫ ⎝⎛+=11,计算⎪⎭⎫ ⎝⎛'21f . 4.设⎪⎩⎪⎨⎧-=++=t t y t t x arctan )1ln(2 ,求dx dy . 5.计算定积分⎰+21ln 1e x x dx . , 6.已知()x f 的一个原函数为xx cos ,求()⎰'dx x f x . 三.求解下列各题(每小题8分,共32分)1.设函数 ()x y y =由 1=-y xe y 所确定,求()()0,0y y ''' .2.设函数()⎪⎩⎪⎨⎧<≤≤-=-010122x xe x x x x f x ,求()⎰--221dx x f . 3.已知()()(),3,1,3,1,3,3,2,1,1321M M M -求与3231,M M M M 都垂直的单位向量; 问λ和μ满足什么关系时,能使3231M M M M μλ+与z 轴垂直?4.设()x f 在1≥x 是一个正值连续函数,试求()()⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=x dt t f t t x xx F 1ln 2ln 2在[)+∞,1的极值点. 四.(本题满分12分) 曲线22x y =在点2=x 处的切线与曲线及x 轴平面图形D . (1)求曲线在点2=x 处的切线方程;(2)求平面图形D 面积D S ;(3)求D 绕x 轴旋转所成旋转体体积V .五.(本题满分6分)设()x f 在[]b a ,上连续()0>a ,在()b a ,内可导,且()0≠'x f ,证明存在ξ与()b a ,∈η,使得()()ηηξf b a f '+='2.。
考研高数--巩固测试题 第一章极限习题附答案(包含全书考点)

第一章函数与极限答案解析一、选择题(本题共 15小题,每小题3分,满分 45 分)1、函数 x x x y sin cos + = 是【 】(A)偶函数 (B)奇函数(C)非奇非偶函数 (D)奇偶函数【答案】B2、函数 21arccos 1 + + - = x x y 的定义域是【 】(A) ] 1 , (-¥ (B) ]1 , 3 [ - - (C) )1 , 3 (- (D) ]1 , 3 [- 【答案】D【解析】 0 1 ³ -x 且 1 211 £ + £- x ,解得 1 3 £ £ - x 3、设 îíì > £ = 10 11) ( x x x f 则 ( ) [ ]{ } x f f f 等于【 】(A )0 (B )1(C) îíì > £ 1 0 1 1 x x (D) îíì > £ 1 1 1 0 x x 【答案】B4、当 +®0 x 时,与 x 等价是无穷小量的是【 】(A ) xe - 1 (B ) xx- + 1 1 ln(C ) 11 - + x (D ) xcos 1- 【答案】B【解析】 +®0 x 时, 等价 与 x 1 - - x e , 等价 与x x 2 1 1 1 - + , 等价 与 x x 21cos 1- 1 1 1lim 11 1 lim 1 1 ln lim 0 0 0 = - + = - - + - + +++® ® ® x x x x xx x x x x x 等价代换 ,等价 与 x xx - + \ 1 1 ln 5、设 tx tx t ee x xf + + = ® 1 lim ) ( 0 ,则 0 = x 是 ) (x f 的【 】(A )连续点 (B )第一类间断点 (C )第二类间断点 (D )不能判断连续性的点【答案】A【解析】 211 e lim 1 lim ) ( 0 00 0 + = + + = + + = ® ® x e x e e x x f t tx tx t 是R 上的连续函数, 0 = \x 是 ) (x f 的连续点 6、 n n x ¥® lim 存在是数列{ }n x 有界的【 】(A)必要而非充分条件 (B)充分而非必要条件(C)充要条件(D)既非充分又非必要条件【答案】B7、如果 ) ( lim 0x f x x + ® 与 ) ( lim 0x f x x -® 存在,则【 】(A) ) ( lim 0x f x x ® 存在且 )( ) ( lim 0 0x f x f x x = ® (B) ) ( lim 0x f x x ® 不存在(C) ) ( lim 0x f x x ® 存在但不一定有 )( ) ( lim 0 0x f x f x x = ® (D) ) ( lim 0x f x x ® 不一定存在【答案】D 8、设 xx x x x f 3 4 2 ) ( - + =,则 ) ( lim 0x f x ® 为【】(A )12(B)1 3(C)1 4(D)不存在【答案】D9、如果 ) ( ), ( x g x f 都在 0 x 点处间断,那么【 】(A) ) ( ) ( x g x f + 在 0 x 点处间断 (B) ) ( ) ( x g x f - 在 0 x 点处间断 (C) ) ( ) ( x g x f + 在 0 x 点处连续 (D) ) ( ) ( x g x f + 在 0 x 点处可能连续【答案】D10、方程 0 1 4= - - x x 至少有一个根的区间是【 】(A) (0,1/2) (B) (1/2,1)(C) (2,3)(D) (1,2)【答案】D 11、设ï îïí ì = ¹ - + = 0 , 0 0 , 11 ) ( x x xx x f ,则 0 = x 是函数 ) (x f 的【 】 ‘(A)可去间断点(B)无穷间断点(C)连续点 (D)跳跃间断点【答案】A 12、已知 0 )( lim0 = ® xx f x ,且 1 ) 0 ( = f ,那么【】(A) ) (x f 在 0 = x 处不连续 (B) ) (x f 在 0 = x 处连续 (C) ) ( lim 0x f x ® 不存在(D) 1) ( lim 0= ® x f x 【答案】A13、已知当 0 ® x 时, 1 ) 1 312 - +ax ( 与 1 cos - x 是等价无穷小,则常数a 为【 】(A )32 (B) 32 -(C)23 (D) 23 -【答案】D【解析】 2 31 32 21 3 1 lim 1 1 cos 1 ) 1 ( lim 22 0 31 2 0 -= Þ = - = - Þ = - - + ® ® a a x axx ax x x14、设 () f x 和 () g x 在(,) -¥+¥ 内有定义, () f x 为连续函数,且 ()0,() f x g x ¹ 有间断点, 则必有间断点的 函数是【】(A) [()] g f x (B) 2 [()]g x (C) [()]f g x (D)()()g x f x 【答案】D【解析】 设 1 ) ( 2+ = x x f , îí ì< - ³ = 0 , 1 0 x 1 ) ( x x g , 则 ) (x f 为连续函数,且 ()0,() f x g x ¹ 有间断点 0= x 则 2 )] ( [ = x g f , 1 ) 1 ( )] ( [ 2 = + = x g x f g , 1 )] [( 2= x g 均为连续函数,所以 A,B,C 选项错 下面证明D 选项是对的,用反证法 假设()()g x f x 是连续函数,由于 () f x 是连续函数且 0 ) ( ¹ x f ) (x g Þ 也为连续函数,与假设矛盾 15、设数列 n x 与 n y 满足 0 lim = ¥® n n n y x ,则下列断言正确的是【】(A)若 n x 发散,则 n y 必发散 (B)若 n x 无界,则 n y 必有界(C)若 n x 有界,则 n y 必为无穷小 (D)若 nx 1为无穷小,则 n y 必为无穷小 【答案】D 【解析】 设 îí ì= 为奇数 , 为偶数 n n n x n 0 , , îíì= 为偶数 , 为奇数 n n n y n 0 , ,满足 0 lim = ¥® n n n y x ,但 n x 和 n y 均无界,所以(B)选项错; 设 2 1 n x n = , n y n = ,满足 0 1lim 1 lim lim 2 = = × = ¥ ® ¥ ® ¥ ® nn n y x n n n n n , n x 有界,但 n y 为无穷大,所以(C)选项 错;0 1 lim0 lim = Þ = ¥ ® ¥® nnn n n n x y y x 极限存在, 若 n x 1 为无穷小, 则 n y 必为无穷小, 否则极限是不存在的, 所以 (D) 选项正确;二、 计算题(满分 105分)1.求下列极限(本题共 6 小题,每小题4 分,满分 24分) (1))1 ( lim 1- ¥® xx e x解: 等价 与 x1 1 , 0 ) 1 ( lim 1 1- \ = - ¥ ® xx x e e , 1 1 lim 1 e lim 1= = - ¥ ® ¥ ® x x x x xx ) ( (2) )( lim x x x x x - - + +¥® 解: 11 1 1 1 2limx 2 lim= -+ + = - + + = +¥® +¥® xx xx x x x x 原式 (3) xxx x 2 sin sin tan lim3 0 - ® 解: 161 )2 ( 2 1 lim 2 sin sin tan lim3 30 3 0 = = - ® ® x xx x x x x (4) xx x 2 sin ln 5 sin ln lim 0+® 解: 1 5 sin 2 sin lim . 2 cos 2 5 cos 5 lim 2 cos 2 . 2 sin 1 5 cos 5 . 5 sin 1lim 2 sin ln 5 sin ln lim 0 0 0 0 = = = ++++® ® ® ® x x x x xxxx x x x x x x (5) xe x x x 1 ln 1 lim 0 - ® 解:方法一: 等价与 1 1 ) 1 1 1 ln( 1 ln - - - - + = - x e x e x e x x x Q 212 1 lim 1 . 1 lim ) 1 1 ( 1 lim 1 ln 1 lim 0 0 0 0 = - = - - = - - = - ® ® ® ® x e x x e x x e x x e x x x x x x x x x 方法二:洛必达法则21 2 lim 1 lim 1 1 lim 1lnlim 1 ln 1 lim 0 2 0 2 0 0 0 = = + - = + - × - = - = - ® ® ® ® ® x xe x e xe x e xe e x x x e x e x x x x x x x x x x x x x x (6) ) cos 1 ( cos 1 lim 0x x x x - - +® 解: 2 1cos 1 1 21 cos 1 lim cos 1 cos 12 1 . cos 1 lim )cos 1 ( cos 1 lim 2 0 0= + × - = + + × - = - - +++® ® ® x x x x x x x x x x x x x x 2.求下列极限(本题共 6 小题,每小题7 分,满分 42分)(1) () xx x 2 tan 4tan lim p®解:原式= )1 .(tan2 tan . 1tan 14)1 tan 1 ( lim - - ®- + x x x x x p1sin cos sin 2 lim cos 2 cos ) cos (sin 2 sin lim) 1 (tan 2 tan lim 444- = + - = - = - ®® ®x x xx x x x x x x x x x p p p1e- = \原式 (2) 21) 2 (cos lim xx x ® 解: 212 cos lim 12 cos .1 2 cos 1 012 0 22)1 2 cos 1 ( lim ) 2 (cos lim - - - - ® ® = = - + = ® eex x xx x x x x x x x (3) x x x 2tan 1)2 ( lim p- ® 解: xx x x x x x x x ex x 2tan ) 1 ( lim 2tan ) 1 ( 1 1 12tan 11 )1 1 ( lim )2 ( lim ppp- - - ® ® ® = - + = - p p p pp p p p p 2 2sin 2 2 cos ) 1 (2 2 sin lim2 cos 2 sin ) 1 ( lim 2 tan ) 1 ( lim 1 1 1 = - - + - = - = - ® ® ® xxx x x x x x x x x x p2e= \原式 (4) )33 ( lim 11 1 2+ ¥® - x x x x 解: 3ln 3 ln )1 ( 1lim ) 1 3( 3 lim ) 3 3 ( lim 2 111 1121112= + ×= - × = - ¥® + - + ¥® + ¥® x x x x x x x x x x x xx 其中 等价 与 )1 ( 11 3111 + - + - x x x x , 13 lim 1 1= + ¥ ® x x (5) ) cos 1sin 1 (lim 2 2 2 0xx x x - ® 解: 42 22 0 2 2 2 2 2 2 0 2 2 2 0 sin cos lim cos sin sin cos lim ) cos 1 sin 1 ( lim x xx x x x x x x x x x x x x x - = - = - ® ® ® 32) 3 1 ( 2 3 sin lim 2 sin cos lim sin cos lim2 0 03 0 - = - × = - = + × - = ® ® ® x x x x x x x x x x x x x x (6) xx xx ) 1cos 2 (sin lim + ¥ ® 解:令 x t 1 = 则 ) cos 2 ln(sin 10 10 lim ) cos 2 (sin lim ) 1 cos 2 (sin lim t t t t t t x x et t xx + ® ® ¥ ® = + = +2 1 cos 2 sin lim ) cos 2 ln(sin lim0 0 = - + = + ® ® tt t t t t t t , 2e= \原式 3. 2 2lim 2 2 2 = - - + + ® x x b ax x x ,求: b a , (本题满分 8 分) 解: b ax + + 2 x 和 2 x 2 - -x 均为多项式,它们都是连续函数且n 阶可导, 2 ® x 时 0 2 x 2 ® - - x 故一定符合洛必达法则的条件2 = \x 时 0 x 2 = + + b ax 即 02 4 = + + b a 2 234 1 2 2 lim 2 lim 2 2 2 2 = Þ = + = - + = - - + + \ ® ® a a x a x x x b ax x x x 8, 2 - = = \ b a 4.设 î íì > - £ = 1 , 1 1 , ) ( 2 x x x x x f , ï îïí ì > + £ < - £ = 5 , 3 5 2 ), 1 ( 2 2 , ) ( x x x x x xx g , 考察 )] ( [ x g f 的连续性. (本题满分 11 分) 解: ï ï îïïíì > - - £ < - £ < - £ = îí ì > - £ = = 5 , 2 5 2 , 2 3 2 1 , 1 1 , 1 ) ( ), ( 1 1 ) ( ), ( )] ( [ ) ( 22 x x x x x x x x x g x g x g x g x g f x F 0 1 1 ) ( lim 1= - = + ® x F x , 1 ) ( lim 1= - ® x F x , ) (x F \ 在 1 = x 处不连续1 4 3 ) ( lim2 - = - = +® x F x , 1 2 1 ) ( lim 2 - = - = -® x F x , ) (x F \ 在 2 = x 处连续7 2 5 ) ( lim 5- = - - = + ® x F x , 7 10 3 ) ( lim 5- = - = - ® x F x , ) (x F \ 在 5 = x 处连续综上可得, )] ( [ x g f 在 ), ( ) , ( ¥ + È ¥ 1 1 上连续,在 1 = x 处间断, 1 = x 为其跳跃间断点。
高数一二章练习试题

第一二章练习题一、选择题1函数⎪⎩⎪⎨⎧=≠=001sin2)(x x xx x f 在点0=x 处 .A. 无定义B. 不连续C. 可导D. 连续但不可导2设函数)(x f 的定义域为]2,0[,则函数)1(-x f 的定义域为 .A. ]2,0[B. ]1,1[-C. ]3,1[D. ]0,1[- 3当0→x 时,与x tan 是等价的无穷小是 .A. x x sin 2+B. x cos 1-C. x x -2D.11-+x4设函数⎪⎩⎪⎨⎧=≠=001arctan)(x x xx x f ,则)(x f 在0=x 点 .A. 连续且可导B. 连续但不可导C. 不连续也不可导D. 可导但不连续5当0→x 时,)(x +1ln 是x sin 的( )无穷小A 高阶B 低阶C 同阶但不等价D 等价6设31,0()2,012,0x x f x x x x +<⎧⎪==⎨⎪->⎩, 则)(lim 0x f x →=( )A 1B 2C 1-D 不存在 7设()x f 在0x 可导,则()()=--+→hh x f h x f h 22lim000( )A ()0x f 'B ()02x f 'C ()03x f 'D ()04x f ' 8设()232xxf x =+-,则当0x →时,有( )(A )()f x 与x 是等价无穷小 (B )()f x 与x 是同阶但非等价无穷小 (C) ()f x 是比x 高阶的无穷小 (D )()f x 是比x 低阶的无穷小 9设()0f x '存在,则极限()()000limh f x h f x h h→+--= ( )(A )()0f x ' (B )()02f x ' (C) ()02f x '- (D )0 10设()272xxf x =+-,则当0x →时,有( )(A )()f x 与x 是等价无穷小 (B )()f x 与x 是同阶非等价无穷小 (C) ()f x 是比x 高阶的无穷小 (D )()f x 是比x 低阶的无穷小 11已知()y f x =在0x 处可导,则()()0002limh f x h f x h h→+--= ( )(A )()0f x ' (B )()03f x ' (C) ()02f x '- (D )0 12当0→x 时,x cos 1-与x x sin 相比较( )。
高数(下)试题1及解答

一.计算下列各题:1. [7分] 计算∑⎰⎰∑其中,zdS x 是x 2+y 2=1介于z=0,z=1之间部分.2.[7分]利用函数x-11麦克劳林公式逐项微分求级数∑∞=-112n n n 的和3. [7分] 判别级数∑∞=++111n nn是否收敛?若收敛求其和。
4.[7分] 计算I zdv Ω=⎰⎰⎰,其中Ω是由曲面zyx222=+及平面2=z 所围成的区域。
5.[7分]求微分方程 (1-x)y ”=1的通解 二、[13分]在椭圆14222=+yx的第一象限部分上求一点,使过该点的切线,椭圆及坐标轴在第一卦限围成的图形的面积最小三.[11分]:设L 是⎪⎩⎪⎨⎧==te y t e x ttsin cos ππ从t=0至t=π 所对应的一段曲线计算:曲线积分⎰L (πx-y)dx+(x+πy)dy四.[11分]:求微分方程xdy+2y(lny-lnx)dx=0的通解 五.[13分] 求微分方程y ”-y ’-2y= 0通解六.[10分]:设级数∑∞=+-=12211)()(n nn n n xx x S x U 的部分和试求U n (x)及和函数S(x).七.[7分]设区域D 是由直线y=x 和曲线y=x 3围成,f(x,y)是D 上的连续函数,试写出⎰⎰Ddxdy y x f ),(直角坐标系下两种次序的二次积分。
一.计算下列各题:1.[7分] 计算∑⎰⎰∑其中,zdS x 是x 2+y 2=1介于z=0,z=1之间部分.解:∑1记前半柱面介于z=1,z=2之间部分其在yoz 面投影D 为: 由对称性I=zdSx ⎰⎰∑2=zdxdy⎰⎰∑2=22.[7分] 利用函数x-11麦克劳林公式逐项微分求级数∑∞=-112n n n 的和解:211)1(1x nxn n -=∑∞=- 级数∑∞=-112n n n =43. [7分] 判别级数∑∞=++111n nn是否收敛?若收敛求其和。
答案:发散4.[7分] 计算.⎰⎰⎰Ω=zdv I ,其中Ω是由曲面z yx 222=+及平面2=z 所围成的区域。
高数(1)

试卷一一、填空题1、设13223+--=xy xy y x z 则22xz∂∂= 。
2、球面14222=++z y x 在点(1,2,3)处的切平面方程为 。
法线方程为 。
3、若级数∑∞=11n pn收敛,则p 。
二、单项选择 1、若级数n n nx a)2(1+∑∞=在4-=x 处是收敛的,则此级数在1=x 处( )A .发散B .条件收敛C . 绝对收敛D .收敛性不能确定 2、微分方程xxe y y y 265=+'-''的特解形式是( )。
A . )(2c bx aex++ B 。
x e b ax 2)(+C 。
xe b ax x 22)(+ D 。
x e b ax x 2)(+3、设简单闭曲线L 所围区域的面积为S ,则S=( )。
A .⎰-L ydy xdx 21 B 。
⎰-L xdx ydy 21 C 。
⎰-L x d y y d x 21 D 。
⎰-Lydx xdy 214、321,,y y y 是二阶非齐次线性微分方程)()()(x f y x q y x p y =+'+''的三个线性无关的特解,21,c c 为任意常数,则该方程的通解是( )。
A。
32211y y c y c ++ B。
)()(312211y y c y y c -+- C。
3312211)()(y y y c y y c +-+- D。
3312211)()(y y y c y y c ++++ 5、设函数),(y x f 在点)0,0(的某邻域内有定义,且3)0,0(=x f ,1)0,0(-=y f ,则有( )。
A .dy dx dz -=3|)0,0(B .曲面),(y x f z =在点())0,0(,0,0f 的一个法向量为()1,1,3-。
C .曲线⎩⎨⎧==0),(y y x f z 在点())0,0(,0,0f 的一个切向量为()3,0,1。
(完整版)高数一试题库

南京工业大学继续教育学院南京高等职业技术学校函授站《高等数学一》课程复习题库一. 选择题1. 0sin 3limx xx→=( )A.0B. 13C.1D.32. 0sin lim 22x axx→=,则a =( )A.2B. 12C.4D. 143. 0sin 5sin 3lim x x x x →-⎛⎫⎪⎝⎭=( ) A.0 B.12 C.1 D.2 4. 极限0tan 3lim x xx→等于( )A 0B 3C 7D 5 5.设()2,0,0x x x f x a x ⎧+<=⎨≥⎩,且()f x 在0x =处连续,则a =( )A.0B. 1-C.1D.26. 设()21,10,1ax x f x x ⎧+<=⎨≥⎩,且()f x 在1x =处连续,则a =( )A.1B. 1-C.-2D. 27. 设()21,02,0,0x x f x a x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处连续,则a =( )A.1B. 1-C.0D. 128.设2cos y x =,则y '=( )A. 2sin xB. 2sin x -C. 22sin x x -D. 22sin x x9. 设21y x -=+,则y '= ( ) A.32x - B.12x -- C.32x -- D.121x --+ 10.设5sin y x x -=+则y '=( )A .65cos x x --+B 45cos x x --+C.45cos x x ---D.65cos x x ---11. 设51y x =,则dy =( ) A.45x - .B.45x dx -- C. 45x dx D.45x dx - 12. 设1cos 2,y x =-则dy =( )A .sin 2xdxB sin 2xdx - C.2sin 2xdx D.2sin 2xdx - 13. 设()2ln 1,y x =+则dy =( )A .21dx x + B 21dx x -+ C.221xdx x + D.221xdxx-+ 14. ()1lim 1xx x →-=( )A. eB. 1e -C. 1e --D. e - 15.()xx x 2121lim +→ =( ) A0 B∞ Ce D2e16. 01lim 1xx x →⎛⎫+= ⎪⎝⎭( )A. eB. 1e -C.0D. 117.226lim 2x x x x →+--=( )A. 1B. -2C.5D. -118.2231lim2x x x x x →∞++=- ( ) A. 32- B. 23- C. 23 D. 3219.2lim 43x x x →∞+=- ( )A. 14B.0C. 23-D. 1220. 设()01f x '=,则()()0002limh f x h f x h→+-=( )A.2B.1C. 12D.0 21. 设()102f '=,则()()020limh f h f h →-=( ) A.2 B.1 C.12D.0 22.设1sin 3xy =+,则()0y '=( )A.0B. 13C.1D. 13-23. .设()2ln 1y x =+,则()1y '=( ) A.0 B.12 C.1 D. 12- 24. 设x y e -=,则()1y ''=( ) A. e B. 1e - C.0 D. 1 25.设y z x y =+,则(,1)e zy∂=∂( )A ,1e +B ,11e+ C , 2 D , 126. sin xdx =⎰( )A .sin x C +B sin xC -+ C. cos x C + D.cos x C -+27. 21xdx x =+⎰( ) A .()2ln 1x C ++ B ()22ln 1x C ++C. ()21ln 12x C ++ D. ()ln 1x C ++28. ()2x x dx +=⎰( )A .32x x C ++B 3212x xC ++ C. 321132x x C ++ D. 32x x C -+29. 112x dx =⎰( )A.2B.32 C. 23D.0 30. 1x e dx -=⎰( )A. 1e -B. 11e --C. 1e --D. 11e -- 31. ()1213xx dx --=⎰( )A . 0 B. 1 C .12 D . 2332.设2101()212x x f x x ⎧+≤≤=⎨<≤⎩,则20()f x dx ⎰=( )A . 1 B. 2 C . 83 D . 10333.设23z x y x =+-,则zx∂=∂( )A. 21x +B. 21xy +C. 21x +D. 2xy34.设e sin xz x y =,则22zx∂∂=( )A.e (2)sin x x y +B. e (1)sin x x y +C. e sin x x yD. e sin x y35.设3233z x y x y =-,则2zx y∂∂∂=( )A. 22318x xy -B. 366xy y -C. 218x y -D. 3229x x y -36.设函数()2sin z xy =,则22zx∂=∂( )42.cos()A y xy 42.cos()B y xy - 42.sin()C y xy 42.sin()D y xy -37.设xyz e =,则2zx y∂=∂∂( ) ().1xy A xy e + ().1xy B x y e + ().1xy C y x e + .xy D xye 38.微分方程0y y '-=,通解为( )A.x y e C =+B. x y e C -=+C. x y Ce =D. x y Ce -= 39. 微分方程20y x '-=,通解为( )A.2y x C =+B. 2y x C -=+C. 2y Cx =D. 2y Cx -= 40. 微分方程0xy y'+=,通解为( ) A.22y x C =+ B. 22y x C =-+ C. 22y Cx = D. 2y x C -=+41.幂级数02nn n x ∞=∑的收敛半径=( )A .12B.1C.2D. +∞ 42. 幂级数0n n x ∞=∑的收敛半径为( )A.1B.2C.3D.443.设0i n u ∞=∑与0i n v ∞=∑为正项级数,且i i u v <,则下列说法正确的是( )A.若0i n u ∞=∑收敛,则0i n v ∞=∑收敛B. 若0i n u ∞=∑发散,则0i n v ∞=∑发散C.若0i n v ∞=∑收敛,则0i n u ∞=∑收敛 B. 若0i n v ∞=∑发散,则0i n u ∞=∑发散44. 设函数()2x f x e =,则不定积分2x f dx ⎛⎫⎪⎝⎭⎰=( )A. 2x e C +B. x e C +C. 22x e C +D. 2x e C +45. 设()f x 为连续函数,则()ba d f x dx dx =⎰( )A. ()()f b f a -B. ()f bC. ()f a -D.0 46.设()0()sin ,xf t dt x x f x =⎰则=( )A ,sin cos x x x +B ,sin cos x x x -C ,cos sin x x x -D ,(sin cos )x x x -+ 47. 方程0x y z +-=表示的图形为( ) A.旋转抛物面 B.平面 C.锥面 D.椭球面48. 如果()f x 的导函数是,则下列函数中成为()f x 的原函数的是( )49. 当0x →时,与变量2x 等价的无穷小量是( )50. 当0x →时,21x e -是关于x 的( )A .同阶无穷小B .低阶无穷小C .高阶无穷小D .等价无穷小51. 当+→0x 时,下列变量中是无穷小量的是( ) A 、x 1 B 、x xsin C 、1-x e D 、x1 52.当0x →时,kx 是sin x 的等价无穷小量,则k =( )A.0B.1C.2D.353.函数33y x x =-的单调递减区间为( )A. (,1]-∞-,B. [1,1]-C. [1,)+∞D. (,)-∞+∞ 54.曲线3y x -=在点(1,1)处的切线的斜率为( )A.-1B.-2C.-3D.-455.1x =是函数()211x f x x -=-的( )A .连续点B .可去间断点C .跳跃间断点D .无穷间断点二、填空题1.()10lim 1sin xx x →+= .2. 若0sin lim2sin x mxx→=,则=m3. 0tan lim ______21x xx →=+4. xx x sin 121lim--→=5. 21lim 1xx x →∞⎛⎫- ⎪⎝⎭= .6. ()()2x 35lim 5321x x x →∞+=++7. 2241lim21x x x x →-+=+ 8. 201cos limx xx→-= 9. 30tan sin limx x xx →-= 10. arctan limx xx→∞=11.22lim 1xx x →∞⎛⎫+= ⎪⎝⎭12.设函数2ln y x x =,则y '=13.已知tan y x =,则y ''= .14.已知112+=x y ,则y '= 15.已知1=+xy e x ,则dydx= 16. 已知)12(sin 2-=x y ,则dydx=17.设20,()0,0xe x xf x x ⎧≠⎪⎪=⎨⎪⎪=⎩,则)(f 0'=___________。
高等数学下册期末考试试题及答案 (1).
高数高等数学A(下册)期末考试试题一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a、b满足a b0,a2,b2,则a b.3z2、设z xln(xy),则.x y23、曲面x2y2z9在点(1,2,4)处的切平面方程为.4、设f(x)是周期为2的周期函数,它在[,)上的表达式为f(x)x,则f(x)的傅里叶级数在x3处收敛于,在x处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则(x y)ds L※以下各题在答题纸上作答并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)2222x3y z91、求曲线2在点M0(1,1,2)处的切线及法平面方程.22z3x y2、求由曲面z2x2y及z6x y所围成的立体体积.3、判定级数2222(1)nlnn1n1是否收敛?如果是收敛的,是绝对收敛还是条件收敛? nz2zx,4、设z f(xy,)siny,其中f具有二阶连续偏导数,求.x x yy 5、计算曲面积分dS2222,x y z a其中是球面被平面z h(0h a)截出的顶部.z三、(本题满分9分)抛物面z x2y2被平面x y z1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.第 1 页共 2 页高数(本题满分10分)计算曲线积分⎰L(exsiny-m)dx+(excosy-mx)dy,其中m为常数,L为由点A(a,0)至原点O(0,0)的上半圆周x2+y2=ax(a>0).四、(本题满分10分) xn求幂级数∑n的收敛域及和函数.n=13⋅n∞五、(本题满分10分)计算曲面积分I=⎰⎰2xdydz+2ydzdx+3(z∑332-1)dxdy,其中∑为曲面z=1-x2-y2(z≥0)的上侧.六、(本题满分6分)设f(x)为连续函数,f(0)=a,F(t)=222z=Ω,其中是由曲面[z+f(x+y+z)]dvt⎰⎰⎰Ωt与z=lim+t→0F(t). t3-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交;不得带走试卷。
高等数学1期末试卷(5套)
试卷(一)一、1、下列等式中成立的是( B ).(A) e n nn =⎪⎭⎫⎝⎛+∞→21lim (B) e n n n =⎪⎭⎫ ⎝⎛++∞→211lim (C) e n nn =⎪⎭⎫ ⎝⎛+∞→211lim (D) e n nn =⎪⎭⎫⎝⎛+∞→211lim2、函数()x f 在点0x 处连续是在该点处可导的( ).(A) 必要但不充分条件 (B) 充分但不必要条件 (C)充分必要条件 (D) 既非充分也非必要条件 3、设函数()x f 可导,并且下列极限均存在,则下列等式不成立的是( ).(A) ()()()00limf x f x f x '=-→ (B) ()()()0000lim x f x x x f x f x '=∆∆--→∆(C) ()()()a f h a f h a f h '=-+→2lim(D) ()()()00002lim x f xx x f x x f x '=∆∆--∆+→∆ 4、若(),00='x f 则点0x x =是函数()x f 的( ).(A) 极大值点 (B) .最大值点 (C) 极小值点 (D) 驻点5、曲线12+=x x y 的铅直渐近线是( ).(A )y =1 (B )y =0 (C )1-=x (D )x =0 6、设xe-是)(x f 的一个原函数,则⎰=dx x xf )(( ).(A )c x e x+--)1( (B )c x e x++-)1( (C )c x e x+--)1( (D ) c x e x++--)1( 二、1、当0x →时,(1cos )x -与2sin2xa 是等价无穷小,则常数a 应等于______ _. 2、若82lim =⎪⎭⎫⎝⎛-+∞→xx b x b x ,则=b .3、函数123++=x x y 的拐点是 .4、函数()x y y =是由方程y x y +=tan 给出,则='y ______________________.5、双曲线1xy =在点()1,1处的曲率为 .6、已知)(x f 在),(∞+-∞上连续,且2)0(=f ,且设2sin ()()x xF x f t dt =⎰,则(0)F '= .三、 1、求极限()xx x x x sin tan cos 1lim20-→ .2、设曲线的方程为33190x y (x )cos(y ),π++++=求此曲线在1x =-处的切线方程.3、求不定积分⎰++322x x xdx.4、求不定积分dx x x ⎰+31. 5、求定积分dx x x ⎰22cos π.6、求定积分⎰--+11242dx xx .四、1、求抛物线12+=x y 与直线1-=x y 所围成的图形. 2、设()f x ''连续,()1f π=,()()0sin 3f x f x xdx π''+=⎡⎤⎣⎦⎰,求()0f .试卷(二)一、1、=+→xx x 2)31(lim .2、当=k 时,⎪⎩⎪⎨⎧>+≤=00e)(2x kx x x f x 在0=x 处连续.3、设x x y ln +=,则=dydx. 4、曲线x e y x -=在点)1,0(处的切线方程是 .5、设两辆汽车从静止开始沿直线路径前进,下图中给出的两条曲线)(1t a a =和)(2t a a =分别是两车的速度曲线.那么位于这两条曲线和直线T t = )0(>T 之间的图形的面积A 所表示的物理意义是 .二、1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ).A 、 x 1ln(当+→0x ) B 、x ln (当1→x ) C 、x cos (当0→x ) D 、 422--x x (当2→x ) 3、满足关系式0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、下列函数)(x f 在]1,1[-上适合罗尔中值定理条件的是( ).A 、32)(x x f =B 、x x x f 2)(=C 、32)(+=x x fD 、x x f sin )(= 5、下列无穷积分收敛的是( ).A 、⎰∞+ 0sin xdx B 、dx x ⎰∞+ 01C 、dx e x ⎰∞+- 0 2D 、dx x⎰∞+ 0 1三、1、求极限 xx x 2sin 24lim-+→ . 2、求极限 2cos 2cos 0lim x dte xx t x ⎰-→.3、设)1ln(25x x e y +++=,求y '.4、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx y d . 5、求不定积分dx xx x ⎰+)sin (ln 2.6、设⎪⎩⎪⎨⎧≥<+=-0011)(2x xe x x x f x , 求⎰-20d )1(x x f .四、1、设函数21)(xxx f +=,分别求其单调区间、极值、凹凸性与拐点. 2、设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导)0(>a .试证在),(b a 内至少存在一点ξ满足:)(][)]()([2012201220122011ξξf a b a f b f '-=-.试卷(三)一、1.设)sin (cos )(x x x x f +=,则在0=x 处有( ).(A)2)0(='f (B) 1)0(='f (C) 0)0(='f (D) )(x f 不可导 2.设333)(,11)(x x xxx ⋅-=+-=βα,则当1→x 时( ). (A) )(x α与)(x β是同阶无穷小,但不是等价无穷小; (B) )(x α与)(x β是等价无穷小; (C) )(x α是比)(x β高阶的无穷小; (D) )(x β是比)(x α高阶的无穷小.3.函数2)4(121++=x xy 的图形( ). (A) 只有水平渐近线; (B) 有一条水平渐近线和一条铅直渐近线; (C) 只有铅直渐近线; (D) 无渐近线.4.设函数nn x xx f 211lim)(++=∞→,则下列结论正确的为( ).(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x .5.设函数)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则)(x f = ( ).(A) 22x (B)222+x (C) 1-x (D) 2+x 6.广义积分)0( >⎰∞+a xdxap 当( )时收敛. (A) 1>p (B) 1<p (C) 1≥p (D) 1≤p二、1.=+→xx x sin 20)31(lim .2.曲线⎩⎨⎧=+=321ty t x 在t=2处的切线方程为 . 3.方程0162=-++x xy e y 确定隐函数)(x y y =,则)0(y '= .4.⎰--+2121 2211arcsin dx xx x = .5.已知x x cos 是)(x f 的一个原函数,则dx xxx f ⎰cos )(= . 6.=⎰→22 0sin lim2xtdt e xt x .三、1.(6分)已知tt t x x f ⎪⎪⎭⎫⎝⎛+=+∞→2sin 1lim )(,求)(x f '. 2.(6分)求不定积分dx xx⎰++cos 1sin 1. 3.(8分)设函数⎩⎨⎧≤<-≤=-1010)(2x x x xe x f x ,,,求dx x f ⎰-1 3 )(. 4.(8分)已知2)3(lim 2=++-∞→c bx ax x x ,求常数b a ,.5.(8分)求由曲线)1(2,4,22≥===x x y x y xy 所围图形的面积.6.(8分)由方程)ln(arctan22y x x y +=确定隐函数)(x f y =,求0=y dx dy . 7.(8分)设函数)(x f 在[0,1]上连续且单调递减,证明:对任意的],1,0[∈q ⎰⎰≥qdx x f q dx x f 01)()(.试卷(四)一、1.方程23cos2x y y y e x '''--=的特解形式为( )(A )cos 2xaxe x ; (B )cos 2sin 2xxaxe x bxe x +; (C )cos 2sin 2xxae x be x +; (D )22cos 2sin 2xxax e x bx e x +.2. 设a 不是π的整数倍,极限ax a x a x -→⎪⎭⎫⎝⎛1sin sin lim 的值是( ).(A ) 1 (B )e (C )a e cot (D )ae tan3. 函数⎪⎩⎪⎨⎧=≠-+=0 ,0 ,1sin )(2x a x xe x xf ax 在0=x 处连续,则=a ( ). (A )1 (B ) 0 (C )e (D )1-4. 设2()()lim1()x af x f a x a →-=--,则在x a =处有( ) (A )()f x 的导数存在,且()0f a '≠; (B )()f x 取得极大值; (C )()f x 取得极小值; (D )()f x 取得最大值.5. 设函数)(x f 在点0=x 的某个邻域内连续,且0)0(=f ,2cos 1)(lim0=-→xx f x ,则点0=x ( ).(A )是)(x f 的极大值点(B )是)(x f 的极小值点(C)不是)(x f 的驻点(D )是)(x f 的驻点但不是极值点二、1. 设tan 21, 0sin 2(), 0xx e x x f x ae x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =连续,则a =____________.2. 极限xaa x x ln )ln(lim0-+→(0>a )的值是 .3. 设()(1)(2)(99)f x x x x x =---L ,则(0)f '=____________.4. 曲线21x xe y =的铅直渐近线是 . 5. 函数)4ln(x x y -=的单调递增区间为 .三、1. 计算极限412921612lim 2332-+-+-→x x x x x x . 2. 求不定积分10arctan d x x x ⎰. 3. 求定积分⎰+41)1(x x dx . 4. 求函数122+=x xy 的极值与拐点.5. 求微分方程52d 2(1)d 1y y x x x -=++的通解. 6. 设1>a ,函数a a x x a x a x y +++=,求dxdy . 四、证明题(本题8分)证明:当02x <<时,有24ln 240x x x x --+>.试卷(五)一、 1. 下列各式正确的是( ).(A)1)11(lim 0=++→x x x (B) e x x x =++→)11(lim 0(C) e x x x -=-∞→)11(lim (D)e xxx =+-∞→)11(lim 2. 设()f x 可导,()()(1sin )F x f x x =+,若欲使()0F x x =在可导,则必有 ( ).(A )(0)0f '=(B )(0)0f = (C )(0)(0)0f f '+=(D )(0)(0)0f f '-=3.为,则 又设已知 )()20( d )()(21 110 )(12x F x t t f x F x x x x f x ⎰≤≤=⎩⎨⎧≤≤<≤=( ).⎪⎩⎪⎨⎧≤≤<≤21 10 31)(3x x x x A ⎪⎩⎪⎨⎧≤≤<≤-21 10 3131)(3x x x x B ⎪⎩⎪⎨⎧≤≤-<≤21 110 31)(3x x x x C ⎪⎩⎪⎨⎧≤≤-<≤-21 1103131)(3x x x x D 4.当0→x 时,与x ex cos 22-等价的无穷小是( ).(A )2x . (B )223x . (C )22x . (D )225x . 5.x e y y y x2cos 52=+'-''的一个特解应具有形式( ).(A )x Ae x2cos (B ))2sin 2cos (x B x A e x+(C ))2sin 2cos (x B x A xe x+ (D ))2sin 2cos (2x B x A e x x+ 二、1. 已知2sin ()d x f x x e C =+⎰,则()f x =____________.2.设函数22, 1()ln(1), 1a x x f x x x x ⎧+>-=⎨++≤-⎩在1x =-处连续,则a = . 3. 设),tan ln(sec x x y +=则='y .4. 设()f x 是连续函数,则dt t f a x x xaa x ⎰-→ )(lim= .5. 已知⎰+=C x dx x f arcsin )(,则=-⎰dx x f x )(12. 6. 由0 , 0)( , , =≥===y x f y b x a x 所围曲边梯形绕x 轴旋转而成的旋转体的体积公式为:V = . 则(应用你给的公式计算)由],[,)(22R R x x R x f y -∈-==与x 轴所围成的图形绕x 轴旋转而成的立体的体积=V . 三、1. (6分) 1.求函数22(,)(2)ln f x y x y y y =++的极值.2. (6分)设arctany x= 求dx dy .3.(6分)求微分方程满足初始条件的特解1,sin ==+=πx y xx x y dx dy . 4. (6分) 设由方程2cos()1x y e xy e +-=-确定y 是x 的函数,求d .0d yx x =5. (7分) 求函数22(,)(2)ln f x y x y y y =++的极值. 6 若函数)(x f 在]1,0[上连续,证明:=⎰π)(sin dx x xf ⎰)(sin 2ππdx x f ,并计算dx xxx ⎰+π2cos 1sin . 8. 过原点(0,0)O 作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成一平面图形,求此平面图形的面积.《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为( ) (A )6π; (B )4π; (C )3π; (D )2π. 4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7. 级数1(1)(1cos ) (0)nn n αα∞=-->∑是( )(A )发散; (B )条件收敛; (C )绝对收敛; (D )敛散性与α有关.8.幂级数∑∞=1n n n x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________.4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d Lxy y x xx y -+-=⎰Ñ____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________.三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4..计算1d d yxy x x⎰.试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121. 5.()x e x C Cy 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷7(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 4.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续 (3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在. 若用“P Q ⇒”表示有性质P 推出性质Q ,则有( )(A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒ (C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒ 二.填空题(4分⨯5)1. 级数1(3)nn x n ∞=-∑的收敛区间为____________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题(10分⨯2) 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4. ⎪⎭⎫ ⎝⎛-3223323πa . 5.xx e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( )A 、一阶B 、二阶C 、三阶D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
自考高数一历年试题及答案
自考高数一历年试题及答案自考高等数学(一)历年试题及答案一、选择题1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = x^2答案:C2. 函数f(x) = x^3在区间(-1,2)上的最大值是()。
A. 1B. 8C. -1D. 2答案:B3. 微分方程dy/dx - y = 0的通解是()。
A. y = Ce^xB. y = Cxe^xC. y = CxD. y = e^x答案:A4. 若函数f(x) = 2x - 3在点x=1处的导数为1,则该函数在此处的切线斜率为______。
答案:15. 定积分∫₀¹ x² dx的值为______。
答案:1/3三、解答题6. 求函数f(x) = 3x² - 2x + 5的极值。
解答:首先求导数f'(x) = 6x - 2。
令f'(x) = 0,解得x = 1/3。
在x = 1/3处,f(x)取得极小值,计算得f(1/3) = 14/3。
7. 已知某工厂生产函数为Q = 2L²/3 + 3K,其中L为劳动投入,K为资本投入。
求劳动对产量的边际贡献。
解答:首先求产量对劳动的偏导数,即边际贡献。
对Q关于L求偏导得:dQ/dL = 4L/3。
这就是劳动对产量的边际贡献。
四、证明题8. 证明函数f(x) = x³ - 6x在区间(-2, 2)上是增函数。
证明:求导数f'(x) = 3x² - 6。
要证明f(x)在区间(-2, 2)上是增函数,需要证明f'(x)在该区间内恒大于0。
观察f'(x) = 3x² - 6,可以发现在x = ±√2时,f'(x) = 0。
在区间(-2, -√2)和(√2, 2)内,f'(x) > 0,而在区间(-√2, √2)内,f'(x) < 0。
高数第一章练习题
B. f ( x ) 在 x0 点的极限值不一定存在 D. f ( x ) 在点 x0 必连续 )
21、若函数 f ( x ) 在某点 x0 函数值存在,则( A. f ( x ) 在 x0 点的极限值必存在
B. 如果 f ( x ) 在 x0 点的极限值存在,则极限值必等于函数值
C. f ( x ) 在 x0 点连续 D. 如果 f ( x ) 在 x0 点的连续,则 f ( x ) 在 x0 点的极限值必存在且等于函数值 22、 lim f ( x ) = lim f ( x ) 是 f ( x ) 在 x0 处连续的(
1、求极限 lim
x ®3
x -3 x2 - 9
2、.求极限 lim
x ®3
x 2 - 7 x + 12 x2 - 2 x - 3
2 1 ) 2 1- x 1- x
8x3 - 1 3、求极限 lim 2 1 x® 6 x - 5 x + 1
2
4、求极限 lim(
x ®1
5、求极限 lim (
x ®-2
)
D. 跳跃间断点
x4 + x3 +1 的间断点是( x 2 - 3x + 2 B. - 1 , 2
D. - 1 , - 2
30、若函数 f ( x ) 连续,则下列命题正确的有( A. f ( x ) 一定有最大值 C. 有界
B. f ( x ) 一定有最小值 D. 若 f ( x ) 在闭区间连续,则 f ( x ) 在该区间有界
7、变量 y =
2
9、已知函数 f ( x ) = 3 x cos a x ,则 f ( x ) 是当 x ® 0 时的无穷_____________量 10、当 x ® 0 时,无穷小量 ln(1 + x ) 与 b sin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一、填空题(每小题3分,共15分)
1. 1. 设u=x4+y4-4x2y2 ,则u x x=
2. 2. 设u=xy+y/x,则u y=
3. 3. 函数z=x2+4xy-y2+6x-8y+12的驻点是
4. 4. 设幂级数0nnnxa的收敛半径是4,则幂级数012nnnxa的收敛半径是
5. 5. 设Σ是柱面x2+y2=4介于1≤z≤3之间部分曲面,它的法向指向含oz轴的一侧,
则dxdyzyx222=
二、二、单选(每小题2分,共8分)
1、函数zfxy(,)在点(,)xy00处连续是它在该点偏导数存在的:
(A)必要而非充分条件; (B)充分而非必要条件;
(C)充分必要条件; (D)既非充分又非必要条件。 答( )
2、微分方程yxyy满足条件y’(2)=1, y(2)=1的解是
(A) y=(x-1)2 (B) y=(x+1/2)2-21/4
(C) y=1/2(x-1)2+1/2 (D) y=(x-1/2)2-5/4 答( )
3、若方程0qyypy的系数p+qx=0,则该方程有特解
(A) y=x (B) y=e x (C) y=e – x (D) y=sin x 答( )
4、微分方程xyysin的一个特解应具有形式 答( )
(A) Asin x (B) Acos x (C) Asin x +Bcos x (D) x(Asinx+Bcosx)
三、三、解答下列各题
1. 1. (本小题6分)
利用二重积分计算由曲面z=x2+y2,y=1,z=0,y=x2所围成的曲顶柱体的体积。
2、(本小题7分)
证明极限34200limyxyxyx不存在。
3、(本小题5分)
验证:y1=cosωx,y=sinωx都是微分方程y’’+ω2y=0的解,并写出该方程的通解。
4、(本小题5分)
设00cos1)(xxxxxxf若s(x)是以2为周期的函数f(x)的Fourier级数之和函
数,求S(-3π)。
四、四、解答下列各题:
1、(本小题6分)
更换积分次序:xxdyyxfdx2122),(
2、(本小题6分)
求曲线2,1,1tzttyttx在t=1处的切线及法平面方程。
五、五、解答下列各题:
1、(本小题6分)
已知Σ是z=x2+y2上 z≤1的部分曲面,试计算dsz41
2、(本小题6分)
计算dzdyzxdxdzxydxdyyz)()()(,其中光滑曲面∑围成的Ω的体积为
V。
六、六、解答下列各题
1、(本小题5分)
判别级数nnnsin11的敛散性。
2、(本小题5分)
级数2227151311是否收敛,是否绝对收敛?
3、(本小题5分)
试求幂级数12!!3knxnn的收敛半径
4、(本小题5分)
试将函数y=1/(4-x4)展开为x的幂级数
七、(本大题10分)
已知上半平面内一曲线y=y(x) (x≥0)过点(0,1),且曲线 上任一点M(x0,y0)处切线斜率数
值上等于此曲线与x轴,y轴,直线x=x0所围成的面积与该点纵坐标之和,求此曲线方程。
七、一、填空题(每小题3分,共15分)
1. 1. 设u=x4+y4-4x2y2 ,则u x x=12x2-8y2
2. 2. 设u=xy+y/x,则u y= x+1/x
3. 3. 函数z=x2+4xy-y2+6x-8y+12的驻点是 (1, -2)
4. 4. 设幂级数0nnnxa的收敛半径是4,则幂级数012nnnxa的收敛半径是 R=2
5. 5. 设Σ是柱面x2+y2=4介于1≤z≤3之间部分曲面,它的法向指向含oz轴的一侧,
则dxdyzyx222= 0
八、二、单选(每小题2分,共8分)
1、函数zfxy(,)在点(,)xy00处连续是它在该点偏导数存在的:
(A)必要而非充分条件; (B)充分而非必要条件;
(C)充分必要条件; (D)既非充分又非必要条件。 答(A)
2、微分方程yxyy满足条件y’(2)=1, y(2)=1的解是
(A) y=(x-1)2 (B) y=(x+1/2)2-21/4
(C) y=1/2(x-1)2+1/2 (D) y=(x-1/2)2-5/4 答(C)
3、若方程0qyypy的系数p+qx=0,则该方程有特解
(A) y=x (B) y=e x (C) y=e – x (D) y=sin x 答(A)
4、微分方程xyysin的一个特解应具有形式 答(D)
(A) Asin x (B) Acos x (C) Asin x +Bcos x (D) x(Asinx+Bcosx)
九、三、解答下列各题
1. 1. (本小题6分)
利用二重积分计算由曲面z=x2+y2,y=1,z=0,y=x2所围成的曲顶柱体的体积。
105
88
1221
12
x
dyyxdxV
2、(本小题7分)
证明极限34200limyxyxyx不存在。
[证明]:取不同的直线路径y=kx 23342001limkxkxkxxkxyx 沿不同的路径极限不同,故
由定义二重极限不存在。
3、(本小题5分)
验证:y1=cosωx,y=sinωx都是微分方程y’’+ω2y=0的解,并写出该方程的通解。
[验证]:y1’=-ωsinωx, y1’’=- ω2cosωx代入方程左端-ω2cosωx+ω2cosωx=0满足
方程。
y2’=ωcosωx, y2’’=- -ω2sinωx代入方程左端-ω2sinωx+ω2sinωx=0满足方程。
故y1 、y2皆是微分方程的解。又y1 /y2=(cosωx)/( sinωx)≠常数,故y1与y2线性无关 。
方程的通解为y=C1cosωx+C2sinωx
4、(本小题5分)
设00cos1)(xxxxxxf若s(x)是以2为周期的函数f(x)的Fourier级数之和函
数,
求S(-3π)。解:S(-3π)=- π/2
十、四、解答下列各题:
1、(本小题6分)
更换积分次序:yyyyxxdxyxfdydxyxfdydyyxfdx41210212,,),(2
2、(本小题6分)
求曲线2,1,1tzttyttx在t=1处的切线及法平面方程。
解:切线方程:21124121zyx法线方程01212141zyx
十一、 五、解答下列各题:
1、(本小题6分)
已知Σ是z=x2+y2上 z≤1的部分曲面,计算:3414110220rdrrddsz
2、(本小题6分)
计算dzdyzxdxdzxydxdyyz)()()(,其中光滑曲面∑围成的Ω的体积为
V。
解:由高斯公式,原积分=vdv3=3V
十二、 六、解答下列各题
1、(本小题5分)
判别级数nnnsin11的敛散性。
解:因为当n趋于∞时,一般项u n的极限为1,其极限不为0,故级数发散。
2、(本小题5分)
级数2227151311是否收敛,是否绝对收敛?
解:原级数=41/1)12(1lim)12(1)1(22nnnnn原级数绝对收敛。
3、(本小题5分)
试求幂级数12!!3knxnn的收敛半径。解0!3!!1!33lim22Rnnnnn
4、(本小题5分)
试将函数y=1/(4-x4)展开为x的幂级数
解:22444414141141014422444xxxxxxynnnnn
七、(本大题10分)
已知上半平面内一曲线y=y(x) (x≥0)过点(0,1),且曲线 上任一点M(x0,y0)处切线斜率数
值上等于此曲线与x轴,y轴,直线x=x0所围成的面积与该点纵坐标之和,求此曲线方程。
解:00yyyyyyydxxyyx即特征方程:r2-r-1=0
2
512,1
r
通解:xxececy25122511 初始条件:y(0)=1 , y’(0)=1 解得:C1=1055,C2=1055
特解是:xxeey25125110551055