专升本高等数学模拟试卷(一)

合集下载

最新专升本考试高等数学模拟题10套(含答案解析)

最新专升本考试高等数学模拟题10套(含答案解析)

1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C

专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(x)在x0处不连续,则( )A.f’(x0)必存在B.f’(x0)必不存在C.f(x)必存在D.f(x)必不存在正确答案:B解析:f(x)在x0处不连续,是指连续性的三要素之一不满足,因此C、D都不对,由于可导必连续,则不连续必不可导,所以A不对,故选B.知识模块:一元函数微分学2.设函数f(x)=|x3一1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的( )。

A.充分必要条件B.充分但非必要条件C.必要但非充分条件D.既非充分又非必要条件正确答案:A解析:由φ(1)=0可知即f+’(1)=f -’(1)=0,所以,f’(1)=0.设f(x)在x=1处可导,因为f(1)=0,所以(x2+x+1)φ(x)=3φ(1),知识模块:一元函数微分学3.设函数f(x)在x=0处可导,且f(0)=0,则=( ) A.一2f’(0)B.一f’(0)C.f’(0)D.0正确答案:B解析:由于f(x)在x=0处可导,且f(0)=0,则=f’(0)一2f’(0)=一f’(0).知识模块:一元函数微分学4.若f(x一1)=x2一1,则f’(x)等于( )A.2x+2B.x(x+1)C.x(x一1)D.2x一1正确答案:A解析:因f(x一1)=x2一1=(x—1)(x一1+2),故f(x)=x2+2x,则f’(x)=2x+2.知识模块:一元函数微分学5.函数y=f(x)可导,则y=f{f[f(x)]}的导数为( )A.f’{[f(x)]}B.f’{f’[f’(x)]}C.f’{f[f(x)]}f’(x)D.f’{f[f(x)]}f’[f(x)]f’(x)正确答案:D解析:y’(x)=(f{f[f(x)]})’=f’{f[f(x)]}f’[f(x)]f’(x),故选D.知识模块:一元函数微分学6.设函数f(x)在[0,1]上连续,在(0,1)内可导,且f’(x)<0,则下列结论成立的是( )A.f(0)<0B.f(1)>0C.f(1)>f(0)D.f(1)<f(0)正确答案:D解析:因f’(x)<0,x∈(0,1),可知f(x)在[0,1]上是单调递减的,故f(1)<f(0).知识模块:一元函数微分学7.设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0,若f(a).f(b)<0,则y=f(x)在(a,b) ( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B解析:由题意知,f(x)在(a,b)上单调递增,且f(a).f(b)<0,则由零点定理以及单调性可得y=f(x)在(a,b)内存在唯一零点.知识模块:一元函数微分学8.曲线y=( )A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线,又有铅直渐近线正确答案:D解析:因=1,所以y=1为水平渐近线,又因=∞,所以x=0为铅直渐近线.知识模块:一元函数微分学9.下列函数在给定区间满足罗尔定理条件的有( )A.f(x)=B.y=C.y=xex,[0,1]D.y=x2一1,[一1,1]正确答案:D解析:A选项中,函数在x=5处不连续;B选项中,函数在x=1处不连续;C选项中,y(0)≠y(1);D选项中,函数在[一1,1]连续,在(一1,1)可导,y(-1)=y(1),符合罗尔定理条件,故选D.知识模块:一元函数微分学10.要制作一个有盖铁桶,其容积为V,要想所用铁皮最省,则底面半径和高的比例为( )A.1:2B.1:1C.2:1D.正确答案:A解析:设底面半径为r,高为h,则有V=πr2h,S=2πrh+2πr2=+2πr2,S’(r)=一+4πr=,由于驻点唯一,必是最值点,此时h=,则r:h=1:2.知识模块:一元函数微分学填空题11.设函数y=sin(x一2),则y’’=________.正确答案:一sin(x一2)解析:因为y=sin(x一2),y’=cos(x一2),y’’=一sin(x一2).知识模块:一元函数微分学12.设函数f(x)有连续的二阶导数且f(0)=0,f’(0)=1,f’’(0)=一2,则=_______.正确答案:一1解析:=一1.知识模块:一元函数微分学13.y=y(x)是由方程xy=ey-x确定的函数,则dy=_______.正确答案:解析:方程两边对x求导,注意y是x的函数,有y+xy’=ey-x(y’一1),所以y’=.知识模块:一元函数微分学14.函数y=cosx在[0,2π]上满足罗尔定理,则ξ=_________.正确答案:π解析:y’=一sinx,因函数在[0,2π]上满足罗尔定理,故存在ξ∈(0,2π),使一sinξ=0,故ξ=π.知识模块:一元函数微分学15.若函数f(x)在[0,1]上满足f’’(x)>0,则f’(0),f’(1),f(1)一f(0)的大小顺序为_________.正确答案:f’(1)>f(1)一f(0)>f’(0)解析:f’’(x)>0,则f’(x)单调递增,又有拉格朗日中值定理得f(1)一f(0)=f’(ξ)(1一0)=f’(ξ),ξ∈(0,1).故有f’(1)>f’(ξ)>f’(0),即f’(1)>f(1)一f(0)>f’(0).知识模块:一元函数微分学解答题16.设f(x)=其中a、b、A为常数,试讨论a、b、A为何值时,f(x)在x=0处可导?正确答案:若函数f(x)在x=0可导,则函数f(x)也连续,故有=f(0),f+’(0)=f-’(0),涉及知识点:一元函数微分学17.设y=,求y’.正确答案:涉及知识点:一元函数微分学18.设=a,且f’(0)存在,求f’(0).正确答案:∴f’(0)=a.涉及知识点:一元函数微分学19.求函数x=cosxy的导数.正确答案:等式两边关于x求导,可得1=一(sinxy)(xy)’=一(sinxy)(y+xy’),整理后得(xsinxy)y’=一1一ysinxy,从而y’=.涉及知识点:一元函数微分学20.已知y=,f’(x)=arctanx2,计算.正确答案:令y=f(μ),μ=,则涉及知识点:一元函数微分学21.讨论曲线y=的单调性、极值、凸凹性、拐点.正确答案:y=,令y’=0得x=e.而y’’=,令y’’=0,得x=e2.当x→1时,y→∞,则x=1为垂直渐近线.当0<x<1时,y’<0,y’’<0,故y单调下降,且是凸的.当1<x<e时,y’<0,y’’>0,故y单调下降,且是凹的.当e<x<e2时,y’>0,y’’>0,故y单调上升,且是凹的.当e2<x<+∞时,y’>0,y’’<0,故y单调上升,且是凸的.当x=e时,y有极小值2e,且(e2,e2)是拐点.涉及知识点:一元函数微分学22.设f(x)在[1,e]可导,且f(1)=0,f(e)=1,试证f’(x)=在(1,e)至少有一个实根.正确答案:设F(x)=f(x)一lnx,F(1)=0,F(e)=0,由罗尔定理,至少存在一点ξ∈(1,e)使F’(ξ)=0,即f’(ξ)一=0,所以f’(x)=在(1,e)至少有一个实根.涉及知识点:一元函数微分学23.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证明对任意给定的正数a及b,在(0,1)内必存在不相等的x1,x2,使=a+b.正确答案:因a,b>0,故0<<1,又因f(x)在[0,1]上连续,且f(0)=0,f(1)=1,由介值定理,必存在ζ∈(0,1),使f(ζ)=.又分别在[0,ζ],[ζ,1]上用拉格朗日中值定理,得f(ζ)一f(0)=(ζ一0)f’(x1),f(1)一f(ζ)=(1一ζ)f’(x2)(其中0<x1<ζ<x2<1)即有=1-ζ.考虑到1-,并将上两式相加,得=1,即存在不相等的x1,x2使=a+b.涉及知识点:一元函数微分学24.利用拉格朗日中值定理证明:当x>1时,ex>ex.正确答案:令f(μ)=eμ,μ∈[1,x].容易验证f(μ)在[1,x]上满足拉格朗日中值定理的条件,故存在ξ∈(1,x),使=f’(ξ),即=eξ,因为ξ∈(1,x),所以eξ>e.即>e,整理得,当x>1时,ex>ex.涉及知识点:一元函数微分学25.设a>b>0,n>1,证明:nbn-1(a一b)<an一bn<nan-1(a一b).正确答案:构造函数f(x)=xn(n>1),因为f(x)=xn在[a,b]上连续,在(a,b)内可导,所以,存在一点ξ∈(a,b)使得f’(ξ)==nξn-1,又0<a<ξ<b,故an-1<ξn-1<bn-1,所以nan-1<nξn-1<nbn-1,即nan-1<<nbn-1,整理得nan-1(b一a)<bn一an<nbn-1(b一a).两边取负号得nbn-1(a一b)<an一bn<nan-1(a一b).涉及知识点:一元函数微分学已知函数f(x)=.26.证明:当x>0时,恒有f(x)+;正确答案:则可知F(x)=C,C为常数.当x=1时,F(1)=C=f(1)+f(1)=,故当x>0时,F(x)=f(x)+恒成立;涉及知识点:一元函数微分学27.试问方程f(x)=x在区间(0,+∞)内有几个实根?正确答案:令g(x)=f(x)一x,则g‘(x)=一1<0,故g(x)在(0,+∞)上单调递减,又则g(x)=0在(0,+∞)上有且仅有一个实根,即f(x)=x在(0,+∞)上只有一个实根.涉及知识点:一元函数微分学28.假设某企业在两个互相分割的市场上出售同一种产品,两个市场的销售量分别是Q1=,Q2=12一x,其中x为该产品在两个市场的价格(万元/吨),该企业生产这种产品的总成本函数是C=2(Q1+Q2)+5,试确定x的值,使企业获得最大利润,并求出最大利润.正确答案:由已知条件得利润函数为L=(Q1+Q2)x—C=(Q1+Q2)x一2(Q1+Q2)一5=[+(12-x)](x-2)一5=x2+24x一47,求导得L’=一3x+24,令L’=0,得驻点x=8.根据实际情况,L存在最大值,且驻点唯一,则驻点即为最大值点.Lmax=.82+24.8—47=49.故当两个市场价格为8万元/吨时,企业获得最大利润,此时最大利润为49万元.涉及知识点:一元函数微分学。

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.极限等于( )A.eB.ebC.eabD.eab+b正确答案:C解析:由于,故选C。

知识模块:极限和连续2.在空间直角坐标系中,方程x2-4(y-1)2=0表示( )A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面正确答案:A解析:由于所给曲面方程x2-4(y-1)2=0中不含z,可知所给曲面为柱面,但是由于所给方程可化为x2=4(y-1)2,进而可以化为x=2(y-1)与-z=2(y-1),即x-2y+2=0,x+2y-2=0,为两个平面,故选A。

知识模块:空间解析几何3.级数是( )A.绝对收敛B.条件收敛C.发散D.收敛性不能判定正确答案:A解析:依前述判定级数绝对收敛与条件收敛的一般原则,常常先判定的收敛性,由于的p级数,知其为收敛级数,因此所给级数绝对收敛,故选A。

知识模块:无穷级数填空题4.若函数在x=0处连续,则a=________。

正确答案:-2解析:由于(无穷小量乘有界变量),而f(0)=a+2,由于f(x)在x=0处连续,应有a+2=0,即a=-2。

知识模块:极限和连续5.若f’(x0)=1,f(x0)=0,则=________。

正确答案:-1解析:由于f’(x0)存在,且f(x0)=0,由导数的定义有知识模块:一元函数微分学6.设y=xe+ex+lnx+ee,则y’=________。

正确答案:y’=ee-1+ex+解析:由导数的基本公式及四则运算规则,有y’=ee-1+ex+。

知识模块:一元函数微分学7.曲线y=ex+x上点(0,1)处的切线方程为________。

正确答案:由曲线y=f(x)在其上点(x0,f(x0))的切线公式y-f(x0)=f’(x0)(x-x0),可知y-1=2(x-0),即所求切线方程为y=2x+1。

解析:注意点(0,1)在曲线y=ex+x上,又y’=ex+1,因此y’|x=0=2。

(完整)专升本高等数学模拟试卷(一)

(完整)专升本高等数学模拟试卷(一)

专升本高等数学模拟试卷(一)一、选择题1、函数)3lg(1)(x xx f +=的定义域为 A ,0≠x 且3-≠x B ,0>x C,3->x D,3->x 且0≠x2、下列各对函数中相同的是:A,4,4162+=--=x y x x y B ,x y x y ==,2C ,x y x y lg 4,lg 4== D ,31334)1(,-=-=x x y x x y3、当∞→x 时,xx x f 1sin 1)(=A ,是无穷小量B ,是无穷大量C ,有界,但不是无穷小量D ,无界,但不是无穷大量4、111111)(---+=x x x x x f 的第二类间断点个数为:A ,0B ,1C ,2D ,35、设⎩⎨⎧>+≤=11)(2x bax x x x f 在1=x 处连续且可导,则b a ,的值分别为A ,1,2-=-=b aB ,1,2=-=b aC ,1,2-==b a D,1,2==b a 6、下列函数在0=x 处可导的是A ,x y sin 3=B ,x y ln 3=C ,x y 5= D,x y cos 6= 7、下列函数在[]e ,1满足拉格朗日定理的是 A ,x -22 B,)5ln(-x C,xe ln 32- D,32-x 8、)2(3-=x x y 共有几个拐点A ,1B ,2C ,3D ,无拐点 9、xe y 12+=的渐近线:A ,只有水平渐近线B ,只有垂直渐近线C ,既有水平又有垂直渐近线D ,无渐近线10、下列函数中是同一函数的原函数的是:A ,x x 3lg ,lg 3B ,x x arcsin ,arccosC ,x x 2sin ,sin 2D ,2cos 2,2cos x 11、设31)(31)(0-=⎰x f dt t f x,且1)0(=f ,则=)(x fA ,x e 3 B,x e 3+1 C ,3xe 3 D ,31xe 3 12、下列广义积分收敛的是 A ,dx e x⎰+∞B ,dx x x e⎰+∞ln 1C,dx x⎰+∞11 D , dx x ⎰∞+-13513、设)(x f 在[]b a ,上连续,则)(x f 与直线0,,===y b y a x 所围成的平面图形的面积等于 A ,⎰badx x f )( B ,⎰badx x f )( C ,),())((b a a b f ∈-ξξ D ,⎰badx x f )(14、直线37423-=+=+zy x 与平面03224=---z y x 的位置关系是 A ,直线垂直平面 B ,直线平行平面 C,直线与平面斜交 D ,直线在平面内 15、方程2223z y x =+在空间直角坐标系下表示的是 A ,柱面 B ,椭球面 C 圆锥面 D 球面 16、=++-+→yx y x y x 11lim)0,0(),(A ,2B ,0C ,∞D ,—2 17、设yx z =,则=)1,2(dzA ,dy dx +B ,dy dx 2ln 2+C ,2ln 31+D ,0 18、),(y x f z =在点),(00y x 处的两个偏导数都存在,则A ,),(y x f z =在),(00y x 可微B ,),(y x f z =在),(00y x 连续C ,),(y x f z =在),(00y x 不连续 D,和在),(00y x 处是否连续无关 19、)1ln(2x y +=的凸区间为A ,)1,(--∞B ,)1,1(-C ,),1(+∞D ,)1,(--∞⋃),1(+∞ 20、0),(,0),(0000='='y x f y x f y x 是函数),(y x f 在),(00y x 点取得极值的 A ,无关条件 B ,充分条件 C,充要条件 D ,必要条件 21、函数1663223++--=y x y x z 的极值点为A ,(1,1)B ,(—1,1)C ,(1,1)和(—1,1)D ,(0,0) 22、设D :922≤+y x ,则=+⎰⎰Ddxdy y x f )(222A ,⎰3)(4rdr r f πB ,⎰30)(2rdr r f π C ,⎰32)(4rdr r f π D,⎰32)(4dr r r f π23、交换积分次序,=+⎰⎰⎰⎰--xx xxdy y x f dx dy y x f dx 24110),(),(A ,⎰⎰+2022),(y ydx y x f dy B ,⎰⎰-+2122),(y ydx y x f dyC,⎰⎰+4022),(y y dx y x f dy D ,⎰⎰+222),(y y dx y x f dy24、设L 为沿圆周x y x 222=+的上半部分和x 轴闭区域边界正方向围成,则=++⎰Lxx dy x y e ydx e )cos 2(sin 2A ,π B,21 C ,21π D ,不存在 25、若∑∞=1n nv收敛,则( )也必收敛A ,11+∞=∑n n n vvB ,∑∞=12n nvC ,∑∞=-1)1(n n nv D,∑∞=++11)(n n n v v26、若a 为常数,则级数∑∞=-133)1sin (n nn a A ,绝对收敛 B ,条件收敛 C ,发散 D 收敛性与a 有关 27、设)11ln()1(nu nn +-=,则级数A ,∑∞=1n nu与∑∞=12n nu都收敛 B ,∑∞=1n nu与∑∞=12n nu都发散C,∑∞=1n nu收敛,∑∞=12n nu发散 D ,∑∞=1n nu发散,∑∞=12n nu收敛28、x x y y x +='-''32的通解为A ,c x x x y ++-=324312141 B , 324312141x x x y +-= C ,23124312141c x c x x y ++-= D ,3124312141x c x x y +-=29、x y y cos =+''的特解应设为:A ,)sin cos (x b x a x +B ,)sin cos (2x b x a x +C ,x b x a sin cos +D ,x a cos 30、x x y y 2sin +=+''的特解应设为A ,x b ax x 2sin )(++B ,x d x c b ax x 2cos 2sin )(+++C ,x d x c b ax 2cos 2sin +++ C ,)2cos 2sin (x d x c x b ax +++ 二、填空题1、设=>=)(),0()(x f x x e f x 则2、=+→x x x sin 2)31(lim3、=-+⎰→xx dt t t xx sin )1ln(lim304、函数12+=x x y 的垂直渐进线为5、若⎪⎪⎩⎪⎪⎨⎧=≠-=⎰,0,)1()(32x a x xdt e x f xt ,在0=x 连续,则=a 6、设==-dxdy y e y x x 则,sin 22 7、设)sin (ln x f y =,且)(x f 可微,则=dxdy 8、曲线xy 1=在点(1,1)的法线方程为 9、函数)1ln()(2x x x f +-=在[—1,2]上的最大值为 10、=⋅⎰-dx e x x 334sin11、两平面0722=-++z y x 与08354=+++z y x 的夹角为 12、广义积分dx xq⎰+111,当 时候收敛13、=⎰⎰≤+ydxdy x y x 122214、微分方程0,≠=+'m n my y ,则满足条件0)0(=y 的特解为 15、已知a u n n =∞→lim ,则∑∞=1n )(1+-n n u u =三、计算题1、xx x x x cos sin 13lim2-+→2、设2cos x xy x+=,求y '3、求⎰xdx e x sin4、求⎰3arctan xdx5、设),(y x xy f z =,求yz x z ∂∂∂∂, 6、设D 是由03,032,1=-+=+-=y x y x y 所围成的区域,求⎰⎰-Ddxdy y x )2(7、将x y 2sin 3=展开成麦克劳林级数 8、求x y y x ln ='+''的通解 四、应用题1、 某服装企业计划生产甲、乙两种服装,甲服装的需求函数为126p x -=,乙服装的需求函数 为24110p y -=,生产这两种服装所需总成本为1002),(22+++=y xy x y x C ,求取得最大利润时的甲乙两种服装的产量。

2023年成人高等考试《数学一》(专升本)模拟试卷一

2023年成人高等考试《数学一》(专升本)模拟试卷一

2023年成人高等考试《数学一》(专升本)模拟试卷一[单选题]1.下列不等式成立的是()。

A.B.C.D.参考答案:B参考解析:在[0,1]上,x2≥x3,由定积分的性质可知选B。

同样在[1,2]上,x2≤x3,可知D不正确。

[单选题]2.()。

A.exB.2exC.-exD.-2ex参考答案:D参考解析:[单选题]3.设z=ysinx,则等于()。

A.-cosxB.-ycosxC.cosxD.ycosx参考答案:C参考解析:本题考查的知识点为二阶偏导数。

可知应选C。

[单选题]4.()。

A.-1/2B.0C.1/2D.1参考答案:B参考解析:[单选题]5.()。

A.0B.1C.π/2D.π参考答案:C[单选题]6.()。

A.1/2B.1C.π/2D.π参考答案:B参考解析:[单选题]7.微分方程的通解为()。

A.B.C.D.参考答案:C参考解析:[单选题]8.在空间直角坐标系中,方程x2+z2=z的图形是()。

A.圆柱面B.圆C.抛物线D.旋转抛物面参考答案:A参考解析:线为圆、母线平行于y轴的圆柱面。

[单选题]9.()。

A.x=-2B.x=1C.x=2D.x=3参考答案:B参考解析:所给级数为不缺项情形,[单选题]10.设区域D是由直线y=x,x=2,y=1围成的封闭平面图形,()。

A.B.C.D.参考答案:D参考解析:积分区域如右图中阴影部分所示。

D可以表示为1≤x≤2,1≤y≤x 或1≤y≤2,y≤x≤2,对照所给选项,知应选D。

[问答题]1.参考答案:无参考解析:[问答题]2.参考答案:无参考解析:[问答题]3.参考答案:无参考解析:[问答题]4.参考答案:无参考解析:[问答题]5.设F(x)为f(x)的一个原函数,且f(x)=xlnx,求F(x)。

参考答案:无参考解析:本题考查的知识点为两个:原函数的概念和分部积分法。

由题设可得知:[问答题]6.(1)将f(x)展开为x的幂级数;(2)利用(1)的结果,求数项级数的和。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

河南专升本_模拟_高数(共五套)

河南专升本_模拟_高数(共五套)高等数学模拟试题(一)说明:考试时间120分钟,试卷共150分.一、单项选择题(每小题2分后,共50分后.在每个小题的候选答案中挑选出一个恰当答案,并将其代码写下在题干后的括号内.)1.已知f(x)的定义域为[-1,2],则函数f(x)?f(x?2)?f(2x)的定义域为()(a)[?3,0](b)[?3,1](c)[?11,1](d)[?,0]22x2sin2.limx?0sinx1x=()(a)无穷(b)不存有(c)0(d)1x?0?x?1?1,?3.设f(x)??则x=0是函数f(x)的()x?0,x?0?(a)可去间断点(b)无穷间断点(c)连续点(d)跳跃间断点44.方程x?x?1?0,至少存有一个根的区间就是()1122(c)(2,3)(d)(1,2)(a)(0,)(b)(,1)5.f(x)?(x?x0)??(x)其中?可微,则f?(x0)?()(a)0(b)?(x0)(c)??(x0)(d)?6.设f(x)?xsinn1(x?0)且f(0)?0,则f(x)在x=0处为()xnx?0(a)仅当limf(x)?limxsinx?01?f(0)?0时,才可以微x(b)在任何条件下都可以微(c)当且仅当n>1时才可以微(d)因sin1在x=0处并无定义,所以不容微x7.设f(x)在[a,?)上二次连续函数,且f(a)?0,f?(a)?0,f??(x)?0(x?a),则方程f(x)?0在[a,?)上()(a)没实根(b)存有多个实根第1页共28页(c)存有且仅有一个实根(d)无法推论与否存有实根8.下列函数在[?1,1]上满足罗尔定理条件的是()(a)y?1(b)y?1?xx(c)y?x(x2?1)(d)y?ln(1?x)9.设函数f(x)有连续的二阶导数,且f?(0)?0,limx?0f??(x)?1,则()x(a)f(0)是函数的极大值(b)f(0)是函数的极小值(c)(0,f(0))就是曲线y?f(x)的拐点(d)f(0)不是f(x)的极值,(0,f(0))也不是曲线y?f(x)的拐点10.若d?f(x)??d?g(x)?,则以下各式中不设立的就是()??(a)f(x)?g(x)(b)f?(x)?g?(x)(c)d?f(x)??d?g(x)?(d)d11.由曲线y?f?(x)dxdg?(x)dx?1,直线y?x,x?2所围成图形面积为()x2211(a)?(?x)dx(b)?(x?)dx1x1x222211(c)?(2?)dy??(2?y)dy(d)?(2?)dx??(2?x)dx1111xy12.i?(a)?120x3?2x2?xdx,则求该分数时恰当的作法就是i=()102?20x?1?x?dx(b)?x?x?1?dxx?1?x?dx??21x?x?1?dx(c)?200x?1?x?dx(d)0x?x?1?dx13.对于非零向量a,b满足a?3b?7a?5b,a?4b?7a?2b,则向量a,b夹角为()(b)64(c)(d)32(a)?y2?z2?2x?014.曲线?在xoy平面上投影曲线方程为()z3y22xy22x9(a)(b)z?0??z?0?y2?2x?y2?2x?9(c)?(d)?z3z3第2页共28页15.函数f(x,y)在点(x0,y0)的偏导数存在是f(x,y)在该点连续的()(a)充分条件但不是必要条件(b)必要条件但不是充分条件(c)充要条件(d)既不是充分条件也不是必要条件16.函数z?ln41的定义域为()?arcsin2222x?yx?y(a)1?x2?y2?4(b)1?x2?y2?4(c)1?x2?y2?4(d)1?x2?y2?417.发生改变(a)dx12x22xf(x,y)dy分数次序得()?10dy?422?y5yf(x,y)dx(b)?dy?0122?y2?yf(x,y)dx+?dy?14142y5yf(x,y)dxf(x,y)dx(c)dy02yf(x,y)dx(d)dy012f(x,y)dx+dy218.设d:x2?y2?r2,则(a)dx2?y2dxdy?()rdxdyrd3(b)?2?0drdrr20r(c)20dr02r23rdrr(d)dr2dr2r3003219.直观闭合曲线c所围区域d的面积为()11xdx?xdyydy?xdx(b)2?c2?c11(c)?ydx?xdy(d)?xdy?ydx2c2c1n1?),则级数()20.设un?(?1)ln(n(a)(a)?un?1?n与?un?1?2n收敛(b)2n?un?1?n与un12n都收敛2n(c)?un?1??n收敛而?un?1?发散(d)?un?1?n发散而un1发散21.设级数a收敛(a为常数),则有()?nn?1q(a)q?1(b)q?1(c)q??1(d)q?122.级数nen1nx的发散域就是()(a)x??1(b)x?0(c)0?x?1(d)?1?x?0第3页共28页23.微分方程y2y??x的特解应设为y??()(a)ax(b)ax?b(c)ax?bx(d)ax?bx?c24.过函数y?f(x)的图形上点(0,?2)的切线为:2x?3y?6且该函数满足微分方程y6x,则此函数为()(a)y?x2?2(b)y?3x2?2(c)3y?3x3?2x?6?0(d)y?x?3222x325.微分方程xdy?ydx?y2eydy的吉龙德为()(a)y?x(ex?c)(b)x?y(ey?c)(c)y?x(c?e)(d)x?y(c?e)二、填空题(每小题2分,共30分)1.设f(x)为已连续奇函数且f(2)?1,则limf(x)?______________.x??2xy2.lim(1?3x)x?01sinx?______________.3.曲线y?x?ex在点(0,1)处的切线斜率k?_________________________.4.函数f(x)?x3?x在[0,3]上满足罗尔定理的??_______________.5.函数f(x)?x?2cosx在[0,32?2]上的最大值为_______________.6.曲线f(x)?x?3x?2x?1的拐点为_________________________.7.设f(x)?sinx?cos2x,则f(27)(?)___________________.21x?18.不定积分:?edx?___________________.d2sin2xdx?____________________.9.dx?110.设0e tdt22,则1x20e?xdx=_______________________.11.将xoz平面内曲线z?5x拖x轴转动一周,分解成的转动曲面的方程为______________________________.12.由方程:ex?y?xyz?ez确认的隐函数z?z(x,y)的偏导数n?z=______________.?xxn13.幂级数1??(?1)2的收敛域为____________.nn?1?第4页共28页(?1)nxn14.级数?的和函数s(x)为________________.n2n?015.若d[e?xf(x)]?exdx,则f(x)?________________.三、计算题(每小题5分后,共40分后)1.谋limsin6x?6x.x?02x3dy.dx22.设y?xx?2xxx,求x23.谋分数??(x)dx,其中f(x?1)?ln2,且f[?(x)]?lnx.x?24lnx4.求定积分?1dx.x4?z?z5.设z?f2(x,xy),其中f具备一阶已连续的偏导数,谋,.?x?y6.排序10dxx2eydy.x2127.将f(x)?ex?2x进行为(x+1)的幂级数ZR19其发散域.228.谋微分方程:2x(yex?1)dx?exdy?0的吉龙德.四、应用题(每小题7分后,共21分后)1.用a元钱购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积的材料费的1.2倍,求水池的长与宽各多少米,才能使水池的容积最大?2.由曲线y?x3和直线x?2,y?0围成一平面图形,试求:(1)该平面图形的面积;(2)该平面图形拖y轴转动一周的旋转体体积.3.谋微分方程cosydy?siny?ex的吉龙德.dx12x?ln(1?x).2五、证明题(9分)证明:当x>0时,有x?答案一、单项选择题1.d2.c3.a4.d5.b6.c7.c8.c9.c10.a11.b12.b13.c14.b15.d16.a17.b18.c19.d20.c21.d22.b23.c24.c25.d二、填空题1.-12.e3.24.25.3?6?31x?16.(1,1)7.08.?e229.010.?11.y?z?5x第5页共28页c。

专升本高等数学一模拟试卷1.doc

专升本高等数学一模拟试卷1.doc一、选择题(本大题共 10 小题,每小题 5 分,共 50 分)1、函数\(f(x) =\frac{1}{x 1}\)的定义域为()A \(x \neq 1\)B \(x > 1\)C \(x < 1\)D \(R\)2、极限\(\lim_{x \to 2} \frac{x^2 4}{x 2}\)的值为()A 0B 4C 2D 不存在3、函数\(y = x^3 3x + 1\)的单调递增区间是()A \((\infty, -1)\)和\((1, +\infty)\)B \((-1,1)\)C \((\infty, 1)\)D \((-1, +\infty)\)4、设\(f(x) =\sin x\),则\(f'(x)\)等于()A \(\cos x\)B \(\cos x\)C \(\sin x\)D \(\sinx\)5、曲线\(y = e^x\)在点\((0, 1)\)处的切线方程为()A \(y = x + 1\)B \(y = x + 1\)C \(y = x 1\)D \(y = x 1\)6、不定积分\(\int x^2 \sin x dx\)等于()A \(x^2 \cos x + 2x \sin x + 2 \cos x + C\)B \(x^2 \cos x + 2x \sin x + 2 \cos x + C\)C \(x^2 \cos x 2x \sin x 2 \cos x + C\)D \(x^2 \cos x 2x \sin x 2 \cos x + C\)7、定积分\(\int_0^1 (x^2 + 1) dx\)的值为()A \(\frac{4}{3}\)B \(\frac{5}{3}\)C \(\frac{7}{3}\)D \(\frac{8}{3}\)8、向量\(a =(1, 2)\),\(b =(2, -1)\),则\(a\cdot b\)的值为()A 0B 2C 4D -29、过点\((1, 2, -1)\)且垂直于平面\(x + 2y z = 3\)的直线方程为()A \(\frac{x 1}{1} =\frac{y 2}{2} =\frac{z + 1}{-1}\)B \(\frac{x 1}{1} =\frac{y 2}{2} =\frac{z + 1}{1}\)C \(\frac{x 1}{1} =\frac{y 2}{-2} =\frac{z + 1}{1}\)D \(\frac{x 1}{1} =\frac{y 2}{-2} =\frac{z + 1}{-1}\)10、二元函数\(z = x^2 + y^2\)在点\((1, 2)\)处的全微分\(dz\)为()A \(2dx + 4dy\)B \(dx + 2dy\)C \(2dx + 2dy\)D \(dx + 4dy\)二、填空题(本大题共 5 小题,每小题 5 分,共 25 分)11、函数\(f(x) =\sqrt{x + 1}\)的定义域为________。

2022年河南省专升本高数模拟卷1及答案

2022年河南省专升本模拟试卷(一)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。

2.所有答案必须按照答题号在答题卡上对应的答题卡区域内作答,超出各题答题区域的答案无效。

在草稿纸、试题上作答无效。

考试结束后,将试题和答题卡一并交回。

3.本试卷分为第I 卷和第II 卷,共9页,满分为150分,考试时间为120分钟。

第I 卷一、选择题(本大题共25小题,每小题2分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数()f x 的定义域为(0,1],则函数(2)f x -的定义域为()A .(0,1]B .[0,1)C .(1,2]D .[1,2)2.设()f x 为偶函数,则()()xax f t dt ϕ=⎰的奇偶性与a ()A .有关B .无关C .可能有关D .都不对3.若0lim ()x x f x →存在,则()f x 在点0x 处是()A .一定有定义B .一定没有定义C .可以有定义,也可以没定义D .以上都不对4.极限0arctan 5limx x→=()A .12B .2C .0D .∞5.设函数20(),0x f x a x -<<=⎪≥⎩在0x =处连续,则必有a =()A .4-B .2-C .22D .46.函数22,1()1,1x x f x x x ≥⎧=⎨+<⎩,在点1x =处()A .可导且(1)2f '=B .不可导C .不连续D .不能判断是否可导7.设()f x 在点0x 的某邻域内可导,0()f x 为极大值,则000(2)()lim h f x h f x h→+-=()A .2-B .0C .1D .28.设函数()52x f x =+的反函数为()g x ,则(27)g =()A .2-B .1-C .2D .39.函数()ln 2xf x x e=-+在(0,)+∞内的零点个数为()A .0B .1C .2D .310.曲线15xy x+=-()A .仅有水平渐近线B .既有水平渐近线又有垂直渐近线C .仅有垂直渐近线D .既无水平渐近线又无垂直渐近线11.若12+x 是)(x f 的一个原函数,则()f x =()A .33x C+B .12+x C .x2D .212.2328dxx x =--⎰()A .17ln114x C x -++B .7ln4x C x -++C .14ln7x C x ++-D .ln(4)ln(7)x x C+--+13.设曲线()y f x =过原点,且该曲线在点(,())x f x 处切线斜率为2x -,则20(2)lim x f x x →-=()A .4-B .2-C .0D .414.函数21(3sin )xy t t dt =+⎰,则22d ydx=()A .262sin x x +B .23sin x x +C .6cos x x+D .122cos x x+15.使广义积分1()1f x dx +∞=⎰成立的()f x 为()A .xe -B .1xC .21x D .211x +16.下列方程为一阶微分方程的是()A .2321dy dy xy x dx dx ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .232xy y y e '''+-=C .()d xy xy dx'=D .22()d u du uL Rf t dt dt A++=17.函数36x y Cx =+(其中C 是任意常数)对微分方程22d y x dx =而言()A .是通解B .是特解C .是解,但既非通解也非特解D .不是解18.直线137213x y z +-+==--与平面42210x y z -+-=的位置关系是()A .平行B .垂直相交C .直线在平面上D .相交但不垂直19.设向量b 与向量{}3,1,1=-a 共线,且满足22⋅=b a ,则=b ()A .{}6,2,2-B .{}6,2,4-C .{}3,1,1--D .{}6,2,2-20.设函数21(,)(1)ln()f x y y x y =+-,则(,1)x f x =()A .21x B .21x -C .211y x x-+D .212(1)y x x--+21.已知函数(,)z z x y =的全微分2sin dz xdx ydy =+,则2(1,2)zx y∂=∂∂()A .2B .sin 2C .1D .022.曲面222y z x =+在(1,2,3)-处的切平面方程为()A .2230x y z ++-=B .2230x y z +-+=C .2230x y z -++=D .2230x y z ---=23.把积分00(,)ady f x y dx ⎰化为极坐标形式为()A .200(cos ,sin )ad f r r rdr πθθθ⎰⎰B .2cos 0(cos ,sin )a d f r r rdrπθθθθ⎰⎰C .sin 20(cos ,sin )a d f r r rdrπθθθθ⎰⎰D .20(cos ,sin )ad f r r rdrπθθθ⎰⎰24.设曲线L 为圆周221x y +=,则对弧长的曲线积分为=⎰ ()A .0B .2πC .πD .2π25.下列级数中,收敛的级数是()A .113nn ∞=∑B .111n n ∞=+∑C .132nnn ∞=∑D.n ∞=第II 卷二、填空题(本大题共15小题,每小题2分,共30分)26.322042lim x x x xx x→+-=-________.27.当x →∞时,4(23)kx x +与31x是等价无穷小,则常数k =________.28.已知函数sin 2,0()0xx f x x ⎧<⎪⎪=⎨>,则点0x =是函数()f x 的________间断点.29.微分方程22230d y dyy dx dx+-=的通解为________.30.设61011x y x x e =++,则(10)y =________.31.曲线3(2)2y x =++的拐点是________.32.定积分131(1)x x dx --=⎰________.33.2max(2,3)x x dx -=⎰________.34.计算2211cos dx xππ-=+⎰________.35.方程22241625x y z +=所表示的曲面为________.36.设已知两点(4,0,5)A 与(7,1,3)B ,方向和AB一致的单位向量为________.37.已知平面区域D :22916x y ≤+≤,则Dd σ=⎰________.38.二次积分111(,)y dy f x y dx +⎰⎰交换积分次序后得________.39.函数2223u x y z =-+在点(1,2,2)M -沿方向l 取得最大方向导数,则l 可取________.40.设1nn n a x ∞=∑的收敛半径为R ,则211n n n a x∞-=∑的收敛半径为________.三、计算题(本大题共10小题,每小题5分,共50分)41.21lim ln 1x x x x →∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦.42.已知参数方程2ln(1)2x t y t t=+⎧⎨=+⎩,求0t dy=.43.已知函数y =,2()0f x ≠,求dydx.44.计算定积分3e edx x⎰.45.已知函数(,)z z x y =由方程3z z xy e =+-确定,求曲面(,)z z x y =在点(2,1,0)处的切平面方程.46.求22z x y =+在条件22x y +=下的极值.47.求过点(1,4,3)--并与两直线1L :24135x y z x y -+=⎧⎨+=-⎩和2L :24132x ty t z t=+⎧⎪=--⎨⎪=-+⎩都垂直的直线方程.48.计算二重积分223()x Dx y e dxdy +⎰⎰,其中D 为由直线y x =,y x =-,1x =围成的闭区域.49.计算曲线积分(sin 3)(cos 67)LI x y dx y x dy =+-++-⎰ ,其中L 为顶点分别为(0,0)、(2,0)、(2,1)和(0,1)的四边形区域D 的正向边界.50.把函数()ln(2)f x x =-展开成x 的幂级数,并写出收敛域.四、应用题(本大题共2小题,每小题7分,共14分)51.求由曲线1y =,直线y x =和2x =所围成的平面图形的面积S ,并求该平面图形绕x 轴旋转所形成旋转体体积V .52.若火车每小时所耗燃料费用与火车速度立方成正比,已知速度为20时,每小时的燃料费用为40元,其他费用每小时200元,求最经济的行驶速度.五、证明题(本大题共1小题,每小题6分,共6分)53.证明:当0x >时,2sin 2x x x >-.2022年河南省专升本模拟试卷(一)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。

专升本高数一模拟试题及参考答案

2018年成人高考《专升本-高等数学一》模拟试题第Ⅰ卷(选择题,共 40 分)一、选择题:1~10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2 .().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线 l1与 l2平行时,λ等于().A.1B.0C.D.一 110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共 110 分)二、填空题:11~20 小题,每小题 4 分,共 40 分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28 小题,共 70 分.解答应写出推理、演算步骤.21.(本题满分 8 分)22.(本题满分 8 分)设 y=x+arctanx,求 y'.23.(本题满分 8 分)24.(本题满分 8 分)计算25.(本题满分 8 分)26.(本题满分 10 分)27.(本题满分 10 分)28.(本题满分 10 分)求由曲线 y=x,y=lnx 及 y=0,y=1 围成的平面图形的面积 S 及此平面图形绕 y 轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选 D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选 A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选 C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选 D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选 D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选 B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法 1 将所给表达式两端关于 x 求导,可得从而解法 2 将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为 z 的极小值点,极小值为 1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法 1解法 2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图 8—1 所示.第二部分(选择题,共 40 分)一、选择题:1~10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.B.eC.e2D.12.A.B.C.D.3.A.凹B.凸C.凹凸性不可确定D.单调减少4.A.2B.C.1D.一 25.设 f(x)为区间[a,b]上的连续函数,则曲线 y=f(x)与直线 x=a,x=b,y=0 所围成的封闭图形的面积为().A.B.C.D.不能确定6.A.f(2)-f(0)B.C.D.f(1)-f(0)7.A.B.C.D.8.A.B.C.D.9.A.条件收敛B.绝对收敛C.收敛性与 k 有关D.发散10.A.AxB.C.D.第Ⅱ卷(非选择题,共 110 分)二、填空题:11~20 小题,每小题 4 分,共 40 分.11.12.13.设 sinx 为 f(x)的原函数,则 f(x)=.14.15.已知平面π:2x+y 一 3z+2=0,则过原点且与π垂直的直线方程为.16.17.1 8.19.20.三、解答题:21~28 小题,共 70 分.解答应写出推理、演算步骤.21.(本题满分 8 分)22.(本题满分 8 分)23.(本题满分 8 分)24.(本题满分 8 分)25.(本题满分 8 分)26.(本题满分 10 分)(1)切点 A 的坐标(a,a2).(2)过切点 A 的切线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专升本高等数学模拟试卷(一)一、选择题1、函数)3lg(1)(x xx f +=的定义域为 A ,0≠x 且3-≠x B ,0>x C,3->x D,3->x 且0≠x2、下列各对函数中相同的是:A,4,4162+=--=x y x x y B ,x y x y ==,2C ,x y x y lg 4,lg 4== D ,31334)1(,-=-=x x y x x y3、当∞→x 时,xx x f 1sin 1)(=A ,是无穷小量B ,是无穷大量C ,有界,但不是无穷小量D ,无界,但不是无穷大量4、111111)(---+=x x x x x f 的第二类间断点个数为:A ,0B ,1C ,2D ,35、设⎩⎨⎧>+≤=11)(2x bax x x x f 在1=x 处连续且可导,则b a ,的值分别为A ,1,2-=-=b aB ,1,2=-=b aC ,1,2-==b a D, 1,2==b a 6、下列函数在0=x 处可导的是A ,x y sin 3=B ,x y ln 3=C ,x y 5= D,x y cos 6= 7、下列函数在[]e ,1满足拉格朗日定理的是 A ,x -22 B,)5ln(-x C,xe ln 32- D,32-x 8、)2(3-=x x y 共有几个拐点A ,1B ,2C ,3D ,无拐点 9、xe y 12+=的渐近线:A ,只有水平渐近线B ,只有垂直渐近线C ,既有水平又有垂直渐近线D ,无渐近线10、下列函数中是同一函数的原函数的是:A ,x x 3lg ,lg 3B ,x x arcsin ,arccosC ,x x 2sin ,sin 2D ,2cos 2,2cos x11、设31)(31)(0-=⎰x f dt t f x,且1)0(=f ,则=)(x f A ,x e 3 B, x e 3+1 C ,3xe 3 D ,31 x e 312、下列广义积分收敛的是 A ,dx e x⎰+∞B ,dx xx e⎰+∞ln 1C, dx x⎰+∞11 D ,dx x ⎰∞+-13513、设)(x f 在[]b a ,上连续,则)(x f 与直线0,,===y b y a x 所围成的平面图形的面积等于 A ,⎰badx x f )( B ,⎰badx x f )( C ,),())((b a a b f ∈-ξξ D ,⎰badx x f )(14、直线37423-=+=+zy x 与平面03224=---z y x 的位置关系是 A ,直线垂直平面 B ,直线平行平面 C,直线与平面斜交 D ,直线在平面内 15、方程2223z y x =+在空间直角坐标系下表示的是 A ,柱面 B ,椭球面 C 圆锥面 D 球面 16、=++-+→yx y x y x 11lim)0,0(),(A ,2B ,0C ,∞D ,—2 17、设yx z =,则=)1,2(dzA ,dy dx +B ,dy dx 2ln 2+C ,2ln 31+D ,0 18、),(y x f z =在点),(00y x 处的两个偏导数都存在,则A ,),(y x f z =在),(00y x 可微B ,),(y x f z =在),(00y x 连续C ,),(y x f z =在),(00y x 不连续 D,和在),(00y x 处是否连续无关 19、)1ln(2x y +=的凸区间为A ,)1,(--∞B ,)1,1(-C ,),1(+∞D ,)1,(--∞⋃),1(+∞ 20、0),(,0),(0000='='y x f y x f y x 是函数),(y x f 在),(00y x 点取得极值的 A ,无关条件 B ,充分条件 C,充要条件 D ,必要条件 21、函数1663223++--=y x y x z 的极值点为A ,(1,1)B ,(—1,1)C ,(1,1)和(—1,1)D ,(0,0)22、设D :922≤+y x ,则=+⎰⎰Ddxdy y x f )(222 A ,⎰3)(4rdr r f πB ,⎰30)(2rdr r f π C ,⎰32)(4rdr r f π D, ⎰32)(4dr r r f π23、交换积分次序,=+⎰⎰⎰⎰--xx xxdy y x f dx dy y x f dx 2411),(),(A ,⎰⎰+2022),(y y dx y x f dy B ,⎰⎰-+2122),(y ydx y x f dyC,⎰⎰+422),(y y dx y x f dy D ,⎰⎰+222),(y y dx y x f dy24、设L 为沿圆周x y x 222=+的上半部分和x 轴闭区域边界正方向围成,则=++⎰Lx x dy x y e ydx e )cos 2(sin 2A ,π B,21 C ,21π D ,不存在 25、若∑∞=1n nv收敛,则( )也必收敛A ,11+∞=∑n n n vvB ,∑∞=12n nvC ,∑∞=-1)1(n n nv D,∑∞=++11)(n n nv v26、若a 为常数,则级数∑∞=-133)1sin (n nn a A ,绝对收敛 B ,条件收敛 C ,发散 D 收敛性与a 有关27、设)11ln()1(nu nn +-=,则级数A ,∑∞=1n nu与∑∞=12n nu都收敛 B ,∑∞=1n nu与∑∞=12n nu都发散C,∑∞=1n nu收敛,∑∞=12n nu发散 D ,∑∞=1n nu发散,∑∞=12n nu收敛28、x x y y x +='-''32的通解为A ,c x x x y ++-=324312141 B , 324312141x x x y +-= C ,23124312141c x c x x y ++-= D ,3124312141x c x x y +-=29、x y y cos =+''的特解应设为:A ,)sin cos (x b x a x +B ,)sin cos (2x b x a x +C ,x b x a sin cos +D ,x a cos 30、x x y y 2sin +=+''的特解应设为A ,x b ax x 2sin )(++B ,x d x c b ax x 2cos 2sin )(+++C ,x d x c b ax 2cos 2sin +++ C ,)2cos 2sin (x d x c x b ax +++ 二、填空题1、设=>=)(),0()(x f x x e f x 则2、=+→xx x sin 20)31(lim3、=-+⎰→xx dt t t xx sin )1ln(lim304、函数12+=x x y 的垂直渐进线为5、若⎪⎪⎩⎪⎪⎨⎧=≠-=⎰,0,)1()(32x a x xdt e x f xt ,在0=x 连续,则=a 6、设==-dxdy y e y x x 则,sin 22 7、设)sin (ln x f y =,且)(x f 可微,则=dxdy 8、曲线xy 1=在点(1,1)的法线方程为 9、函数)1ln()(2x x x f +-=在[—1,2]上的最大值为 10、=⋅⎰-dx e x x 334sin11、两平面0722=-++z y x 与08354=+++z y x 的夹角为 12、广义积分dx xq⎰+111,当 时候收敛13、=⎰⎰≤+ydxdy x y x 122214、微分方程0,≠=+'m n my y ,则满足条件0)0(=y 的特解为 15、已知a u n n =∞→lim ,则∑∞=1n )(1+-n n u u =三、计算题 1、xx x x x cos sin 13lim2-+→2、设2cos x x y x +=,求y '3、求⎰xdx e xsin4、求⎰3arctan xdx5、设),(yx xy f z =,求yz x z ∂∂∂∂, 6、设D 是由03,032,1=-+=+-=y x y x y 所围成的区域,求⎰⎰-Ddxdy y x )2(7、将x y 2sin 3=展开成麦克劳林级数 8、求x y y x ln ='+''的通解 四、应用题1、 某服装企业计划生产甲、乙两种服装,甲服装的需求函数为126p x -=,乙服装的需求函数 为24110p y -=,生产这两种服装所需总成本为1002),(22+++=y xy x y x C ,求取得最大利润时的甲乙两种服装的产量。

2、 设D 是由曲线x y =与它在(1,1)处的法线及x 轴所围成的区域,(1) 求D 的面积(2) 求此区域绕y 轴旋转一周所成的旋转体体积。

五、证明题1、设)3)(2)(1()(---=x x x x f ,不用求出)(x f '',求证:至少存在一点)3,1(∈ξ,使得0)(=''ξf。

相关文档
最新文档