专升本高等数学(一)

合集下载

专升本《高等数学(一)》通关资料

专升本《高等数学(一)》通关资料

高等数学(一)通关资料极限的四则运算法则如果 l im f (x) A , l im g (x ) B ,则 x x x x 0 01. l im f (x ) g (x ) l i m f (x ) l im g (x ) A B x x x x 0 x x 0 02. l im f (x ).g (x ) l im f (x ) l im g (x ) AB x x x x 0 x x 00 l im f (x ) f (x ) A x x 0 3.当 l im g (x) 0, l im g (x ) l im g (x ) B x x 0 x x 0 x x 0 l im c . f (x ) c . l im f (x ) x x x x0 0 nl im f (x ) l im f (x ) nx x x x0 0无穷小量和无穷大量定义及关系1.无穷小量概念:如果当自变量x x(或x)时,函数f(x)的极限值为零,则称在该变化过程中,f(x)为无穷小量,简称无穷小,记作l im f(x)(0或l i mf(x) 0)x x 0 x在微积分中,常用希腊字母,,来表示无穷小量.2.无穷大量概念如果当自变量x x(或x)时,函数f(x)的绝对值可以变得充分大(即无限得增大),则称在该变化过程中,f(x)为无穷大量.记作l i m f(x)x x 0两者关系:1在同一变化过程中,如果f(x)为无穷大量,则为无穷小量f(x)1反之,如果f(x)为无穷小量,且f (x)0,则为无穷大量f(x)无穷小量性质及比较1.无穷小量的性质.(1)有限个无穷小量的和、差、积仍为无穷小量.(2)无穷小量与有界之量的积仍为无穷小量.2.无穷小量的比较.设和是同一过程中的无穷小量,即l im0,l im0(1)如果l im 0,则称是比高阶的无穷小量.(2)如果l im C0,则称是与同阶的无穷小量.(3)如果l im C1,则称是与等价无穷小量,记作等价于.(4)如果l im ,则称是比低阶的无穷小量.等价无穷小1.如果、、、都是同一变化过程中的无穷小量,1 2 1 2且 ~,~ 21 1 2则l im 1l im 122这个定理说明,两个无穷小量之比的极限,可以用与它们等价的无穷小量之比的极限来代替.以后我们可以用这个方法来求两个无穷小量之比的极限,此方法可叫做等价无穷小代替法。

专升本高等数学一考试真题及参考答案.doc

专升本高等数学一考试真题及参考答案.doc

专升本高等数学(一)考试真题及参考答案
专升本高等数学(一)考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B 参考答案:A 参考答案:B
参考答案:A
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题
第22题第23题第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题第28题。

专升本高数一知识点归纳

专升本高数一知识点归纳

专升本高数一知识点归纳专升本高等数学是许多专科生在进入本科学习阶段时必须掌握的一门课程,它涵盖了多个数学领域的基础知识点。

以下是专升本高等数学一的主要知识点归纳:一、函数与极限- 函数的概念:定义域、值域、奇偶性、周期性。

- 极限的定义:数列极限、函数极限。

- 无穷小的比较:高阶无穷小、低阶无穷小。

- 极限的运算法则:加、减、乘、除、复合函数的极限。

二、导数与微分- 导数的定义:导数的几何意义、物理意义。

- 基本初等函数的导数公式:幂函数、三角函数、指数函数、对数函数。

- 高阶导数:二阶导数、三阶导数。

- 微分的概念:可微性、微分的几何意义。

- 微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。

三、积分学- 不定积分:换元积分法、分部积分法。

- 定积分:定积分的性质、几何意义、定积分的计算。

- 广义积分:无穷限广义积分、无界函数的广义积分。

- 定积分的应用:面积、体积、平均值问题。

四、微分方程- 一阶微分方程:可分离变量方程、一阶线性微分方程。

- 高阶微分方程:特征方程、二阶常系数线性微分方程。

- 微分方程的应用:物理、工程等领域的应用。

五、级数- 数项级数:正项级数、交错级数、绝对收敛级数。

- 幂级数:幂级数的收敛半径、泰勒级数。

- 傅里叶级数:三角级数、傅里叶级数的性质。

六、多元函数微分学- 偏导数:一阶偏导数、二阶偏导数。

- 全微分:全微分的定义、几何意义。

- 多元函数的极值:拉格朗日乘数法。

七、多元函数积分学- 二重积分:二重积分的计算、几何意义。

- 三重积分:三重积分的计算方法。

结束语:专升本高等数学的学习不仅要求学生掌握数学的基本概念和运算技巧,还要求能够运用这些知识解决实际问题。

通过以上知识点的归纳,希望能帮助同学们更好地复习和掌握专升本高等数学的主要内容,为未来的学习和工作打下坚实的基础。

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。

4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。

5、掌握性质掌握基本初等函数的简单性质及其图象。

6、掌握概念掌握初等函数的概念。

第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。

函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。

函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。

两个函数只有在它们的定义域和对应法则都相同时,才是相同的。

例:研究函数y=x和y=2是不是表示相同的函数。

解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。

例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。

函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。

专升本高等数学一教材内容

专升本高等数学一教材内容

专升本高等数学一教材内容高等数学一是专升本考试中的重要科目之一,内容涵盖了微积分、数列、极限、导数、定积分、反常积分等多个重要知识点。

下面将对这些知识点进行详细介绍。

一、微积分微积分是数学的重要分支,是研究函数变化规律的数学工具。

微积分主要包括导数和积分两个部分。

1. 导数导数是描述函数变化率的概念,常用符号为f'(x)或dy/dx。

导数可以表示函数在某一点的瞬时变化率,并可以用于解决函数的最值、切线和曲线的问题等。

2. 积分积分是导数的逆运算,常用符号为∫f(x)dx。

积分可以表示函数的累积变化,求出曲线下的面积、求解曲线的弧长以及求解平均值等问题。

二、数列与极限数列是按照一定规律排列的一串数,而极限是数列中数值趋于无穷时的值。

数列与极限的概念在高等数学中有着重要的应用。

1. 数列数列是离散的数值排列,常用符号表示为{an},其中an代表数列的第n个元素。

数列中的元素可以按照不同的规律进行排列,如等差数列、等比数列等。

2. 极限极限是数列中数值趋于无穷时的值,常用符号表示为lim(n→∞)an 或lim(an)。

极限的计算可以通过数列的递推公式、夹逼定理等方法进行。

三、导数与应用导数在实际问题中有着广泛的应用,例如描述物体运动的速度、解决最优化问题等。

1. 函数的导数函数的导数可以表示函数在某一点的瞬时变化率,也可以用来求函数的最值和图像的切线等。

导数的计算可以通过求导法则、链式法则等方法进行。

2. 切线和法线导数可以用来求解函数图像上的切线和法线。

切线是在函数图像上与曲线相切的直线,而法线是与切线垂直的直线。

四、定积分与应用定积分也是微积分的重要内容之一,可以用于求解曲线下的面积、求解曲线的弧长等问题。

1. 定积分的概念定积分可以理解为曲线与x轴之间的面积,通常用∫f(x)dx表示。

定积分的计算可以通过牛顿-莱布尼茨公式、定积分的基本性质等方法进行。

2. 曲线下的面积定积分可以用来求解曲线下的面积问题,例如梯形法则、黎曼和等方法可以帮助我们计算曲线下的面积。

专升本高等数学(一)-多元函数微积分学(二)

专升本高等数学(一)-多元函数微积分学(二)

专升本高等数学(一)-多元函数微积分学(二)(总分:99.98,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:9,分数:18.00)1.设z=ln(x2+y),则等于A. B. C. D(分数:2.00)A.B. √C.D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*](答案为B)2.设z=(lny)xy∙ A.xy(lny)xy-1∙ B.(lny)xy lnlny∙ C.y(lny)xy lnlny∙ D.x(lny)xy lnlny(分数:2.00)A.B.C. √D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*](答案为C)3.设z=sin(xy2)∙ A.-2xycos(xy2)∙ B.-y2cos(xy2)∙ C.2xycos(xy2)∙ D.y2cos(xy2)(分数:2.00)A.B.C. √D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*].(答案为C)4.已知f(xy,x-y)=x2+y2∙ A.2+2y∙ B.2-2y∙ C.2x+2y∙ D.2x-2y(分数:2.00)A. √B.C.D.解析:[解析] 本题主要考查简单二元函数偏导数的计算.f(xy,x-y)=x2+y2=(x-y)2+2xy,f(x,y)=2x+y2,[*],[*].(答案为A)5.函数z=3x2y+2xy3在点(1,1)处的全微分dz|(1,1)等于∙ A.4dx-3dy∙ B.4dx+3dy∙ C.8dx+9dy∙ D.8dx-9dy(分数:2.00)A.B.C. √D.解析:[解析] [*],[*],dz|(1,1)8dx+9dy.(答案为C)6.______∙ A.{(x,y)|x2+y2≤4}∙ B.{(x,y)|x2+y2≤4且x≠0}∙ C.{(x,y)|x2+y2≤4且x≠0,y≠0}∙ D.{(x,y)|x2+y2≤4且y≠0}(分数:2.00)A.B.C. √D.解析:7.______∙ A.{(x,y)|0<x2+y2≤2}∙ B.{(x,y)|0≤x2+y2≤2}∙ C.{(x,y)|0<x2+y2<2}∙ D.{(x,y)|0≤x2+y2<2}(分数:2.00)A. √B.C.D.解析:8.设f(x,y)=,则=______ A. B. C. D(分数:2.00)A.B.C. √D.解析:9.设,则f(x,y)=______A. B. C D.xe x(分数:2.00)A. √B.C.D.解析:二、{{B}}填空题{{/B}}(总题数:13,分数:26.00)10.,则.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 根据二元函数的定义,函数关系只取决于定义域与对应法则,而与变量所选用的记号无关,如果函数表达式中的第一自变量用记号u表示,第二自变量用记号v表示,则给定的函数对应法则为[*].如果将第一自变量u用[*]替换,第二自变量v用[*]替换,则有 [*]11.f(x,y)=2x2+y2,则f(xy,x2-y2)= 1.(分数:2.00)填空项1:__________________ (正确答案:x4+y4)解析:[解析] f(xy,x2-y2)=2(xy)2+(x2-y2)2=x4+y4.12.f(x+y,x-y)=x2-y2,则f(x,y)=______.(分数:2.00)填空项1:__________________ (正确答案:xy)解析:[解析] 解法Ⅰ (置换法)令[*]解得[*]代入给定函数,则有 [*],因为函数关系与变量所选用的记号无关,再用字母x,y代换字母u,v,则有f(x,y)=xy 解法Ⅱ (拼凑法)由于f(x+y,x-y)=(x+y)(x-y),则有f(x,y)=xy13.f(xy,x-y)=x2+y2+xy,则f(x,y)=______.(分数:2.00)填空项1:__________________ (正确答案:3x+y2)解析:[解析] 由于f(xy,x-y)=x2+y2+xy=(x-y)2+3xy,则有f(x,y)=3x+y2.14.设函数z=x2+ye x.(分数:2.00)填空项1:__________________ (正确答案:2x+ye x)解析:[解析] 本题主要考查计算二元函数的一阶偏导数.[*]=2x+ye x.15.设z=sin(x2y).(分数:2.00)填空项1:__________________ (正确答案:x2cos(x2y))解析:[解析] 本题主要考查计算二元函数的一阶偏导数. [*].16.设z=,则.(分数:2.00)填空项1:__________________ (正确答案:1)解析:[解析] 本题主要考查计算二元函数的一阶偏导数.解法Ⅰ [*],[*].解法Ⅱ 由于是求函数[*]在点(1,0)处对x的偏导数,可先求出z(x,0),即将y=0代入函数[*],可得到关于x的一元函数,然后再求其在x=1处的导数.[*],[*].17.函数z=ln(1+x2-y2)的全微分dz=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*], [*].18.设z=ln(x+y2).(分数:2.00)填空项1:__________________ (正确答案:dx)解析:[解析] 本题主要考查计算二元函数的一阶全微分.解法Ⅰ [*],[*],[*].解法Ⅱ [*],[*].19.设z=x2y+siny.(分数:2.00)填空项1:__________________ (正确答案:2x)解析:[解析] 本题主要考查计算二元函数的二阶混合偏导数. [*].20.函数z=z(x,y)是由方程x2z+2y2z2+y=0确定,则dz=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 两种解法如下.解法Ⅰ (公式法)令F(x,y,z)=x2z+2y2z2+y,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*],[*]解法Ⅱ (直接微分法)将方程两边同时求微分d(x2z)+d(2y2z2)+dy=0,2xdxz+x2dz+4ydy2+4y2zdz+dy=0,经整理,得(x2+4y2z)dz=-2xzdx-(4yz2+1)dy,即[*].21.函数f(x,y)=4(x-y)-x2-y2的极大值点是______.(分数:2.00)填空项1:__________________ (正确答案:8)解析:[解析] 解方程组[*]得驻点(2,-2),计算[*],B2-AC=-4<0,A=-2<0,所以函数的极大值点为(2,-2),极大值为f(2,-2)=8.22. 1.(分数:2.00)填空项1:__________________ (正确答案:{(x,y)|1<x2+y2≤2})解析:三、{{B}}解答题{{/B}}(总题数:1,分数:56.00)求下列二元函数的定义域.(分数:55.98)3.11)__________________________________________________________________________________________ 正确答案:(由于分式函数,要求分式的分母不为零,而对于根式函数,要求偶次方根号下的被开方式必须大于或等于零,则有[*]所以D={(x,y)|0<x2+y2≤4},此函数的定义域是以点(0,0)为圆心,以2为半径的圆周及圆周所围成的不含圆心、不含圆周上及圆周内的y轴部分的有界半开半闭区域(如下图).[*])解析:(2).z=ln(y2-2x+1).(分数:3.11)__________________________________________________________________________________________ 正确答案:(由于对数函数,要求真数式必须大于零,则有y2-2x+1>0,即y2>2x-1.所以D={(x,y)|y2>2x-1},此函数的定义域是以点([*],0)为顶点,以x为对称轴,开口向右的抛物线所围成的左侧无界开区域(如下图).[*])解析:3.11)正确答案:(对于函数arcsinf(x,y),arccosf(x,y),要求|f(x,y)|≤1,则有 [*]即[*] 所以D={(x,y)|-2≤x≤2,-3≤y≤3},此函数的定义域是直线x=-2,x=2,y=-3,y=3所围成的有界闭区域(如下图).[*]) 解析:3.11)__________________________________________________________________________________________正确答案:(要使函数解析式有意义,自变量x,y应同时满足[*]即[*]亦即[*]所以D={(x,y)|y2≤4x,x2+y2<1且x≠0,y≠0},此函数的定义域是抛物线y2=4x和圆x2+y2=1所围成的,但不含原点及抛物线间劣弧段的有界半开半闭区域(如下图).[*])解析:(5).,求 3.11)__________________________________________________________________________________________正确答案:([*], [*].)解析:(6).设z=e u sinv,u=xy,v=x+y 3.11)__________________________________________________________________________________________正确答案:(根据二元复合函数求导的链式法则,有[*]=e xy sin(x+y)y+e xy cos(x+y)=e xy[ysin(x+y)+cos(x+y)],[*]=e xy sin(x+y)x+e xy cos(x+y)=e xy[xsin(x+y)+cos(x+y)].)解析:(7).设z=f(u,v),而u=x2y,,其中f(u,v) 3.11)__________________________________________________________________________________________正确答案:(本题主要考查用二元复合函数的链式法则求偏导数. [*])解析:(8).设z=f(xy,x2+y2),且f 3.11)__________________________________________________________________________________________正确答案:(本题主要考查用二元复合函数的链式法则求偏导数.设z=f(u,v),u=xy,v=x2+y2,[*])解析:(9).设函数z=arctan(xy)+2x2+y,求dz.(分数:3.11)__________________________________________________________________________________________正确答案:(本题主要考查计算二元函数的全微分. [*])解析:(10).dz.(分数:3.11)正确答案:([*])解析:(11).设函数f(u,v)dz.(分数:3.11)__________________________________________________________________________________________ 正确答案:(本题主要考查计算二元复合函数的全微分. [*], [*])解析:(12).设函数z=ln(2-x+y) 3.11)__________________________________________________________________________________________ 正确答案:([*].)解析:(13).设函数z=ln(1-x+y)+x2y 3.11)__________________________________________________________________________________________ 正确答案:([*].)解析:(14).设函数,求 3.11)__________________________________________________________________________________________ 正确答案:([*])解析:(15).设函数z=z(x,y)是由方程x2+y2-xyz2=0 3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=x2+y3-xyz2,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*])解析:(16).设z=f(x,y)是由方程F(x+mz,y+nz)=0所确定,其中m、n为常数,F(u,v)为可微分函数,数:3.11)__________________________________________________________________________________________ 正确答案:(本题主要考查计算二元函数的偏导数.设 F(u,v)=0,u=x+mz,v=y+nz, [*] [*])解析:(17).设z=z(x,y)是由方程yz+x2+z=0所确定,求dz.(分数:3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=yz+x2+z,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*])解析:(18).设函数z=z(x,y)是由方程z=x+ye z 3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=x+ye z-z,[*])解析:。

2022年成考高数一真题及答案解析

2022年成考高数一真题及答案解析

2022年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题,共40分)一㊁选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 当x ң0时,l n (1+x 2)为x 的(㊀㊀)A .高阶无穷小量B .等价无穷小量C .同阶但不等价无穷小量D .低阶无穷小量2 l i m x ңɕ1+3x æèçöø÷=(㊀㊀)A .e3B .e2C .e32D .e233 设y(n -2)=si n x ,则y (n )=(㊀㊀)A .c o s xB .-c o s xC .s i n xD .-s i n x4 设函数f (x )=3x 3+a x +7在x =1处取得极值,则a =(㊀㊀)A .9B .3C .-3D . 95 ʏ2c o s 3x d x =(㊀㊀)A .6s i n 3x +CB .23s i n 3x +CC .13s i n 3x +CD .16s i n 3x +C6ʏx0s i n 2t d t ()ᶄ=(㊀㊀)A .s i n 2xB .s i n 2xC .c o s 2xD .-s i n ˙2x7 设z =(y -x )2+1x ,则∂z∂y=(㊀㊀)A .2(y -x )-1x2B .2(y -x )-1xC .2(x -y )D .2(y -x )8 函数f (x ,y )=x 2+y 2-2x +2y +1的驻点是(㊀㊀)A .(0,0)B .(-1,1)C .(1,-1)D .(1,1)9 下列四个点中,在平面x +y -z +2=0上的是(㊀㊀)A .(-2,1,1)B .(0,1,1)42C.(1,0,1)D.(1,1,0)10 级数ðɕn=1x n n+1的收敛半径为(㊀㊀) A.12B.1C.32D.2第Ⅱ卷(非选择题,共110分)二㊁填空题(11~20小题,每小题4分,共40分)11 l i m xң0x+s i n2xs i n x=.12 设函数f(x)满足fᶄ(1)=5,则l i m xң0f(1+2x)-f(1)x=.13 设y˙=11+x,则d y=.14 曲线y=x4-x的水平渐近线方程为.15 ʏx2(+3x12)d x=.16 ʏ1-1(1+x s i n x2)d x=.17 ʏ203x d x=.18 设z=x t a n(y2+1),则∂z∂x=.19 微分方程d y d x+2y=0的通解为:y=.20 过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为.三㊁解答题(21~28题,共70分.解答应写出推理㊁演算步骤)21 (本题满分8分)计算l i m xң0x3x-s i n x22 (本题满分8分)设函数f(x)=e+12x2-s i n x,求fᶄ(1)52求函数f (x )=x 3-x 2-x +2的单调区间.24 (本题满分8分)求曲线y =x 2在点(1,1)处的切线方程.25 (本题满分8分)求ʏ1x (x +2)d x .26 (本题满分10分)求微分方程y ᶄ+11+x y =x1+x满足初值条件y x =1=1427(本题满分10分)计算∬Dx +y 2()d x d y ,其中D 是由直线y =0,y =x ,x =1所围成的闭区域.62证明:当x>0时,e x>1+x.72参考答案及解析一、选择题1 ʌ答案ɔA ʌ考情点拨ɔ本题考查了高阶无穷小量的知识点.ʌ应试指导ɔ由题可知l i m x ң0l n1+x 2()x=l i m x ң0x 2x =l i m x ң0x =0,故l n (1+x 2)是x 的高阶无穷小量.2 ʌ答案ɔC ʌ考情点拨ɔ本题考查了两个重要极限的知识点.ʌ应试指导ɔl i m x ңɕ1+3x æèçöø÷=l i m x ңɕ1+3x æèçöø÷x 3 32=l i m x ңɕ1+3x æèçöø÷x3éëêêùûúú32=e 32.3 ʌ答案ɔD ʌ考情点拨ɔ本题考查了高阶导数的知识点.ʌ应试指导ɔy (n -1)=(y (n -2))ᶄ=(s i n x )ᶄ=c o s x ,因此y (n )=(y(n -1))ᶄ=(c o s x )ᶄ=-s i n x .4 ʌ答案ɔD ʌ考情点拨ɔ本题考查了函数取得极值的条件的知识点.ʌ应试指导ɔ函数f (x )在x =1处取得极值,而f ᶄ(x )=9x 2+a ,故f ᶄ(1)=9+a =0,解得a =-95 ʌ答案ɔBʌ考情点拨ɔ本题考查了不定积分的知识点.ʌ应试指导ɔʏ2c o s 3x d x =23ʏc o s 3xd (3x )=23si n 3x +C .6 ʌ答案ɔB ʌ考情点拨ɔ本题考查了变上限定积分的知识点.ʌ应试指导ɔ由变上限定积分的定理可知ʏx 0s i n 2t d t ()ᶄ=s i n 2x .7 ʌ答案ɔD ʌ考情点拨ɔ本题考查了偏导数的知识点.ʌ应试指导ɔ∂z ∂y=[(y -x )2]ᶄ+0=2(y -x ).8 ʌ答案ɔCʌ考情点拨ɔ本题考查了二元函数的驻点的知识点.ʌ应试指导ɔ由题干可求得f x (x ,y )=2x -2,f y (x ,y )=2y +2 令f x (x ,y )=0,f y (x ,y )=0,解得x =1y =-1,即函数的驻点为(1,-1)9 ʌ答案ɔAʌ考情点拨ɔ本题考查了平面方程的知识点.ʌ应试指导ɔ把选项中的几个点带入平面方程,只有选项A 满足方程,故选项A 是平面上的点.8210 ʌ答案ɔB ʌ考情点拨ɔ本题考查了幂级数的收敛半径的知识点.ʌ应试指导ɔ由题可知ρ=l i m n ңɕ1n +1+11n +1=l i m n ңɕn +1n +2=1,因此级数的收敛半径为R =1ρ=1二、填空题11 ʌ答案ɔ3ʌ考情点拨ɔ本题考查了函数极限的运算的知识点.ʌ应试指导ɔl i m x ң0x +s i n 2x s i n x =l i m x ң0x s i n x +l i m x ң0s i n 2x s i n x =1l i m x ң0s i n x x+l i m x ң02x x=1+2=3 12 ʌ答案ɔ10ʌ考情点拨ɔ本题考查了导数的定义的知识点.ʌ应试指导ɔl i m x ң0f (1+2x )-f (1)x =2l i m x ң0f (1+2x )-f (1)2x=2f ᶄ(1)=2ˑ5=10 13 ʌ答案ɔ-1(1+x )2d x ʌ考情点拨ɔ本题考查了函数微分的知识点.ʌ应试指导ɔy ᶄ=11+x æèçöø÷ᶄ=-1(1+x )2,故有d y =y ᶄd x =-1(1+x )2d x .14 ʌ答案ɔy =-1ʌ考情点拨ɔ本题考查了曲线的渐近线的知识点.ʌ应试指导ɔ由于l i m x ңɕx 4-x =l i m x ңɕ14x -1=10-1=-1,因此曲线的水平渐近线为y =-115 ʌ答案ɔx 33+2x +C ʌ考情点拨ɔ本题考查了不定积分求解的知识点.ʌ应试指导ɔʏx 2(+3x )d x =ʏx 2d x +3ʏx 12d x =x 33+3ˑ11+12x 12+1+C =x 33+2x +C .16 ʌ答案ɔ2ʌ考情点拨ɔ本题考查了奇偶函数在对称区间上的定积分的知识点.ʌ应试指导ɔ令f (x )=x s i n x 2,有f (-x )=-x s i n x 2=-f (x ),即函数f (x )是奇函数,因此ʏ1-11(+xs i n x 2)d x =ʏ1-1dx +0=217 ʌ答案ɔ8l n 392ʌ考情点拨ɔ本题考查了定积分的计算的知识点.ʌ应试指导ɔʏ203xd x =3x l n 320=32-30l n 3=9-1l n 3=8l n 318 ʌ答案ɔt a n (y 2+1)ʌ考情点拨ɔ本题考查了二元函数的偏导数的知识点.ʌ应试指导ɔ对x 求偏导,可将t a n (y 2+1)看作是常数,故∂z ∂x=t a n (y 2+1)19 ʌ答案ɔC e -2x ʌ考情点拨ɔ本题考查了可分离变量的微分方程的知识点.ʌ应试指导ɔ将微分方程变量分离,可得d y d x =-2y ⇒d y y =-2d x ,两边同时积分ʏdy y=ʏ-2d x ,可得l n |y |=-2x +C 1⇒y =ʃe-2x +C =ʃe C e -2x =C e -2x (其中C =ʃe c )20 ʌ答案ɔ3x -y -z -4=0ʌ考情点拨ɔ本题考查了平面的点法式方程的知识点.ʌ应试指导ɔ平面3x -y -z -2=0的法向量为(3,-1,-1),所求平面与其平行,故所求平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x -1)-(y -0)-(z +1)=0,即3x -y -z -4=0 三、解答题21 l i m x ң0x 3x -s i n x =l i m x ң03x 21-c o s x =l i m x ң06x s i n x =622 f ᶄ(x )=x -c o s x .fᶄ(1)=1-c o s 1 23 fᶄ(x )=3x 2-2x -1 令f ᶄ(x )=0,解得x 1=-13,x 2=1 当x <-13或x >1时,f ᶄ(x )>0,故f (x )的单调递增区间为-ɕ,-13æèçöø÷,(1,+ɕ).当-13<x <1时,fᶄ(x )<0,故f (x )的单调递减区间为-13,1æèçöø÷ 24 y ᶄ=2x ,y ᶄx =1=2故所求的切线方程为y -1=2(x -1),即y =2x -125ʏd x x (x +2)=12ʏ1x -1x +2æèçöø÷d x =12(l n |x |-l n |x +2|)+C =12l n |xx +2|+C .0326 y =e-ʏ(ʏx1+xe ʏd x +C )=11+xʏx d x +C ()=11+x x 22+C æèçöø÷由y x =1=14得C =0,所以特解为y =x 22(1+x )27 ∬Dx +y 2()d x d y =ʏ10dx ʏx0x +y 2()d y=ʏ10x y +y 33æèçöø÷x 0d x=ʏ10x 2+x 33æèçöø÷d x =x 33+x 412æèçöø÷10=51228 设f (x )=e x -1-x ,则f ᶄ(x )=e x-1 当x >0时,f ᶄ(x )>0,故f (x )在(0,+ɕ)单调递增.又因为f (x )在x =0处连续,且f (0)=0,所以当x >0时,f (x )>0 因此当x >0时,e x -1-x >0,即e x >1+x .13。

专升本考高数一还是高数二

专升本考高数一还是高数二

专升本考高数一还是高数二成人高考高数一和高数二的区别专升本层次的数学有《高等数学》(一)、《高等数学》(二)两类,都以考查《高等数学》的基本知识、基本方法、基本技能为主,《高数》(一)是理工类考生的考试科目,《高数》(二)是经济管理类考生的考试科目。

一、主要内容不同成人高考高数考试主要是对知识的掌握程度要求不同,《高数一》主要学数学分析,内容主要为微积分(含多元微分、重积分及常微分方程)和无穷级数等,要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。

《高数二》主要学概率统计、线性代数等内容。

要求掌握正弦变换、正切变换等。

从实际考试情况看,《高数》(一)一般比《高数》(二)多出约30%的考题,约占45分左右。

所以,有的考生考《高数》(一),但是跟着《高数》(二)的辅导听课,也是可行的,但考生必须把《高数》(二)没涉及的知识补上,不然就会白白丢了30%的分数。

二、考试专业类别不一样理工类专业需要考高数一;经管类专业需要考高数二,所以如果你选择是理工类的专业,那么考试就会考高数一,如会计类的经管系专业考的就是高数二。

三、考试难度不一样高数一的内容多,知识掌握要求一般要比高数二要高,大部分包含了高数二的内容。

如果高数一的知识掌握的很好,那么高数二对于个人来说也就很容易了。

从实际考试情况看,高数(一)一般比高数(二)多出约30%的考题,约占45分左右。

所以,有的考生考《高数》(一),但是跟着《高数》(二)的辅导听课,也是可行的。

成人高考大专450分的满分一般只要考110分左右就可以录取,本科450分的满分一般考140分左右就可以录取,而且年龄在25周岁以上的报考本校还可以享有20分的加分照顾。

高数的全称是高等数学,一般大学数学分为四门课程:高等数学上册、高等数学下册、线性数学、概率论与数理统计,那么高数一也就是指高等数学上册,它包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、空间解析几何与向量代数七章内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12. A.A B.B C.C D.D 试题编号 :E05878 答案 :D 题型 :单选题
13. A.A B.B C.C D.D 试题编号 :E05879 答案 :C 题型 :单选题
14. A.A B.B C.C D.D 试题编号 :E05880 答案 :C 题型 :单选题
15. A.A B.B C.C D.D 试题编号 :E05881 答案 :A 题型 :单选题
44. A.A B.B C.C
D.D 试题编号 :E05910 答案 :A 题型 :单选题
45. A.A B.B C.C D.D 试题编号 :E05911 答案 :D 题型 :单选题
46. A.A B.B C.C D.D 试题编号 :E05912 答案 :D 题型 :单选题
47. A.A B.B C.C D.D 试题编号 :E05913 答案 :A 题型 :单选题
4. A.A B.B C.C D.D 试题编号 :E05870 答案 :C 题型 :单选题
5. A.A B.B C.C D.D 试题编号 :E05871 答案 :C 题型 :单选题
6. A.A B.B C.C D.D 试题编号 :E05872 答案 :B 题型 :单选题
7. A.A B.B C.C D.D 试题编号 :E05873 答案 :A 题型 :单选题
24. A.A B.B C.C D.D 试题编号 :E05890 答案 :B 题型 :单选题
25. A.A B.B C.C D.D 试题编号 :E05891 答案 :D 题型 :单选题
26. A.A B.B C.C D.D 试题编号 :E05892 答案 :D 题型 :单选题
27. A.A B.B C.C D.D 试题编号 :E05893 答案 :A 题型 :单选题
20. A.A B.B C.C D.D 试题编号 :E05886 答案 :C 题型 :单选题
21. A.A B.B C.C D.D 试题编号 :E05887 答案 :D 题型 :单选题
22. A.A B.B C.C D.D 试题编号 :E05888 答案 :A 题型 :单选题
23. A.A B.B C.C D.D 试题编号 :E05889 答案 :B 题型 :单选题
28. A.A B.B C.C D.D ቤተ መጻሕፍቲ ባይዱ题编号 :E05894 答案 :C 题型 :单选题
29. A.A B.B C.C D.D 试题编号 :E05895 答案 :A 题型 :单选题
30. A.A B.B C.C D.D
试题编号 :E05896 答案 :A 题型 :单选题
31. A.A B.B C.C D.D 试题编号 :E05897 答案 :B 题型 :单选题
8. A.A B.B C.C D.D 试题编号 :E05874 答案 :B 题型 :单选题
9. A.A B.B C.C D.D 试题编号 :E05875 答案 :B 题型 :单选题
10.
A.A B.B C.C D.D 试题编号 :E05876 答案 :B 题型 :单选题
11. A.A B.B C.C D.D 试题编号 :E05877 答案 :A 题型 :单选题
32. A.A B.B C.C D.D 试题编号 :E05898 答案 :D 题型 :单选题
33. A.A B.B C.C D.D 试题编号 :E05899 答案 :A 题型 :单选题
34. A.A B.B C.C D.D 试题编号 :E05900 答案 :C 题型 :单选题
35. A.A B.B C.C D.D 试题编号 :E05901 答案 :D 题型 :单选题
//[ 父试题分类 ]: 北京大学机考系统题库 /入学考试题库 /高等数学(一) [北京大学机考系统题库 ]:
1. A.A B.B C.C D.D 试题编号 :E05867 答案 :D 题型 :单选题
2. A.A B.B C.C D.D 试题编号 :E05868 答案 :A 题型 :单选题
3. A.A B.B C.C D.D 试题编号 :E05869 答案 :D 题型 :单选题
16. A.A B.B C.C D.D 试题编号 :E05882 答案 :C 题型 :单选题
17. A.A B.B C.C D.D
试题编号 :E05883 答案 :C 题型 :单选题
18. A.A B.B C.C D.D 试题编号 :E05884 答案 :B 题型 :单选题
19. A.A B.B C.C D.D 试题编号 :E05885 答案 :C 题型 :单选题
36. A.A B.B C.C D.D 试题编号 :E05902 答案 :A 题型 :单选题
37. A.A B.B C.C
D.D 试题编号 :E05903 答案 :B 题型 :单选题
38. A.A B.B C.C D.D 试题编号 :E05904 答案 :D 题型 :单选题
39. A.A B.B C.C D.D 试题编号 :E05905 答案 :A 题型 :单选题
48. A.A B.B C.C D.D 试题编号 :E05914 答案 :C 题型 :单选题
49. A.A B.B C.C D.D 试题编号 :E05915 答案 :C 题型 :单选题
50. A.A B.B C.C D.D 试题编号 :E05916 答案 :D 题型 :单选题
51. A.A B.B C.C D.D 试题编号 :E05917 答案 :B 题型 :单选题
40. A.A B.B C.C D.D 试题编号 :E05906 答案 :A 题型 :单选题
41. A.A B.B C.C D.D 试题编号 :E05907 答案 :A 题型 :单选题
42. A.A B.B C.C D.D 试题编号 :E05908 答案 :C 题型 :单选题
43. A.A B.B C.C D.D 试题编号 :E05909 答案 :B 题型 :单选题
52. A.A B.B C.C D.D 试题编号 :E05918 答案 :A 题型 :单选题
53. A.A B.B C.C D.D 试题编号 :E05919 答案 :A 题型 :单选题
54. A.A B.B C.C D.D 试题编号 :E05920 答案 :B 题型 :单选题
相关文档
最新文档