浙江省专升本高等数学常用公式

合集下载

成人高考专升本《高等数学二》公式大全

成人高考专升本《高等数学二》公式大全

成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。

专升本成人高考高数常用公式

专升本成人高考高数常用公式

专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。

专升本同学必备的高等数学公式大全.

专升本同学必备的高等数学公式大全.

高等数学公式高等数学公式导数公式:(tgx)'=sec2x(ctgx)'=-csc2x(secx)'=secx⋅tgx(cscx)'=-cscx⋅ctgx(ax)'=axlna(logax)'=1xlna(arcsinx)'=1-x21(arccosx)'=--x21(arctgx)'=1+x21(arcctgx)'=-1+x基本积分表:三角函数的有理式积分:⎰tgxdx=-lncosx+C⎰ctgxdx=lnsinx+C⎰secxdx=lnsecx+tgx+C⎰cscxdx=lncscx-ctgx+Cdx1x=arctg+C⎰a2+x2aadx1x-a=ln⎰x2-a22ax+a+Cdx1a+x=ln⎰a2-x22aa-x+Cdxx=arcsin+C⎰a2-x2aπ2ndx2=sec⎰cos2x⎰xdx=tgx+Cdx2⎰sin2x=⎰cscxdx=-ctgx+C⎰secx⋅tgxdx=secx+C⎰cscx⋅ctgxdx=-cscx+Cax⎰adx=lna+Cx⎰shxdx=chx+C⎰chxdx=shx+C⎰dxx2±a2=ln(x+x2±a2)+Cπ2 In=⎰sinxdx=⎰cosnxdx=00n-1In-2n⎰⎰⎰xa222x+adx=x+a+ln(x+x2+a2)+C22xa22222x-adx=x-a-lnx+x2-a2+C22xa2x2222a-xdx=a-x+arcsin+C22a222u1-u2x2dusinx=,cosx=,u=tg,dx=2221+u1+u1+u2一些初等函数:两个重要极限:1 / 12高等数学公式ex-e-x双曲正弦:shx=2ex+e-x双曲余弦:chx=shxex-e-x双曲正切:thx==chxex+e-xarshx=ln(x+x+1)archx=±ln(x+x2-1)11+xarthx=ln21-x三角函数公式: ·诱导公式:limsinx=1x→0x1lim(1+)x=e=2.718281828459045...x→∞x·和差角公式: ·和差化积公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ sinαsinβtg(α±β)= tgα±tgβ1 tgα⋅tgβctgα⋅ctgβ 1ctg(α±β)=ctgβ±ctgαsinα+sinβ=2sinα+β22α+βα-βsinα-sinβ=2cossin22α+βα-βcosα+cosβ=2coscos22α+βα-βcosα-cosβ=2sinsin22cosα-β2 / 12高等数学公式 ·倍角公式:sin2α=2sinαcosαcos2α=2cos2α-1=1-2sin2α=cos2α-sin2αctg2α-1ctg2α=2ctgα2tgαtg2α=1-tg2α·半角公式:sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tgα-tg3αtg3α=1-3tg2αsintgα2=±=±-cosαα+cosαcos=±222-cosα1-cosαsinαα1+cosα1+cosαsinα==ctg=±==1+cosαsinα1+cosα21-cosαsinα1-cosαα2 ·正弦定理:abc===2R ·余弦定理:c2=a2+b2-2abcosC sinAsinBsinCarcsinx=·反三角函数性质:π2-arccosx arctgx=π2-arcctgx高阶导数公式——莱布尼兹(Leibniz)公式:(uv)(n)k(n-k)(k)=∑Cnuvk=0n=u(n)v+nu(n-1)v'+中值定理与导数应用: n(n-1)(n-2)n(n-1) (n-k+1)(n-k)(k)uv''+ +uv+ +uv(n)2!k!拉格朗日中值定理:f(b)-f(a)=f'(ξ)(b-a)f(b)-f(a)f'(ξ)=F(b)-F(a)F'(ξ)曲率:当F(x)=x时,柯西中值定理就是拉格朗日中值定理。

(完整版)专升本数学公式大全

(完整版)专升本数学公式大全

导数公式:专升本高等数学公式大全2(tgx) sec x (arcsin x)(ctgx) 2 csc x(secx) secx tgx (arccosx)(cscx) cscx ctgx(a x) a x I na(arctgx) (Iog a X) 1 (arcctgx)1 1a r 2 1 X2.1 X2 1 X2基本积分表:三角函数的有理式积分:tgxdx In cosx C ctgxdx In sin x C secxdx In secx tgx Ccscxdx In cscx ctgx Cdx 2 .2 sec xdx tgx C cos xdx 2・2 csc xdx ctgx C sin xsecx tgxdx secx Cdx ~2 2 a x 1 丄x arctg C a adx x2a2dx2 2a x 丄ln|x a2a |x a1 , a x In2a a xcscx ctgxdx cscx Cxa x dx CIn ashxdx chx Cchxdx shx C异—arcsin 仝C “ a2 x2 adx 2 2 ——2 2 "( x x a ) C.x a2 2nn sin xdx ncos xdx 0 0'、 2 a dx x 2 x 2 a2x2a2 dx x ..x2a22<a2 2x dx x ■ a2 2 xI n2a . / In(x2a2I ——In x2x2 a2)2a . x arcs in C2 2 a2usinx 2,cosx1 u 2一些初等函数: 双曲正弦:shx 双曲余弦:chx 双曲正切:thxtg2,dx2du V~u\两个重要极限:xxe e2 xxe e2 x x shx e e xxchx e esin x ’ lim 1 x 0x lim(1丄广 x xe 2.718281828459045…arshx ln(x x 2 1) archx In (x x 2 1)arthx 1|n1 x2 1 三角函数公式: •诱导公式:-和差化积公式:sin( )sin coscos sin cos( )cos cossin sin、tg tgtg()1 tg tgctg()ctgctg 1ctgctg-和差角公式: sin sin sinsincos cos cos cos2sin cos — 2 2 2 cossin —222 cos cos —2 2 2 sin ------- s in ------2 2sin 2 2si n cos2 2cos2ctg2 ctg2 2ctgtg2 2tg 2•倍角公式:cos1 -半角公式: 1 1 2si n2 2cos ・2sin sin3 3si ncos3 4cos3tg33tg4sin33cos-3tg~2sin —21 cos21 coscos—21 cos21 cos sinsin 1 cosct g-1 cos sin1 cos sin 1 cos-正弦定理:,一sin A sin B 亠2Rsin C -余弦定理:b22abcosC-反三角函数性质: arcs inxarccosx arctgx arcctgx高阶导数公式一一莱布尼兹( Leibniz公式:(uv)(n)nCnU(nk 0k)v(k)u(n)v nu(n 1)v n(n 1)u2!(n 2)vn(n 1) (n kk!1) (n k)v(k)uv(n)中值定理与导数应用: 拉格朗日中值定理:柯西中值定理: f(b)f(b)f (a)f (a)F ()f ( )(b a))当F(x) x时,曲率:F(b) F(a)柯西中值定理就是拉格朗日中值定理。

浙江省专升本高等数学常用公式

浙江省专升本高等数学常用公式

浙江省专升本高等数学常用公式在浙江省的专升本高等数学考试中,常用公式是我们必须掌握的重要知识点之一、下面我将介绍一些浙江省专升本高等数学中常用的公式。

1.三角函数常用公式-正弦函数的三角恒等式:- $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$- $\sin 2A = 2\sin A \cos A$- $\sin A \pm \sin B = 2\sin \frac{A \pm B}{2}\cos \frac{A \mp B}{2}$-余弦函数的三角恒等式:- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$- $\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 -2\sin^2 A$-正切函数的三角恒等式:- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A\tan B}$- $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$2.数列求和公式-等差数列求和公式:- $S_n = \frac{n}{2}(a_1 + a_n)$,其中 $S_n$ 是前 n 项和,$a_1$ 是首项,$a_n$ 是第 n 项。

-等比数列求和公式:- $S_n = \frac{a_1(1 - q^n)}{1 - q}$,其中 $S_n$ 是前 n 项和,$a_1$ 是首项,$q$ 是公比。

-平方数列求和公式:- $S_n = \frac{n(n+1)(2n+1)}{6}$3.二次函数相关公式-一次函数的斜率公式:- $k = \frac{y_2 - y_1}{x_2 - x_1}$-一次函数的截距公式:- $b = y - kx$,其中 b 是截距,(x, y) 是直线上的一点。

专升本数学考试公式集合

专升本数学考试公式集合

专升本数学考试公式集合
专升本数学考试公式集合包括但不限于以下内容:
1. 代数部分:
一次方程与二次方程。

一次方程为 ax+b=0(a≠0);二次方程为
ax²+bx+c=0(a≠0)。

解一次方程为 x=-b/a;求二次方程的解为 x=(-
b±√(b²-4ac))/(2a)。

指数与对数。

指数为 an;指数与对数的运算性质包括
a^ma^n=a^(m+n) 和 a^m/a^n=a^(m-n)。

2. 三角函数部分:包括三角函数的有理式积分、两个重要极限、三角函数公式、高阶导数公式、定积分公式等。

3. 微分方程的相关概念,以及函数展成幂级数等内容。

4. 空间解析几何和向量代数部分,涉及平面的方程等。

5. 常数项级数和级数审敛法。

此外,还有导数公式、基本积分表等也是专升本数学考试的重要内容。

以上信息仅供参考,建议查阅专升本数学考试大纲或咨询专业教师,获取更准确全面的信息。

同时,考生在备考时,不仅要记忆公式,还要理解其含义和适用条件,以及如何在实际问题中应用。

浙江专升本数学公式

浙江专升本数学公式

高等数学公式导数公式:ctgx x x tgx x x x ctgx x tgx x x csc )(csc sec )(sec csc )(sec )(22⋅-='⋅='-='='22211)(11)(arccos 11)(arcsin x arctgx x x x x ='--='-='⎰++-=-Cax a x a x dx x a arcsin 2222222三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 两个重要极限:·和差角公式:·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( ...sin =xx·倍角公式:(αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ban y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省专升本高等数学常用公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuF v uG F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档