专升本数学公式汇总
专升本高等数学公式定理大全

专升本高等数学公式定理大全一、导数相关公式和定理:1.基本导数公式:-常数函数导数为零:(k)'=0-幂函数导数:(x^n)'=n*x^(n-1)- 指数函数导数:(a^x)' = a^x * ln(a)- 对数函数导数:(log_a(x))' = 1 / (x * ln(a)) 2.常用导数公式:- sin(x)' = cos(x)- cos(x)' = -sin(x)- tan(x)' = sec^2(x)- cot(x)' = -csc^2(x)- sec(x)' = sec(x) * tan(x)- csc(x)' = -csc(x) * cot(x)- arcsin(x)' = 1 / sqrt(1 - x^2)- arccos(x)' = -1 / sqrt(1 - x^2)- arctan(x)' = 1 / (1 + x^2)3.高阶导数公式:-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-(f(g(x)))'=f'(g(x))*g'(x)-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g^2(x)4.微分中值定理:-罗尔定理:若函数在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在c∈(a,b),使得f'(c)=0。
-拉格朗日定理:若函数在[a,b]上连续,在(a,b)内可导,那么存在c∈(a,b),使得[f(b)-f(a)]/[b-a]=f'(c)。
-柯西中值定理:若函数u(x)和v(x)在[a,b]上连续,在(a,b)内可导,并且v'(x)≠0,那么存在c∈(a,b),使得[u(b)-u(a)]/[v(b)-v(a)]=u'(c)/v'(c)。
专升本数学常用公式

专升本数学常用公式一、代数公式1.二次方程求根公式:对于一元二次方程ax^2 + bx + c = 0:若b^2-4ac > 0,方程有两个不相等的实根;若b^2-4ac = 0,方程有两个相等的实根;若b^2-4ac < 0,方程没有实根;方程的解公式为:x = (-b ± √(b^2-4ac))/(2a)。
2.幂函数的性质:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^0=1(a≠0)a^-m=1/(a^m)(a≠0)a^m * b^m = (ab)^m(a/b)^m=a^m/b^m(b≠0)3.对数函数的性质:loga(xy) = logax + logayloga(x/y) = logax - logayloga(x^n) = nlogaxloga1 = 0logaa = 1loga(a^m) = m4.指数函数的性质:a^x*a^y=a^(x+y)(a^x)^y = a^(xy)(a/b)^x=a^x/b^x(ab)^x = a^x * b^xa^x/a^y=a^(x-y)二、几何公式1.三角函数的定义:在直角三角形中,设角A的对边、邻边、斜边分别为a,b,c,定义如下:sinA = a/ccosA = b/ctanA = a/bcotA = b/asecA = c/bcscA = c/a2.三角函数的基本关系:sin^2A + cos^2A = 1tanA = sinA / cosAcotA = 1 / tanAtanA * cotA = 13.勾股定理:直角三角形中,设边长分别为a,b,c,c是斜边,则有:c^2=a^2+b^24.三角形的面积公式:设三角形的底边为b,高为h,则有:三角形面积=(1/2)*b*h5.三角形的海伦公式:设三角形的三边长分别为a,b,c,半周长为s,则有:三角形面积=√(s(s-a)(s-b)(s-c))6.圆的面积和周长:设圆的半径为r,则有:圆的面积=πr^2圆的周长=2πr三、微积分公式1.导数的基本性质:f'(x) = lim(h→0) (f(x+h) - f(x))/hd/dx (c) = 0 (c为常数)d/dx (x^n) = nx^(n-1)d/dx (sinx) = cosxd/dx (cosx) = -sinxd/dx (tanx) = sec^2xd/dx (cotx) = -csc^2xd/dx (e^x) = e^xd/dx (logax) = 1/(xloga)d/dx (lnx) = 1/x2.积分的基本性质:∫ (c)dx = cx + C (c为常数)∫ (x^n)dx = (1/(n+1))x^(n+1) + C (n≠-1)∫ (sinx)dx = -cosx + C∫ (cosx)dx = sinx + C∫ (sec^2x)dx = tanx + C∫ (csc^2x)dx = -cotx + C∫ (e^x)dx = e^x + C∫ (1/x)dx = ln,x, + C四、概率与统计公式1.事件的概率计算公式:设A为事件,P(A)表示事件A发生的概率,则有:P(A)=n(A)/n(S)其中,n(A)为事件A的样本点数,n(S)为样本空间的样本点数。
专升本数学公式归纳总结

专升本数学公式归纳总结数学是一门基础学科,它的公式是解决问题的关键。
对于专升本考生来说,数学公式的掌握至关重要。
本文将对专升本数学公式进行归纳总结,方便考生在备考过程中进行查阅和复习。
一、基本运算公式1. 加减乘除法则加法法则:a + b = b + a减法法则:a - b ≠ b - a乘法法则:a × b = b × a除法法则:a ÷ b ≠ b ÷ a2. 分配律左分配律:a × (b + c) = a × b + a × c右分配律:(a + b) × c = a × c + b × c二、代数公式1. 二次根式平方差公式:(a + b) × (a - b) = a^2 - b^2完全平方公式:(a + b)^2 = a^2 + 2ab + b^22. 二次方程一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)3. 指数与对数指数与对数互反性:a^loga(x) = x4. 三角函数正弦函数的平方与余弦函数的平方和为1:sin^2θ + cos^2θ = 1正切函数与余切函数互为倒数:tanθ × cotθ = 1三、几何公式1. 周长和面积矩形的周长:2 × (a + b)矩形的面积:a × b正方形的周长:4 × a正方形的面积:a^2圆的周长:2πr圆的面积:πr^22. 三角形三角形的周长:a + b + c三角形的面积(海伦公式):S = √(s × (s - a) × (s - b) × (s - c))其中,s为半周长,s = (a + b + c) / 23. 直角三角形勾股定理:c^2 = a^2 + b^2正弦定理:sinA / a = sinB / b = sinC / c余弦定理:c^2 = a^2 + b^2 - 2ab × cosC四、概率与统计公式1. 基本概率公式事件A发生的概率:P(A) = n(A) / n(S)事件A与事件B同时发生的概率:P(A ∩ B) = P(A) × P(B|A) 2. 统计学公式均值的计算公式:μ = (x1 + x2 + ... + xn) / n方差的计算公式:σ² = [(x1 - μ)² + (x2 - μ)² + ... + (xn - μ)²] / n 标准差的计算公式:σ = √σ²五、微积分公式1. 导数公式常用函数的导数公式:常数函数:(c)' = 0幂函数:(x^n)' = nx^(n-1)三角函数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x2. 积分公式不定积分:幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数三角函数积分:∫sinx dx = -cosx + C,∫cosx dx = sinx + C以上只列举了一部分常用的数学公式,希望能够对专升本考生在数学备考中有所帮助。
专升本高等数学公式全集

专升本高等数学公式全集高等数学是专升本考试中的重要科目,掌握好相关公式对于解题和取得好成绩至关重要。
下面为大家整理了一份较为全面的专升本高等数学公式。
一、函数与极限1、函数的基本性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。
周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。
2、极限的定义与性质定义:对于数列{an},若当 n 无限增大时,an 无限趋近于一个常数 A,则称 A 为数列{an} 的极限,记作lim(n→∞) an = A。
性质:唯一性、有界性、保号性。
3、极限的运算四则运算:若lim(n→∞) an = A,lim(n→∞) bn = B,则lim(n→∞)(an ± bn) = A ± B,lim(n→∞)(an × bn) = A × B,lim(n→∞)(an / bn) = A / B(B ≠ 0)。
两个重要极限:lim(x→0) (sin x / x) = 1,lim(x→∞)(1 + 1 / x)^x = e。
4、无穷小与无穷大无穷小:以零为极限的变量称为无穷小。
无穷大:当变量在某个变化过程中绝对值无限增大,则称该变量为无穷大。
无穷小的性质:有限个无穷小的和、差、积仍是无穷小;无穷小与有界函数的乘积是无穷小。
二、导数与微分1、导数的定义函数 y = f(x) 在 x0 处的导数定义为:f'(x0) =lim(Δx→0) f(x0 +Δx) f(x0) /Δx。
2、导数的基本公式(C)'= 0(C 为常数)(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(tan x)'= sec^2 x(cot x)'= csc^2 x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算(u ± v)'= u' ± v'(uv)'= u'v + uv'(u / v)'=(u'v uv')/ v^2 (v ≠ 0)4、复合函数的求导法则若 y = f(u),u =φ(x),则 dy / dx = dy / du × du / dx5、隐函数的求导法则对于方程 F(x, y) = 0 确定的隐函数 y = y(x),两边对 x 求导,然后解出 y'。
专升本高等数学公式全集

专升本高等数学公式全集在高等数学中,有许多重要的公式需要掌握。
下面是一些常用的高等数学公式全集:1.点与直线公式:1)点到直线的距离公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,则点P到直线的距离为d=,Ax0+By0+C,/√(A^2+B^2)。
2)点到直线的垂足坐标公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,点Q(x1,y1)为点P到直线的垂足,则x1=(B^2*x0-A*B*y0-A*C)/(A^2+B^2),y1=(-A*B*x0+A^2*y0-B*C)/(A^2+B^2)。
2.导数的四则运算:1)和差法则:(f+g)'=f'+g',(f-g)'=f'-g'。
2)积法则:(f*g)'=f'*g+f*g'。
3)商法则:(f/g)'=(f'*g-f*g')/g^24)复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。
3.不定积分的基本公式:1)幂函数不定积分公式:∫x^n dx = (x^(n+1)) / (n+1) + C,其中n不等于-12)指数函数不定积分公式:∫a^x dx = (a^x) / ln(a) + C,其中a为常数且a不等于13)三角函数不定积分公式:∫sin x dx = -cos x + C,∫cos x dx = sin x + C,∫sec^2 x dx = tan x + C。
4.定积分的基本公式:1)定积分的基本公式:∫[a, b]f(x) dx = F(b) - F(a),其中F(x)为f(x)的一个原函数。
2)分部积分公式:∫[a, b]u(x)v'(x) dx = u(x)v(x)∣[a, b] -∫[a, b]u'(x)v(x) dx。
5.泰勒级数展开:若函数f(x)在x=a处具有n阶导数,则泰勒级数展开可表示为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x),其中Rn(x)为余项。
专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。
专升本数学公式总结

专升本数学公式总结
数学是一门重要且广泛应用的学科,掌握数学公式对于专升本考试来说至关重要。
以下是我对于专升本数学公式的总结:
1. 代数公式:
- 二项式定理:(a+b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ... + C(n, k)a^(n-k)b^k + ... + C(n, n)b^n
- 二次方程求根公式:x = [-b ± √(b^2-4ac)] / (2a)
- 一次方程组解法:通过消元法、代入法、等方法解得未知数的值
2. 几何公式:
- 圆的周长:C = 2πr
- 圆的面积:A = πr^2
- 三角形的面积:A = 1/2 * 底边长 * 高
3. 概率统计公式:
- 排列公式:P(n, m) = n! / (n-m)!
- 组合公式:C(n, m) = n! / (m!*(n-m)!)
4. 导数公式:
- 基本导数公式:常数函数导数为0,x^n的导数为nx^(n-1),e^x的导数为e^x,ln(x)的导数为1/x,sin(x)的导数为cos(x),cos(x)的导数为-sin(x) - 求复合函数的导数:根据链式法则求解
这些公式是专升本数学考试中经常使用的,掌握这些公式可以帮助我们在考试中更加高效地解题。
除了掌握公式外,还需要切实进行练习和理解,才能在考试中取得好成绩。
专升本高等数学公式

专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。
下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专升本高等数学公式一、求极限方法:1、当x 趋于常数0x 时的极限:02200x x lim(ax bx c)ax bx c →++=++;00000ax bcx d ax b limcx d cx d x x ++≠+−−−−−−→++→当; 00000cx d ,ax b ax b lim cx dx x +=+≠+−−−−−−−−−−−→∞+→当但; 2220020ax bx f cx dx e ,ax bx f lim x x cx dx e++++=++=−−−−−−−−−−−−−−→→++当且可以约去公因式后再求解。
2、当x 趋于常数∞时的极限:11n n ax bx f n m,lim {m m x cx dx enm-++⋅⋅⋅+>=∞−−−−−−−−−−−−−−−→-→∞++⋅⋅⋅+只须比较分子、分母的最高次幂若则。
若n<m,则=0。
若n=m,则=。
3、可以使用洛必达发则:0f (x)f (x)x f (x)g(x)lim lim g(x)g (x)x x '→∞→∞−−−−−−−−−−−−−−−→'→∞→∞当时,与都或;对0x →也同样成立。
而且,只要满足条件,洛必达发则可以多次使用。
二、求导公式:1、0c '=;2、1n n (x )nx -'=;3、x x (a )a lnx '=;4、x x (e )e '=;5、1(log x)a xlna'=6、1(ln x)x '=;7、(sinx)cos x '=;8、(cos x)sinx '=-;9、2(tan x)sec x '=10、2(cot x)csc x '=-;11、(secx)secxtan x '=;12、(cscx)cscxcot x '=- 13、(arcsin x)'=;14、(arccos x)'=;15、211(arctan x)x'=+;16、211(arccot x)x'=-+;17、(shx)chx '=;18、(chx)shx '=;19、2(thx)ch x -'=;20、(arshx)'=;21、(archx)'=22、211(arthx)x '=-; 三、求导法则:(以下的5、7、8三点供高等数学本科的学员参阅) 1、(u(x)v(x))u (x)v (x)'''±=±;2、(kv(x))kv (x)''=;3、(u(x)v(x))v(x)u (x)v (x)u(x)'''⋅=+;4、2u(x)u (x)v(x)v (x)u(x)()v(x)v (x)''-'= 4、复合函数y f[]ϕ=(x )的求导:f []=f (u)u (x),u=(x)ϕϕ'''(x )其中。
5、莱布尼茨公式:0(n )k (n k )(k )n n (uv)=u v k c -∑=。
6、隐函数求导规则:等式两边同时对x 求导,遇到含有y 的项,先对y 求导,再乘以y 对x 的导数,得到一个关于y '的方程,求出y '即可。
7、参数方程x g(t){y f(t)==的求导:dy f (t)dx g (t)'=';22f (t)f (t)d()d y g (t)g (t)dx dx dxdt'''''==,高阶导数依次类推,分母总是多一个dxdt,这一点和显函数的求导不一样,要注意! 四、导数应用:1、单调性的判定:导数大于零,递增;导数小于零,递减。
2、求极值的步骤:方法一:求导、求驻点及使导数不存在的点、划分区间画图表判断、代入求值。
方法二:求导、求驻点及使导数不存在的点、判断二阶导在上述点的值的符号,二阶导小于零,有极大值,二阶导大于零,有极小值。
4、求最值的步骤:求导、求驻点及使导数不存在的点、求出上述点处的函数值并进行比较、最大的即是最大值,最小的是最小值。
5、凸凹的判定:二阶导大于零则为凹;二阶导小于零则是凸。
6、图形描绘步骤:确定定义域、与x 轴的交点及图形的对称性;求出一阶导、二阶导及各自的根;划分区间列表判断以确定单调性、极值、凸凹及拐点;确定水平及铅直渐近线;根据上述资料描画图形。
五、积分公式:1、kdx kx c =+⎰;2、111x dx x c ()μμμ+=+⎰+;3、1dx ln x c x=+⎰;4、x x e dx e c =+⎰;5、1x xa dx a c lna=+⎰;6、cos xdx sin x c =+⎰7、sin xdx cos x c =-+⎰; 8、tan xdx ln|cos x|c =-+⎰;9、cot xdx ln|sin x|c =+⎰;10、csc xcot xdx csc x c =-+⎰ 11、sec xtan xdx sec x c =+⎰;12、2sec xdx tan x c =+⎰;13、2csc xdx cot x c =-+⎰;14、shxdx chx c =+⎰;15、chxdx shx c =+⎰;16、secxdx ln |secx tan x |c =++⎰;17、cscxdx ln |cscx cot x |c =-+⎰;18、211dx arctan x c x =+⎰+; 19、arcsin x c =+⎰;20、22110xdx arctan c,(a )a x a a=+>+⎰;21、221102a x dx ln ||c,(a )a x a a x +=+>--⎰;22、xarcsin c a =+⎰; 23、arcsinxdx xarcsinx c =⎰;24、arccosxdx xarccosx c =⎰; 25、arctanxdx xarctanx c =-⎰;26、arccot xdx xarccot x c =+⎰; 27、udv uv vdu =-⎰⎰;六、定积分性质:1、bb a akf(x)dx k f(x)dx =⎰⎰;2、b b baaa[f(x)g(x)]dx f(x)dx g(x)dx ±=+⎰⎰⎰3、bc b a acf(x)dx f(x)dx f(x)dx =+⎰⎰⎰;4、badx b a =-⎰;5、b a f(x)dx f(x)dx a b=-⎰⎰; 6、baf(x)dx f()(b a),(a,b)ξξ=-∈⎰;7、udv uv vdu =-⎰⎰;8、xa (f(t)dt)f(x)'=⎰;9、020x a f(x)dx {a x a f(x)dx −−−−−−→=⎰-−−−−−−→⎰是偶函数是奇函数;10、bb b udv (uv)|vdu aaa =-⎰⎰;11、b f(x)dx lim f(x)dx a ab +∞=⎰⎰→+∞; 12、c b f(x)dx lim f(x)dx lim f(x)dx a ca b +∞=+⎰⎰⎰-∞→-∞→+∞; 七、多元函数1、N 维空间中两点之间的距离公式:1212,,,n ,,,n p(x x ...x ),Q(y y ...y )的距离PQ =2、多元函数z f(x,y)=求偏导时,对谁求偏导,就意味着其它的变量都暂时看作常量。
比如,zx∂∂表示对x 求偏导,计算时把y 当作常量,只对x 求导就可以了。
3、高阶混合偏导数在偏导数连续的条件下与求导次序无关,即22z zx y y x∂∂=∂∂∂∂。
4、多元函数z f(x,y)=的全微分公式: z z dz dx dy x y∂∂=+∂∂。
5、复合函数z f(u,v),u (t),v (t)φϕ===,其导数公式:dz z du z dvdt u dt v dt∂∂=+∂∂。
6、隐函数F(x,y)=0的求导公式: X yF dydX F '=-',其中x y F ,F ''分别表示对x,y 求偏导数。
7、求多元函数z=f(x , y)极值步骤:第一步:求出函数对x , y 的偏导数,并求出各个偏导数为零时的对应的x,y 的值 第二步:求出000000xx xy yy f (x ,y )A,f (x ,y )B,f (x ,y )C ===第三步:判断AC-B 2的符号,若AC-B 2大于零,则存在极值,且当A 小于零是极大值,当A 大于零是极小值;若AC-B 2小于零则无极值;若AC-B 2等于零则无法判断 8、双重积分的性质: (1)(,)(,)DDkf x y d k f x y d σσ=⎰⎰⎰⎰(2)[(,)(,)](,)(,)DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰(3)12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰(4)若(,)(,)f x y g x y <,则(,)(,)DDf x y dg x y d σσ<⎰⎰⎰⎰(5)Dd s σ=⎰⎰,其中s 为积分区域D 的面积(6)(,)m f x y M <<,则(,)Dms f x y d Ms σ<<⎰⎰(7)积分中值定理:(,)(,)Df x y d sf σεη=⎰⎰,其中(,)εη是区域D 中的点11、双重积分总可以化简为二次积分(先对y ,后对x 的积分或先对x ,后对y 的积分形式)2211()()()()(,)(,)(,)P x P y bdDaP x cP y f x y d dx f x y dy dyf x y dx σ==⎰⎰⎰⎰⎰⎰,有的积分可以随意选择积分次序,但是做题的复杂性会出现不同,这时选择积分次序就比较重要,主要依据通过积分区域和被积函数来确定12、双重积分转化为二次积分进行运算时,对谁积分,就把另外的变量都看成常量,可以按照求一元函数定积分的方法进行求解,包括凑微分、换元、分步等方法八、排列组合及概率公示1、排列数公式: (1)(2)(1)m n P n n n n m =--⋅⋅⋅-+。
当m =n 时称作全排列,且其排列总数的计算公式是(1)(2)1n n n --⋅⋅⋅,简记作n!。
2、组合公式:(1)(2)(1)!m mn nm m P n n n n m C P m --⋅⋅⋅-+==。