高二数学双曲线及其标准方程课件概要
合集下载
高二数学上册课件《双曲线及其标准方程》

x2 y2
1 a 0 ,b 0
.
a2 b2
②
双曲线上任意一点的坐标(x,y)都是方程②的解;以方程②的解为坐标
的点(x,y)与双曲线的两个焦点F1(-c,0),F2(c,0)的距离之差的绝 对值都为2a,即以方程②的解为坐标的点都在双曲线上.
x2 y2 1 a 0 ,b 0 .
O
x
F1
双曲线标准方程的推导
建立如图所示的平面直角坐标系Oxy. 设 M ( x ,y )是双曲线上任意一点, 双曲线的焦距为 2c( c > 0), 则有F1( -c,0),F2 ( c,0). 又设||MF1|-|MF2||= 2a( a 为大于 0 的常数). 由双曲线的定义,双曲线就是下列点的集合:
20 16
2 焦点为 0 ,- 6 ,0 ,6 ,且经过点 2 ,- 5 .
解法二:因为双曲线的焦点在 y 轴上,所以设它的标准方程为
y2 x2 1 a 0 ,b 0 .
a2 b2
由 2 , 5 在双曲线上,得 25 4 1, a2 b2 与 a2 b2 36 联立,消去 a2, 得 b4 7b2 144 0 ,解得 b2 16 , 故 a2 20 . 所以,所求双曲线的标准方程为 y2 x2 1.
y2 x2 = 1 a 0,b 0 .
a2
b2
焦点在 x 轴上的双曲线标准方程:ax22
y2 b2
1a
0 ,b
0 .
焦点在
y
轴上的双曲线标准方程:y2
a2
x2 b2
1a
0 ,b
0 .
观察双曲线标准方程的特点:
1.两个焦点位置(在 x 轴还是在 y 轴)与负号的关系;
2.方程中 x, y 与 a,b 的对应位置.
双曲线及其标准方程ppt课件

x2
y2
变式.给出曲线方程
+
=1.
4+k 1-k
(1)若该方程表示双曲线,求实数k的取值范围;
(2)若该方程表示焦点在y轴上的双曲线,求实数k的取值范围.
y2 x2
例 5.已知双曲线 C 的方程是 - =1,其上下焦点分别是 F2,
16 20
F1,点 M 在双曲线 C 上,且|MF1|=9,则|MF2|=________.
归纳总结
y
图形
y
P
P
x
O
F1
F1 O F2
方程
焦点
a,b,c之间的关系
F2
x
x2 y2
2 1(a 0, b 0)
2
a
b
y2 x2
2 1(a 0, b 0)
2
a
b
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
c2=a2+b2
a,b大小不定
椭圆与双曲线的区别
O
焦点在对应轴上
x2 y2
2 1(a 0, b 0)
2
a
b
① 方程用“-”号连接;
y
F2
F1
y2 x2
2 1(a 0, b 0)
2
a
b
② c2=a2+b2 ;
③分母是a2, b2, 且a>0, b>0,但a, b大小不定;
④ 如果x2的系数是正的,则焦点在x轴上;
如果y2的系数是正的,则焦点在y轴上.
x
F1 O
F2
结论:已知F1,F2分别是双曲线C:
高中数学《双曲线及其标准方程》课件

解析
课堂互动探究
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
探究 1 双曲线标准方程的认识 例 1 若 θ 是第三象限角,则方程 x2+y2sinθ=cosθ 表示的曲线是( ) A.焦点在 y 轴上的双曲线 B.焦点在 x 轴上的双曲线 C.焦点在 y 轴上的椭圆 D.焦点在 x 轴上的椭圆
将双曲线的方程化为标准方程的形式,假如双曲线的方程为xm2+yn2=1, 则当 mn<0 时,方程表示双曲线.若nm<>00,, 则方程表示焦点在 x 轴上的双曲 线;若mn><00,, 则方程表示焦点在 y 轴上的双曲线.
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
【跟踪训练 1】 若 k>1,则关于 x,y 的方程(1-k)x2+y2=k2-1 所表示 的曲线是( )
[解] b>0).
(1)当双曲线的焦点在 x 轴上时,设双曲线方程为ax22-by22=1(a>0,
∵M,N
在双曲线上,∴4-a22722-3
52
2 b2
=1,
3 a2
-4b22=1,
解得a12=-116, b12=-19
(不符合题意,舍去).
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案
(2)将|PF2|-|PF1|=2a=6,两边平方得 |PF1|2+|PF2|2-2|PF1|·|PF2|=36, ∴|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100. 在△F1PF2 中,由余弦定理得 cos∠F1PF2=|PF1|22+|P|PFF1|·2||P2-F2||F1F2|2 =21|P0F0-1|·|1P0F02|=0, ∴∠F1PF2=90°, ∴S△F1PF2=12|PF1|·|PF2|=12×32=16.
双曲线及其标准方程 课件

(3)设双曲线的方程为 Ax2+By2=1,AB<0. ∵点 P,Q 在双曲线上,
∴92A956+A2+12652B5B==1,1,
解得AB==-19. 116,
∴双曲线的标准方程为y92-1x62 =1.
[规律方法] 1.求双曲线标准方程的步骤 (1)确定双曲线的类型,并设出标准方程; (2)求出 a2,b2 的值. 2.当双曲线的焦点所在坐标轴不确定时,需分焦点在 x 轴上和 y 轴上两 种情况讨论,特别地,当已知双曲线经过两个点时,可设双曲线方程为 Ax2 +By2=1(AB<0)来求解.
图 2-3-1
[思路探究]
建立平面直 角坐标系
→
由已知条件得 到边长的关系
→
判断轨迹 的形状
→
写出轨迹方程
[解] 以 AB 边所在的直线为 x 轴,AB 的垂直平分线为 y 轴,建立平面直
角坐标系,如图所示,则 A(-2 2,0),B(2 2,0).由正弦定理,得 sin A=|B2CR|,
sin B=|A2CR|,sin C=|A2RB|(R 为△ABC 的外接圆半径).
求双曲线的标准方程
例 2、根据下列条件,求双曲线的标准方程:
(1)a=4,经过点
A1,-4
310;
(2)与双曲线1x62 -y42=1 有相同的焦点,且经过点(6,5且焦点在坐标轴上.
[思路探究] (1)结合 a 的值设出标准方程的两种形式,将点 A 的坐标代 入求解.
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°, 所以102=(|PF1|-|PF2|)2+|PF1|·|PF2|, 所以|PF1|·|PF2|=64, ∴S△F1PF2=12|PF1|·|PF2|·sin ∠F1PF2 =12×64× 23=16 3.
双曲线及其标准方程 课件

双曲线及其标准方程
新知视界
1.双曲线的定义 把平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个 定点叫做双曲线的焦点,两焦点间的距离叫做双曲线 的焦距.
思考感悟
1.双曲线的定义中,常数为什么要小于|F1F2|? 提示:①如果定义中常数改为等于|F1F2|,此时 动点的轨迹是以 F1、F2 为端点的两条射线(包括端 点). ②如果定义中常数为 0,此时动点轨迹为线段 F1F2 的垂直平分线. ③如果定义中常数改为大于|F1F2|,此时动点轨 迹不存在.
解得ab22= =19, 6, ∴双曲线的方程为1y62 -x92=1.
(2)解法一:设双曲线方程为xa22-by22=1. 由题意易求得 c=2 5. 又双曲线过点(3 2,2),∴3a222-b42=1. 又∵a2+b2=(2 5)2,∴a2=12,b2=8. 故所求双曲线的方程为1x22 -y82=1.
2.平面内与两个定点F1、F2的距离的差等于常数 (小于
|F1F2|)的点的轨迹是不是双曲线? 提示:不是,是双曲线的某一支.
在双曲线的定义中,P为动点,F1,F2分别为双曲 线的左、右焦点,则①|PF1|-|PF2|=2a,曲线只表示 双曲线的右支.
② |PF1| - |PF2| = - 2a , 曲 线 只 表 示 双 曲 线 的 左 支.
类型三 双曲线中的焦点三角形 [例 3] 若 F1,F2 是双曲线x92-1y62 =1 的两个 焦点,P 是双曲线上的点,且|PF1|·|PF2|=32,试 求△F1PF2 的面积.
双曲线 [分析] 双曲线方程 的―定―→义 |PF1|-|PF2|=±2a ―平―方→ |PF1|2+|PF2|2的值 余―弦―定→理 ∠F1PF2=90° 面积公式 ――→ S△F1PF2
新知视界
1.双曲线的定义 把平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个 定点叫做双曲线的焦点,两焦点间的距离叫做双曲线 的焦距.
思考感悟
1.双曲线的定义中,常数为什么要小于|F1F2|? 提示:①如果定义中常数改为等于|F1F2|,此时 动点的轨迹是以 F1、F2 为端点的两条射线(包括端 点). ②如果定义中常数为 0,此时动点轨迹为线段 F1F2 的垂直平分线. ③如果定义中常数改为大于|F1F2|,此时动点轨 迹不存在.
解得ab22= =19, 6, ∴双曲线的方程为1y62 -x92=1.
(2)解法一:设双曲线方程为xa22-by22=1. 由题意易求得 c=2 5. 又双曲线过点(3 2,2),∴3a222-b42=1. 又∵a2+b2=(2 5)2,∴a2=12,b2=8. 故所求双曲线的方程为1x22 -y82=1.
2.平面内与两个定点F1、F2的距离的差等于常数 (小于
|F1F2|)的点的轨迹是不是双曲线? 提示:不是,是双曲线的某一支.
在双曲线的定义中,P为动点,F1,F2分别为双曲 线的左、右焦点,则①|PF1|-|PF2|=2a,曲线只表示 双曲线的右支.
② |PF1| - |PF2| = - 2a , 曲 线 只 表 示 双 曲 线 的 左 支.
类型三 双曲线中的焦点三角形 [例 3] 若 F1,F2 是双曲线x92-1y62 =1 的两个 焦点,P 是双曲线上的点,且|PF1|·|PF2|=32,试 求△F1PF2 的面积.
双曲线 [分析] 双曲线方程 的―定―→义 |PF1|-|PF2|=±2a ―平―方→ |PF1|2+|PF2|2的值 余―弦―定→理 ∠F1PF2=90° 面积公式 ――→ S△F1PF2
3-2-1双曲线及其标准方程 课件(共67张PPT)

【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
双曲线及其标准方程课件
(3)当 k<0 时,方程为y42--x24k=1,表示焦点在 y 轴上的双曲线;
(4)当 0<k<1 时,方程为x42+y42=1,表示焦点在 x 轴上的椭圆; k
(5)当 k>1 时,方程为x42+y42=1,表示焦点在 y 轴上的椭圆. k
[一点通] 解决这类题的基本方法是分类讨论,在分
类讨论的过程中应做到不重不漏,选择适当的分界点.在
(3)若|F1F2|<2a,动点的轨迹不存在.
2.通过双曲线方程xa22-by22=1(焦点在 x 轴上)和ay22-xb22 =1(焦点在 y 轴上)(a>0,b>0)可以看出:如果 x2 项的系 数是正的,那么焦点在 x 轴上;如果 y2 项的系数是正的, 那么焦点在 y 轴上.对于双曲线,a 不一定大于 b,但是无 论双曲线的焦点在哪个轴上,方程中的三个量都满足 c2 =a2+b2.
[例3] 已知方程kx2+y2=4,其中k为实数,对于不同 范围的k值分别指出方程所表示的曲线类型.
[思路点拨] 解答本题可依据所学的各种曲线的标准形 式的系数应满足的条件进行分类讨论.
[精解详析] (1)当 k=0 时,y=±2,表示两条与 x 轴平行 的直线;
(2)当 k=1 时,方程为 x2+y2=4,表示圆心在原点,半径 为 2 的圆;
72 b2 =1,
解得a12=19, b12=116,
即 a2=9,b2=16.
∴所求双曲线的标准方程为y92-1x62 =1.
法二:∵双曲线的焦点位置不确定,
∴设双曲线方程为 mx2+ny2=1(mn<0). ∵P1,P2 在双曲线上,所以
4m+445n=1, 196×7m+16n=1,
双曲线及其标准方程完整版课件
2
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
双曲线及其标准方程ppt课件
所以 2 mm 1 0 ,解得 m 2 或 m 1, 即实数 m 的取值范围是,2 1, .
总结一下
1.双曲线的定义 2.双曲线的标准方程
Fresh and simple general ppt template
谢谢观看
2.焦点在y轴上的双曲线的标准方程
如图,双曲线的焦距为 2c,焦点分别是
F1(0, c) , F2 (0,c) ,a,b 的意义同上,这时
双曲线的方程是
y2 a2
x2 b2
1(a
0, b
0)
,这个
方程也是双曲线的标准方程.
y
M
F2
x O
F1
双曲线标准方程
图形
y M x
F1 O F2
y M F2
3.2.1 双曲线及其标准方程
人教A版(2019)选择性必修一
学习目标
01 经历从具体情境中抽象出双曲线模型的过程 02 了解双曲线的定义、几何图形和标准方程
03 通过双曲线标准方程的推导过程理解数形结合思想
学习重点
双曲线的定义、标准方程
学习难点
双曲线标准方程的推导
新课导入
我们知道,平面内与两个定点F1,F2的距离的和等于常数的点的轨
由双曲线的定义,双曲线就是下列点的集合:
P {M || MF1 | | MF2 || 2a , 0 2a | F1F2 |} .
因为 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2 , 所以 (x c)2 y2 (x c)2 y2 2a .①
类比椭圆标准方程的化简过程,化简①,得 (c2 a2 )x2 a2 y2 a2 (c2 a2 ) ,
x2 b2
1a
总结一下
1.双曲线的定义 2.双曲线的标准方程
Fresh and simple general ppt template
谢谢观看
2.焦点在y轴上的双曲线的标准方程
如图,双曲线的焦距为 2c,焦点分别是
F1(0, c) , F2 (0,c) ,a,b 的意义同上,这时
双曲线的方程是
y2 a2
x2 b2
1(a
0, b
0)
,这个
方程也是双曲线的标准方程.
y
M
F2
x O
F1
双曲线标准方程
图形
y M x
F1 O F2
y M F2
3.2.1 双曲线及其标准方程
人教A版(2019)选择性必修一
学习目标
01 经历从具体情境中抽象出双曲线模型的过程 02 了解双曲线的定义、几何图形和标准方程
03 通过双曲线标准方程的推导过程理解数形结合思想
学习重点
双曲线的定义、标准方程
学习难点
双曲线标准方程的推导
新课导入
我们知道,平面内与两个定点F1,F2的距离的和等于常数的点的轨
由双曲线的定义,双曲线就是下列点的集合:
P {M || MF1 | | MF2 || 2a , 0 2a | F1F2 |} .
因为 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2 , 所以 (x c)2 y2 (x c)2 y2 2a .①
类比椭圆标准方程的化简过程,化简①,得 (c2 a2 )x2 a2 y2 a2 (c2 a2 ) ,
x2 b2
1a
双曲线及其标准方程课件
音乐艺术
双曲线在音乐艺术中用于 创作优美的音乐旋律和和 声,特别是在处理音高和 音程时。
交通工程
双曲线在交通工程中用于 设计道路和轨道,特别是 在处理弯道和交叉口时。
04
双曲线的图像绘制
使用数学软件绘制双曲线
使用Ge双曲 线。用户只需在软件中输入双曲线的标准方程,即可自动生 成对应的双曲线图像。
05
双曲线的性质与方程 的关联
双曲线的性质与标准方程的关系
焦点距离
双曲线的标准方程中的系数与焦 点距离有关,决定了双曲线的开
口大小和方向。
渐近线
双曲线的标准方程中的系数决定了 渐近线的斜率和截距,反映了双曲 线的形状和位置。
离心率
双曲线的标准方程中的系数与离心 率有关,离心率决定了双曲线的开 口程度和形状。
推导结果
01
双曲线的标准方程为
$frac{x^2}{a^2}
-
frac{y^2}{b^2} = 1$。
02
其中$a > 0, b > 0$,且满足 $c^2 = a^2 + b^2$。
推导结论
双曲线是一种特殊的二次曲线,其标 准方程反映了双曲线的几何特性。
双曲线的焦点到曲线上任意一点的距 离之差为常数,这个常数等于两焦点 之间的距离的一半。
绘制双曲线
在工具箱中选择“双曲线”工具,然 后在绘图区域单击并拖动鼠标,即可 绘制出双曲线。用户可以根据需要调 整双曲线的参数和位置。
使用手工绘制双曲线
准备工具
准备一张纸、一支笔和一把直尺。
绘制过程
首先在纸上确定双曲线的中心和焦点,然后使用直尺和笔绘制出双曲线的渐近线。接着,使用笔和直尺在纸上绘 制出双曲线的上半部分。最后,使用对称性画出双曲线的下半部分。这种方法虽然比较传统,但对于理解双曲线 的几何意义非常有帮助。