北师大版八年级(上)数学第五章位置的确定单检测题2
北师大版数学八年级上册第五章二元一次方程组综合测试题

北师大版数学八年级上册第五章综合测试题一、选择题1、下列方程组中是二元一次方程组的是( )A .⎩⎨⎧xy =42x +y =6B .⎩⎪⎨⎪⎧4x -3y =31x =3y C .⎩⎪⎨⎪⎧x +z =0x -y =15D .⎩⎨⎧x -y =22x +y =4 2、下列方程组是二元一次方程组的是( )A .⎩⎨⎧x -y =1y +z =3B .⎩⎪⎨⎪⎧x -3y =21y+x =5 C .⎩⎨⎧x -y =33x -y =1 D .⎩⎨⎧x +y =7x 2-y 2=7 3、下列说法中正确的是( )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎨⎧x -y =0,x +y =0的解为0 D .方程组各个方程的公共解叫做这个方程组的解4、已知一个等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( )A .5B .4C .3D .5或45、某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种零件1个与乙种零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种零件x 天,生产乙种零件y 天,则有( )A.⎩⎨⎧x +y =30200x =100yB.⎩⎨⎧x +y =30100x =200yC.⎩⎨⎧x +y =302×200x =100yD.⎩⎨⎧x +y =302×100x =200y6、小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如A .64元B .65元C .66元D .67元7、晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5 min 后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y 1(m ),y 2(m )与运动时间x(min )之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200 m /min ;①m 的值是15,n 的值是3 000;①晓琳开始返回时与爸爸相距1 800 m ;①运动18 min 或30 min时,两人相距900 m .其中正确结论的个数是( )A .1个B .2个C .3个D .4个8、若⎩⎨⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( ) A .y =2x +7 B .y =7-2x C .y =-2x -5 D .y =2x -59、为丰富同学们的课余生活,某校计划成立足球和篮球课外兴趣小组,现购买了篮球和足球若干个,已知购买的篮球比足球少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各购买了多少个?设购买了篮球x 个,购买了足球y 个,可列方程组( )A .⎩⎨⎧x -y =160x +30y =480B .⎩⎨⎧x =y -160x +30y =480 C .⎩⎨⎧x =y -130x +60y =480 D .⎩⎨⎧x -y =130x +60y =48010、若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则( )A .m≠-2B .m≠0C .m≠3D .m≠4二、填空题11.已知二元一次方程2x -3y =1,若x =3,则y =___;若y =1,则x =____.12.若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是____.13.一次函数y =-2x +b 与x 轴交于点(3,0),则它与直线y =x 的交点坐标为____.14.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =____.15.如果实数x ,y 是方程组⎩⎨⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是____.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y元,根据题意可列方程组为____.三、解答题17、解下列方程组:(1)⎩⎨⎧3x +4y =19,x -y =4; (2)⎩⎨⎧8y +5x =2,4y -3x =-10.18、5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施,6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂6月份的用水量各是多少吨.19、某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?20、随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元,3辆A 型汽车、2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆的进价分别为多少万元;(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8 000元,销售1辆B 型汽车可获利5 000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?北师大版数学八年级上册第五章综合测试题参考答案一、选择题1、下列方程组中是二元一次方程组的是( D )A .⎩⎨⎧xy =42x +y =6B .⎩⎪⎨⎪⎧4x -3y =31x =3y C .⎩⎪⎨⎪⎧x +z =0x -y =15D .⎩⎨⎧x -y =22x +y =4 2、下列方程组是二元一次方程组的是( C )A .⎩⎨⎧x -y =1y +z =3B .⎩⎪⎨⎪⎧x -3y =21y+x =5 C .⎩⎨⎧x -y =33x -y =1 D .⎩⎨⎧x +y =7x 2-y 2=7 3、下列说法中正确的是( D )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎨⎧x -y =0,x +y =0的解为0 D .方程组各个方程的公共解叫做这个方程组的解4、已知一个等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( A )A .5B .4C .3D .5或45、某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种零件1个与乙种零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种零件x 天,生产乙种零件y 天,则有( C )A.⎩⎨⎧x +y =30200x =100yB.⎩⎨⎧x +y =30100x =200yC.⎩⎨⎧x +y =302×200x =100yD.⎩⎨⎧x +y =302×100x =200y6、小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如A .64元B .65元C .66元D .67元7、晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5 min 后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y 1(m ),y 2(m )与运动时间x(min )之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200 m /min ;①m 的值是15,n 的值是3 000;①晓琳开始返回时与爸爸相距1 800 m ;①运动18 min 或30 min 时,两人相距900 m .其中正确结论的个数是( C )A .1个B .2个C .3个D .4个8、若⎩⎨⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( B ) A .y =2x +7 B .y =7-2x C .y =-2x -5 D .y =2x -59、为丰富同学们的课余生活,某校计划成立足球和篮球课外兴趣小组,现购买了篮球和足球若干个,已知购买的篮球比足球少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各购买了多少个?设购买了篮球x 个,购买了足球y 个,可列方程组(B )A .⎩⎨⎧x -y =160x +30y =480B .⎩⎨⎧x =y -160x +30y =480C .⎩⎨⎧x =y -130x +60y =480 D .⎩⎨⎧x -y =130x +60y =48010、若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则(C)A .m≠-2B .m≠0C .m≠3D .m≠4二、填空题11.已知二元一次方程2x -3y =1,若x =3,则y =__53__;若y =1,则x =__2__. 12.若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是__2__.13.一次函数y =-2x +b 与x 轴交于点(3,0),则它与直线y =x 的交点坐标为__(2,2)__.14.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =__1__.15.如果实数x ,y 是方程组⎩⎨⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是__1__.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y元,根据题意可列方程组为__⎩⎨⎧x +y =1000.9x +1.4y =100×1.2__. 三、解答题17、解下列方程组:(1)⎩⎨⎧3x +4y =19,x -y =4; (2)⎩⎨⎧8y +5x =2,4y -3x =-10.(1)解:⎩⎨⎧x =5,y =1(2)解:⎩⎨⎧x =2,y =-118、5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施,6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂6月份的用水量各是多少吨.解:设甲、乙工厂5月份的用水量分别为x 吨、y 吨,根据题意,得⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =174,解得⎩⎨⎧x =120,y =80,所以(1-15%)x =102,(1-10%)y =72,所以甲、乙工厂6月份的用水量分别为102吨、72吨19、某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.20、随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元,3辆A 型汽车、2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆的进价分别为多少万元;(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8 000元,销售1辆B 型汽车可获利5 000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得⎩⎨⎧2x +3y =80,3x +2y =95,解得⎩⎨⎧x =25,y =10.答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,依题意,得25m +10n =200,解得m =8-25n.因为m ,n 均为正整数,所以⎩⎨⎧m =6,n =5或⎩⎨⎧m =4,n =10或⎩⎨⎧m =2,n =15,所以共有以下3种购买方案:①购进A 型车6辆,B 型车5辆;①购进A 型车4辆,B 型车10辆;①购进A 型车2辆,B 型车15辆(3)方案①可获得利润8 000×6+5 000×5=73 000(元);方案①可获得利润8 000×4+5 000×10=82 000(元);方案①可获得利润8 000×2+5 000×15=91 000(元).因为73 000<82 000<91 000,所以购进A 型车2辆,B 型车15辆获利最大,最大利润是91 000元。
北师大版初中八年级数学上册第五章同步练习题(含答案解析)

第五章测试卷一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的为( )A.⎩⎪⎨⎪⎧x 2+3y =43x -5y =1 B .⎩⎪⎨⎪⎧xy =1x +2y =8C.⎩⎪⎨⎪⎧a -b =31a -3b =4 D.⎩⎪⎨⎪⎧a +3b =47a -9b =5 2.(天津)方程组的解是( ) A .B .C .D .3.用加减法解方程组下列解法错误的是( )A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y4.已知⎩⎪⎨⎪⎧x =2m ,y =3m 是二元一次方程2x +y =14的解,则m 的值是( )A .2B .-2C .3D .-35.已知⎩⎪⎨⎪⎧a +2b =4,3a +2b =8,,则a +b 等于( )A .3B.83C .2D .16.实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( )A .4种B .3种C .2种D .1种7.一副三角尺按如图所示的方式摆放,且∠1比∠2大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A.⎩⎪⎨⎪⎧x =y -50x +y =180B.⎩⎪⎨⎪⎧x =y +50x +y =180C.⎩⎪⎨⎪⎧x =y -50x +y =90D.⎩⎪⎨⎪⎧x =y +50x +y =90(第7题)(第8题) 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y -2=03x -2y -1=0B.⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0C.⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0D.⎩⎪⎨⎪⎧x +y -2=02x -y -1=09.(泰安)夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .B .C .D .10.为增强居民的节水意识,某市自2016年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (m 3)的函数关系的图象如图所示.如果某个家庭2016年全年上缴水费1180元,那么该家庭2016年用水的总量是( )A .240m 3B .236m 3C .220m 3D .200m 3二、填空题(每题3分,共24分)11.方程组的解是____.12.在方程3x -14y =5中,用含x 的代数式表示y 为________.13.用加减消元法解方程组⎩⎪⎨⎪⎧3x +y =-1,①4x +2y =1,②由①×2-②得________.14.若方程2x2a +b -4+4y3a -2b -3=1是关于x ,y 的二元一次方程,则a =_____,b =_____.15.(淮安)若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是,则a= .16.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6 km 的公路,如果平均每天的修建费y (万元)与修建天数x (天)之间在30≤x ≤120范围内,且具有一次函数的关系,如下表所示.则y 关于x 17.(青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为 .18.(株洲)小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为 .三、解答题(19~21题每题8分,22~24题每题10分,25题12分,25题11分,共66分) 19.解下列方程组.(1)⎩⎪⎨⎪⎧3x -y =7,①5x +2y =8;②(2)⎩⎪⎨⎪⎧x +y -2z =5,①2x -y +z =4,②2x +y -3z =10.③20.根据要求,解答下列问题:(1)解下列方程组(直接写出方程组的解即可):①的解为__________; ②的解为__________;③的解为__________;(2)以上每个方程组的解中,x 与y 的大小关系为________;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.21.若方程组的解是求(a +b )2-(a -b )(a +b )的值.22.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x ,y 的方程组请你直接写出它的解.23.(宜昌)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.24.某市准备用灯笼美化红旗路,需用A ,B 两种不同类型的灯笼200个,且B 灯笼的个数是A 灯笼的23. (1)求A ,B 两种灯笼各需多少个;(2)已知A ,B 两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用? 25.(常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?参考答案 第五章测试卷一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的为( D )A.⎩⎪⎨⎪⎧x 2+3y =43x -5y =1 B .⎩⎪⎨⎪⎧xy =1x +2y =8C.⎩⎪⎨⎪⎧a -b =31a -3b =4 D.⎩⎪⎨⎪⎧a +3b =47a -9b =5 2.(天津)方程组的解是( A )A .B .C .D .3.用加减法解方程组下列解法错误的是( D )A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y4.已知⎩⎪⎨⎪⎧x =2m ,y =3m 是二元一次方程2x +y =14的解,则m 的值是( A )A .2B .-2C .3D .-35.已知⎩⎪⎨⎪⎧a +2b =4,3a +2b =8,,则a +b 等于( A )A .3B.83C .2D .16.实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( C )A .4种B .3种C .2种D .1种7.一副三角尺按如图所示的方式摆放,且∠1比∠2大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( D )A.⎩⎪⎨⎪⎧x =y -50x +y =180B.⎩⎪⎨⎪⎧x =y +50x +y =180C.⎩⎪⎨⎪⎧x =y -50x +y =90D.⎩⎪⎨⎪⎧x =y +50x +y =90(第7题)(第8题) 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是( D )A.⎩⎪⎨⎪⎧x +y -2=03x -2y -1=0B.⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0C.⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0D.⎩⎪⎨⎪⎧x +y -2=02x -y -1=0 9.(泰安)夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .B .C .D .【解析】直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:.故选C .10.为增强居民的节水意识,某市自2016年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (m 3)的函数关系的图象如图所示.如果某个家庭2016年全年上缴水费1180元,那么该家庭2016年用水的总量是( C )A .240m 3B .236m 3C .220m 3D .200m 3【解析】当x ≥180时,设函数解析式为y =kx +b ,将点(180,900),(260,1460)代入,可得⎩⎪⎨⎪⎧900=180k +b ,1460=260k +b ,解得⎩⎪⎨⎪⎧k =7,b =-360,故函数解析式为y =7x -360.由题意,得7x -360=1180,解得x =220,即该家庭2016年用水总量是220m 3. 二、填空题(每题3分,共24分) 11.方程组的解是__⎩⎪⎨⎪⎧x =1,y =1___.12.在方程3x -14y =5中,用含x 的代数式表示y 为___y =12x -20_____.13.用加减消元法解方程组⎩⎪⎨⎪⎧3x +y =-1,①4x +2y =1,②由①×2-②得____2x =-3____.14.若方程2x2a +b -4+4y3a -2b -3=1是关于x ,y 的二元一次方程,则a =__2___,b =___1__.15.(淮安)若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是,则a= 4 .16.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6 km 的公路,如果平均每天的修建费y (万元)与修建天数x (天)之间在30≤x ≤120范围内,且具有一次函数的关系,如下表所示.则y 关于x 的函数表达式为____y =-15x +50(30≤x ≤120)____(写出自变量x 的取值范围).17.(青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为.【解析】设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x 、y 的二元一次方程组,此题得解. 解:设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨, 根据题意得:. 故答案为:.18.(株洲)小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为 20 .【解析】可设小强同学生日的月数为x ,日数为y ,根据等量关系:①强同学生日的月数减去日数为2,②月数的两倍和日数相加为31,列出方程组求解即可.解:设小强同学生日的月数为x ,日数为y ,依题意有,解得,11+9=20.故答案为20.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,25题11分,共66分) 19.解下列方程组.(1)⎩⎪⎨⎪⎧3x -y =7,①5x +2y =8;②解:由①,得y =3x -7.③ 把③代入②,得5x +6x -14=8,解得x =2.把x =2代入③,得y =-1.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1..(2)⎩⎪⎨⎪⎧x +y -2z =5,①2x -y +z =4,②2x +y -3z =10.③解:①+②,得3x -z =9.④ ②+③,得4x -2z =14.⑤将④⑤联立组成方程组为394214.x z x z ⎧⎨⎩-=,-=解得⎩⎪⎨⎪⎧x =2,z =-3..将x =2,z =-3代入①,得2+y -2×(-3)=5. 解得y=-3.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =-3,z =-3..20.根据要求,解答下列问题:(1)解下列方程组(直接写出方程组的解即可):①的解为__________; ②的解为__________;③的解为__________;(2)以上每个方程组的解中,x 与y 的大小关系为________;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.解:(1)①⎩⎪⎨⎪⎧x =1,y =1 ②⎩⎪⎨⎪⎧x =2,y =2 ③⎩⎪⎨⎪⎧x =4,y =4(2)x =y(3)⎩⎪⎨⎪⎧3x +2y =25,2x +3y =25,解为⎩⎪⎨⎪⎧x =5,y =5.21.若方程组的解是求(a +b )2-(a -b )(a +b )的值.解:把⎩⎪⎨⎪⎧x =1,y =1代入方程组,得⎩⎪⎨⎪⎧a +1=b ,1-b =a ,可得a -b =-1,a +b =1. ∴(a +b )2-(a -b )(a +b )=12-(-1)×1=2.22.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x ,y 的方程组请你直接写出它的解.解:(1)∵(1,b )在直线y =x +1上,∴当x =1时,b =1+1=2.(2)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ),∴方程组⎩⎪⎨⎪⎧x -y +1=0,mx -y +n =0的解是⎩⎪⎨⎪⎧x =1,y =2. 23.(宜昌)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.24.某市准备用灯笼美化红旗路,需用A ,B 两种不同类型的灯笼200个,且B 灯笼的个数是A 灯笼的23. (1)求A ,B 两种灯笼各需多少个;(2)已知A ,B 两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用? 解:(1)设需A 种灯笼x 个,B 种灯笼y 个.根据题意,得200,2.3x y x ⎧⎪⎨⎪⎩+=y = 解得⎩⎪⎨⎪⎧x =120,y =80..答:A 种灯笼需120个,B 种灯笼需80个. (2)120×40+80×60=9 600(元).答:这次美化工程购置灯笼需9 600元.25.(常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.。
第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册

北师大版八年级上册第五章二元一次方程组一、选择题1.下列方程中,属于二元一次方程的是( )A .523x -=B .31x y +=C .26x y -=D .221x y -=2.方程组的解是31x y x y +=⎧⎨-=-⎩的解是( ) A . B .32x y =-⎧⎨=-⎩ C .21.x y =⎧⎨=⎩, D .23.x y =⎧⎨=⎩, 3.在解二元一次方程组22425x y x y -=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .-①② B .由①变形得22x y =+③,将③代入②C .4⨯+①②D .由②变形得245y x =-③,将③代入①4.《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .B .C .D .5.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码( )A .350克B .300克C .250克D .200克6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ) 12x y =⎧⎨=⎩A.4.53xy=⎧⎨=⎩B.31xy=-⎧⎨=⎩C.13xy=⎧⎨=-⎩D.3xy=⎧⎨=⎩7.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是A.200元,240元B.240元,200元C.280元,160元D.160元,280元8.上学年初一某班的学生都是两人一桌,其中男生与女生同桌,这些女生占全班女生的,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x人,女生y人,则列方程组为()A.B.C.D.9.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()二、填空题11.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b = .12. 已知二元一次方程,请写出该方程的一组整数解.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程的解,则k 的值为 . 13.若方程组的解是 ,则直线y =-2x +b 与直线y =x -a 的交点坐标是 .14.在方程组中,若未知数x 、y 满足x +y >0,则m 的取值范围是 . 15.我国古代数学书《四元玉鉴》中有这样﹣一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是 .16.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,则可列二元一次方程组为: .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是________.三、解答题18.解方程组:(1). (2).19.已知方程组与有相同的解,求m 和n 值.20.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?21.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人. 3x y +=22.某班组织班团活动,班委会准备15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的数量关系式;(2)有多少种购买方案?请列举所有可能的结果.23.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?24.如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(23,n)(1)则n=,k=,b=_______.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.(3)求四边形AOCD的面积.25.某商场购进甲、乙两种服装后,都加价40%标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的标价和进价各是多少元?26.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从家打车到郊区,总里程为23千米,耗时30分钟,求小强需支付多少车费.28.植树造林可以减少二氧化碳排放,为实现“碳中和”做出贡献,还可以美化环境:为此某区计划由甲施工队把城区主干道某一段公路的一侧栽上若干棵小叶榕树;若施工队平均每人植5棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数少10棵;若施工队平均每人植6棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数多5棵.求甲施工队有多少人?计划种植的小叶榕树有多少棵?。
北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案

一、单选题
1.如图,在平面直角坐标系中,一次函数y=kx+b和y=mx+n相交于点(2,-1)则关于x、y的方程组 的解是()
A. B. C. D.
2.某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为 人,组数为 组,则列方程组为()
参考答案:
1.B
2.D
3.C
4.A
5.C
6.B
7.C
8.B
9.D
10.A
11. (答案不唯一)
12.2
13.2或
14.
15.
16.4
17.9
18.5 2或3
19.(1)h是x的一次函数
(2)9只
20.(1)
(2)
21.(1)30;(2)①小丽步行的速度为 ,小明步行的速度为 ;②点 ,点C表示:两人出发 时,小明到达甲地,此时两人相距 .
(1)丽丽所买皮衣与毛衣的单价各是多少元?
(2)丽丽可以到线上客服处领取多少元补贴?
24.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足 ,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、E三点的坐标;
(2)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.
22.1
23.(1)丽丽所买皮衣的单价是 元,毛衣的单价是 元
(2) 元
24.(1)A(0,3),B(-1,0),E(2,1),(2) (-4,1)(-3,4)(-2,2)
A. B. C. D.
9.若 是二元一次方程组 的解,则 的值为()
北师大版初中数学八年级上册《3.1 确定位置》同步练习卷(含答案解析

北师大新版八年级上学期《3.1 确定位置》同步练习卷一.选择题(共25小题)1.小明乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km),若小艇C在游船的正南方2km,则下列关于小艇A、B的位置描述,正确的是()A.小艇A在游船的北偏东60°,且距游船3kmB.游船在的小艇A北萄东60°,且距游船3kmC.小艇B在游船的北偏西30°,且距游船2kmD.小艇B在小艇C的北偏西30°,且距游船2km2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)3.中国象棋是中华名族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(﹣2,1)4.如图,已知棋子“车”的坐标为(﹣2,1),棋子“马”的坐标为(3,﹣1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)5.北京市为了全民健身,举办“健步走“活动,活动场地位于奥林匹克公园(路线:森林公园→玲珑塔→国家体育场→水立方)如图,体育局的工作人员在奥林匹克公园设计图上标记玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,3),则终点水立方的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,﹣1)6.如图是丁丁画的一张脸的示意图,如果用(1,3)表示靠左边的眼睛,用(3,3)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,2)C.(1,1)D.(3,1)7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)8.小刚从学校出发往东走500m是一家书店,继续往东走1000m,再向南走1000m 即可到家,若选书店所在的位置为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,若以点A表示小刚家的位置,则点A的坐标是()A.(1500,﹣1000)B.(1500,1000)C.(1000,﹣1000)D.(﹣1000,1000)9.如图,表示甲、乙、丙三人在排练厅所站的3块地砖.若甲、乙所站的地砖分别记为(2,2),(4,3),则丙所站的地砖记为()A.(5,6)B.(6,5)C.(7,6)D.(7,5)10.如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)11.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,﹣1),则表示“天安门”的点的坐标为()A.(0,0)B.(﹣1,0)C.(1,0)D.(1,1)12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)13.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)14.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为()A.(0,3)B.(3,2)C.(2,3)D.(3,0)15.如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)16.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)17.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)18.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)19.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用有序数对(0,﹣1)表示,黑棋②的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对()表示.A.(﹣2,4)B.(2,﹣4)C.(4,﹣2)D.(﹣4,2)20.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A 的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1B.点O2C.点O3D.点O421.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)22.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)23.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D24.从学校向东走600米,再向南走500米到小伟家;从学校向南走500米,再向西走300米到小亮家,则下列结论正确的是()A.小亮家在小伟家的正东600米处B.小亮家在小伟家的正南500米处C.小亮家在小伟家的正西900米处D.小亮家在小伟家的正北600米处25.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)二.填空题(共14小题)26.小聪出校门向东走100米,再向北走120米到达阳光文具店,若以学校校门所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向,1个单位长度代表1米建立平面直角坐标系,则阳光文具店的坐标是.27.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,已知所在位置的坐标为(﹣3,2),所在位置的坐标为(﹣1,0),在中国象棋的规则中,“马走日,象(相)飞田”,若下一步移动,则下一步可能走到的位置的坐标为.28.象棋是一项益智游戏,如图,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为.29.如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为.30.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果士所在位置的坐标为(﹣1,﹣2),相所在位置的坐标为(2,﹣2),那么将棋子炮右移一格后的位置的坐标为.31.如图,若棋盘中表示“帥”的点可以用(0,1)表示,表示“卒“的点可以用(2,2)表示,则表示“馬”的点用坐标表示为.32.如图,若小红的位置可以用坐标(﹣7,﹣4)表示,小明的位置可以用坐标(﹣5,﹣8)表示,则小亮的位置可以用坐标表示为.33.在如图的方格纸上,若用(﹣1,1)表示点A的位置,(0,3)表示点B的位置,那么点C的位置可表示为.34.如图是城市中某区域的示意图,小聪同学从点O出发,先向西走100米,再向南走200米到达学校,如果学校的位置用(﹣100,﹣200)表示,那么(300,200)表示的地点是.35.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.36.如图所示的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是.37.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为.38.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1、1),则此“QQ”笑脸右眼B的坐标.39.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.三.解答题(共11小题)40.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,若游乐场的坐标为(3,2),宠物店的坐标为(﹣1,﹣2),解答以下问题(1)请在图中建立适当的平面直角坐标系,并写出汽车站的坐标;(2)若消防站的坐标为(3,﹣1),请在坐标系中标出消防站的位置.41.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的地方是哪个?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.42.如图是学校的平面示意图,已知旗杆的位置是(﹣2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(﹣2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.43.如图,方格纸中每个小方格都是长为1个单位的正方形,已知学校位置坐标为A(1,2).(1)请在图中建立适当的平面直角坐标系;(2)写出图书馆B位置的坐标是.44.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.45.如图,已知火车站的坐标为(2,2),文化宫的坐标为(﹣1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标;46.如图,这是某城市部分简图,请建立适当的平面直角坐标系,并分别写出各地的坐标.47.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(﹣4,4),点B位于点(3,1),则“帅”所在点的坐标为;“马”所在点的坐标为;“兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.48.这是一个动物园游览示意图,彤彤同学为了描述这个动物园图中每个景点位置建了一个平面直角坐标系,南门所在的点为坐标原点,回答下列问题:(1)分别用坐标表示狮子、飞禽、两栖动物,马所在的点.,,,.(2)动物园又新来了一位朋友大象,若它所在点的坐标为(3,﹣2),请直接在图中标出大象所在的位置.(描出点,并写出大象二字)(3)若丽丽同学建了一个和彤彤不一样的平面直角坐标系,在丽丽建立的平面直角坐标系下,飞禽所在的点的坐标是(﹣1,3)则此时坐标原点是所在的点,此时南门所在的点的坐标是.49.李老师到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),(1)你能帮李老师在下图中建立平面直角坐标系求出其他各景点的坐标吗?(2)若图中一个单位长度代表实际距离100米,请你求出其中某两点(已用字母标记)间的实际距离.50.如图是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若光岳楼的坐标为(﹣3,1),请建立平面直角坐标系,并用坐标表示下列景点的位置:金凤广场(,);动物园(,);湖心岛(,);山峡会馆(,).北师大新版八年级上学期《3.1 确定位置》同步练习卷参考答案与试题解析一.选择题(共25小题)1.小明乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km),若小艇C在游船的正南方2km,则下列关于小艇A、B的位置描述,正确的是()A.小艇A在游船的北偏东60°,且距游船3kmB.游船在的小艇A北萄东60°,且距游船3kmC.小艇B在游船的北偏西30°,且距游船2kmD.小艇B在小艇C的北偏西30°,且距游船2km【分析】利用方向角的表示方法对各选项进行判断.【解答】解:小艇A在游船的北偏东30°,且距游船3km;小艇B在游船的北偏西60°,且距游船2km;游船在小艇的南偏西30°,且距游船3km;小艇B在小艇C的北偏西30°,且距游船2km.故选:D.【点评】本题考查了坐标确定位置:是熟练掌握平面内特殊位置的点的坐标特征.理解方向角的表示方法.2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)【分析】先利用已知两点的坐标画出直角坐标系,然后可写出白棋(甲)的坐标.【解答】解:根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选:D.【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.3.中国象棋是中华名族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(﹣2,1)【分析】根据“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),建立平面直角坐标系,结合坐标系可得答案.【解答】解:如图所示,根据题意可建立如图所示平面直角坐标系,则“兵”位于点(﹣2,1),故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.4.如图,已知棋子“车”的坐标为(﹣2,1),棋子“马”的坐标为(3,﹣1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)【分析】先根据棋子“车”的坐标和棋子“马”的坐标,画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:根据题意可建立如图所示的坐标系:则棋子“炮”的坐标为(2,1),故选:B.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5.北京市为了全民健身,举办“健步走“活动,活动场地位于奥林匹克公园(路线:森林公园→玲珑塔→国家体育场→水立方)如图,体育局的工作人员在奥林匹克公园设计图上标记玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,3),则终点水立方的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,﹣1)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:终点水立方的坐标是(﹣2,﹣3).故选:A.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.6.如图是丁丁画的一张脸的示意图,如果用(1,3)表示靠左边的眼睛,用(3,3)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,2)C.(1,1)D.(3,1)【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:根据题意:用(1,3)表示左眼,用(3,3)表示右眼,可以确定平面直角坐标系中的x轴为从下面数第一行向上为正方向,y轴为从左面数第一列向右为正方向.那么嘴的位置可以表示成(2,1).故选:A.【点评】此题主要考查了坐标确定位置,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)【分析】根据点A、C的位置结合其表示方法,可得出相邻同心圆的半径差为1,结合点B在第四个圆上且在150°射线上,即可表示出点B.【解答】解:∵A(5,30°),C(3,300°),∴B(4,150°).故选:B.【点评】本题考查了坐标确定位置,根据点A、C的坐标找出点B的坐标是解题的关键.8.小刚从学校出发往东走500m是一家书店,继续往东走1000m,再向南走1000m 即可到家,若选书店所在的位置为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,若以点A表示小刚家的位置,则点A的坐标是()A.(1500,﹣1000)B.(1500,1000)C.(1000,﹣1000)D.(﹣1000,1000)【分析】由题意可知,小刚从学校出发往东走1500m,再向南走1000m即可到家,选书店所在的位置为原点建立坐标系,即可小刚家的坐标.【解答】解:选书店所在的位置为原点,分别以正东、正北方向为x,y轴正方向建立平面直角坐标系,所以书店的坐标是(0,0),小刚家的坐标是(1000,﹣1000),故选:C.【点评】主要考查了直角坐标系的建立和运用,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.9.如图,表示甲、乙、丙三人在排练厅所站的3块地砖.若甲、乙所站的地砖分别记为(2,2),(4,3),则丙所站的地砖记为()A.(5,6)B.(6,5)C.(7,6)D.(7,5)【分析】直接利用甲、乙所站的地砖分别记为(2,2),(4,3),即可得出最后一个位置的坐标.【解答】解:∵甲、乙所站的地砖分别记为(2,2),(4,3),∴丙所站的地砖记为:(7,5).故选:D.【点评】此题主要考查了坐标确定位置,正确应用已知点位置是解题关键.10.如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)【分析】直接利用“将”位于点(1,﹣1),得出原点位置进而得出答案.【解答】解:如图所示:“马”位于点(4,2).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.11.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,﹣1),则表示“天安门”的点的坐标为()A.(0,0)B.(﹣1,0)C.(1,0)D.(1,1)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:“天安门”的点的坐标为:(1,0).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(0,2).故选:B.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.13.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.14.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为()A.(0,3)B.(3,2)C.(2,3)D.(3,0)【分析】根据A点坐标,建立坐标系,可得C点坐标.【解答】解:点C的位置可表示为(3,2),故选:B.【点评】此题主要考查了坐标确定位置,关键是正确建立坐标系.15.如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【分析】直接利用已知点坐标得出原点位置,进而得出答案.【解答】解:如图所示:兵”位于点为:(﹣3,1).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.16.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【分析】根据点的坐标的定义即可得.【解答】解:根据题意知小李所对应的坐标是(7,4),故选:C.【点评】本题主要考查坐标确定位置,解题的关键是掌握点的坐标的概念.17.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)【分析】根据题意画出坐标系,进而确定公园的坐标.【解答】解:如图所示:公园的坐标是:(﹣100,﹣250).故选:C.【点评】此题主要考查了坐标确定位置,正确理解题意是解题关键.18.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.19.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用有序数对(0,﹣1)表示,黑棋②的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对()表示.A.(﹣2,4)B.(2,﹣4)C.(4,﹣2)D.(﹣4,2)【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋③的坐标即可.【解答】解:建立平面直角坐标系如图,白棋③的坐标为(﹣4,2).故选D.【点评】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.20.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A 的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1B.点O2C.点O3D.点O4【分析】根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),进而得出观测点位置.【解答】解:如图所示:连接BC,并延长,即可得出,观测点的位置应在点O1.故选:A.【点评】此题主要考查了坐标确定位置,正确利用已知点得出观测点是解题关键.21.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1),故选:A.【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.22.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)【分析】以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.【解答】解:建立平面直角坐标系如图所示,将(1,6).故选C.【点评】本题考查了坐标确定位置,读懂题目信息,准确确定出坐标原点是解题的关键.23.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D【分析】根据点在平面直角坐标系中的确定方法解答即可.【解答】解:∵点M的位置用(﹣40,﹣30)表示,∴(﹣10,20)表示的位置是点A.故选:A.【点评】本题考查了坐标确定位置,主要利用了平面直角坐标系中点的位置的确定方法,是基础题.24.从学校向东走600米,再向南走500米到小伟家;从学校向南走500米,再向西走300米到小亮家,则下列结论正确的是()A.小亮家在小伟家的正东600米处B.小亮家在小伟家的正南500米处C.小亮家在小伟家的正西900米处D.小亮家在小伟家的正北600米处【分析】根据题意,以学校为“观测点”画出路线图,再据具体的路线长度,即可得到问题的答案.【解答】解:如图:小亮家在小伟家的正西600+300=900米处.故选:C.【点评】此题考查根据方向和距离确定位置,画出线路图是解决问题的关键.25.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)【分析】根据已知两点坐标建立坐标系,然后确定其它点的坐标.【解答】解:用(0,0)表示A点,(0,4)表示B点,则以点A为坐标原点,AB所在直线为y轴,向上为正方向,x轴是过点A的水平直线,向右为正方向.所以点C的坐标为(3,2)故选:C.【点评】考查类比点的坐标及学生解决实际问题和阅读理解的能力.解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.解题的关键是确定原点及x,y轴的位置和方向.二.填空题(共14小题)26.小聪出校门向东走100米,再向北走120米到达阳光文具店,若以学校校门所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向,1个单位长度代表1米建立平面直角坐标系,则阳光文具店的坐标是(100,120).【分析】根据描述得出阳光文具店在所建立直角坐标系的第一象限,再结合距离可得其坐标.【解答】解:由题意知阳光文具店在所建立直角坐标系的第一象限,其坐标为(100,120),故答案为:(100,120).【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应,记住平面内特殊位置的点的坐标特征.27.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,已知所在位置的坐标为(﹣。
北师大版初中八年级数学上册-《确定位置》教学设计-02

《确定位置》教学设计一、学生起点分析《确定位置》是八年级上册第五章《位置的确定》第一节内容。
本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。
《确定位置》将现世生活中常用的定位方法呈现给学生,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括的能力。
对八年级学生而言,他们对新鲜事物特别有兴趣。
因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
二、教学任务分析教学目标设计:知识与技能:1.体会极坐标和直角坐标思想,并能解决一些简单的问题;2.能利用比例尺计算实际距离;3.发展学生的识图能力。
情感与价值观:1.通过学生感兴趣的图形激发学生的学习兴趣;2.通过运用位置确定的方法解决实际问题,体验到数学与人类生活是密切联系的;教学重点:会根据已知条件正确表示物体的位置。
三、教学过程设计第一环节创设情境,引入新课师:如图,如果用(0,0)表示点A,(1,0)表示点B,(1,2)表示点F。
想一想:按照这个规律该如何表示其它点的位置。
第二环节分类讨论,探索新知1.学生分小组讨论,找出规律,然后回答交流:C(2,0),D(2,1),E(2,2),G(0,2),H(0,1)2.做一做:(投影P126,图5-3)如果用(0,0)表示点A的位置,用(2,1)表示点B的位置,那么(1)图①中五角星五个顶点的位置如何表示?(2)图②中五枚黑棋子的位置如何表示?(3)图②中(6,1),(10,8)位置上的棋子分别是哪一枚?这里的数据有两个,一个表示水平方向与A点距离,另一个表示竖直方向上到A点的距离。
3.例2(投影图5-4)借助刻度尺,量角器解决如下问题:(1)教学楼位于校门的北偏东多少度的方向上?到校门的图上距离约是多少厘米?实际距离呢?(2)某楼位于校门的南偏东约75°的方向,到校门的实际距离约240米,说出这一地点的名称。
八年级数学上册第五章二元一次方程组检测题新版北师大版(含答案)

八年级数学上册:第五章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.已知下列各式:①1x +y =2;②2x-3y =5;③12x +xy =2;④x+y =z -1;⑤x +12=2x -13.其中二元一次方程的个数是( A ) A .1 B .2 C .3 D .42.方程5x +2y =-9与下列方程构成方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定4.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是( A )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-4 5.若(x +y -5)2+|2x -3y -10|=0,则代数式xy 的值是( C ) A .6 B .-6 C .0 D .56.已知一个等腰三角形的两边长x ,y 满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( A )A .5B .4C .3D .5或47.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )A.⎩⎪⎨⎪⎧3x -4y =6,3x -2y =0B.⎩⎪⎨⎪⎧3x -4y =6,3x +2y =0C.⎩⎪⎨⎪⎧3x -4y =-6,3x -2y =0D.⎩⎪⎨⎪⎧-3x +4y =6,3x +2y =0 8.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x ,女生人数为y ,则所列方程组正确的是( D )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 9.小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +⊗y =3,3x -⊗y =1时,得到了正确结果⎩⎪⎨⎪⎧x =⊕,y =1.后来发现“⊗”和“⊕”处被墨水污损了,请你帮他找出“⊗”和“⊕”处的值分别是( B )A .⊗=1,⊕=1B .⊗=2,⊕=1C .⊗=1,⊕=2D .⊗=2,⊕=210.(2016·黔东南州)小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表:A .64元B .65元C .66元D .67元 二、填空题(每小题3分,共24分)11.写出一个解为⎩⎪⎨⎪⎧x =1,y =2的二元一次方程组__⎩⎪⎨⎪⎧x +y =3,x -y =-1(答案不唯一)__.12.若x3m -2-2yn -1=3是二元一次方程,则m =__1__,n =__2__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.已知⎩⎪⎨⎪⎧x =-2,y =0和⎩⎪⎨⎪⎧x =1,y =3是方程x 2-ay 2-bx =0的两组解,那么a =__13__,b =__-2__.15.如果⎩⎪⎨⎪⎧x +2y =2 015,y +2z =2 016,z +2x =2 017,那么x +y +z =__2_016__.16.某工厂在规定天数内生产一批抽水机支援抗旱,如果每天生产25台,那么差50台不能完成任务;如果每天生产28台,那么可以超额40台完成任务,则这批抽水机有__800__台,规定__30__天完成任务.17.如图,在同一平面直角坐标系内分别作出一次函数y =12x +1和y =2x -2的图象,则下面的说法:①函数y =2x -2的图象与y 轴的交点是(-2,0);②方程组⎩⎪⎨⎪⎧2y -x =2,2x -y =2的解是⎩⎪⎨⎪⎧x =2,y =2;③函数y =12x +1和y =2x -2的图象交点的坐标为(-2,2);④两直线与y 轴所围成的三角形的面积为3.其中正确的有__②④__.(填序号),(第17题图)) ,(第18题图))18.(2016·重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第__120__秒.三、解答题(共66分)19.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎪⎨⎪⎧x =2,y =-1. 解:⎩⎪⎨⎪⎧x =9,y =6. 解:⎩⎪⎨⎪⎧x =1,y =1. 解:⎩⎪⎨⎪⎧x =1,y =-2,z =-1.20.(8分)直线l 与直线y =2x +1的交点的横坐标为2,与直线y =-x +2的交点的纵坐标为1,求直线l 对应的函数表达式.解:设直线l 与直线y =2x +1的交点坐标为A (x 1,y 1),与直线y =-x +2的交点为B (x 2,y 2),因为x 1=2,代入y =2x +1,得y 1=5,即A 点坐标为(2,5).因为y 2=1,代入y =-x +2,得x 2=1,即B 点坐标为(1,1).设直线l 的表达式为y =kx +b ,把A ,B 两点坐标代入,得⎩⎪⎨⎪⎧2k +b =5,k +b =1,解得⎩⎪⎨⎪⎧k =4,b =-3.故直线l 对应的函数表达式为y =4x -3.21.(8分)观察下列方程组,解答问题:①⎩⎪⎨⎪⎧x -y =2,2x +y =1;②⎩⎪⎨⎪⎧x -2y =6,3x +2y =2;③⎩⎪⎨⎪⎧x -3y =12,4x +3y =3;… (1)在以上3个方程组的解中,你发现x 与y 有什么数量关系?(不必说明理由) 解:在以上3个方程组的解中,发现x +y =0.(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.解:第④个方程组为⎩⎪⎨⎪⎧x -4y =20①,5x +4y =4②,①+②,得6x =24,即x =4,把x =4代入①,得y =-4,则x +y =4-4=0.22.(9分)学校组织学生乘汽车去自然保护区野营,前13路段为平路,其余路段为坡路,已知汽车在平路上行驶的速度为60 km /h ,在坡路上行驶的速度为30 km /h .汽车从学校到自然保护区一共行驶了6.5 h ,求汽车在平路和坡路上各行驶多少时间?解:设汽车在平路上用了x 小时,在坡路上用了y 小时,由题意得⎩⎪⎨⎪⎧x +y =6.5,60x =13×(60x +30y ),解得⎩⎪⎨⎪⎧x =1.3,y =5.2.答:汽车在平路上用了1.3小时,在坡路上用了5.2小时.23.(9分)某班将举行知识竞赛活动,班长安排小明购买奖品,图①,图②是小明买回奖品时与班长的对话情境:根据上面的信息解决问题:(1)计算两种笔记本各买多少本.解:设买5元、8元的笔记本分别是x 本,y 本,依题意,得⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68+13,解得⎩⎪⎨⎪⎧x =25,y =15,即买5元、8元的笔记本分别是25本,15本.(2)小明为什么不可能找回68元? 解:若小明找回68元,则⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68,此方程组无整数解,故小明找回的钱不可能是68元.24.(12分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎪⎨⎪⎧b =300,30k 2+b =600,解得⎩⎪⎨⎪⎧k 2=10,b =300.所以y 2=10x+300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.(12分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段OA 表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)求线段CD 对应的函数表达式; 解:y =110x -195.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?解:先求出线段OA 对应的函数表达式为y =60x ,由题意联立方程得⎩⎪⎨⎪⎧y =60x ,y =110x -195,解得⎩⎪⎨⎪⎧x =3.9,y =234,则货车从甲地出发3.9小时被轿车追上,此时离甲地234千米.(3)轿车到达乙地后,货车距乙地多少千米?解:60×(5-4.5)=30(千米).。
北师大版八年级数学上册分单元全套试卷

第一章 勾股定理一、基础题1。
下列说法正确的是( d )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B 。
若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( d )A .c b a =+ B. c b a >+ C 。
c b a <+ D 。
222c b a =+ 3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( b )A .121B .120C .90D .不能确定 4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 5.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 . 7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 . 二、综合题11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.ACB3m 4m20m12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章练习
一 填空
1)点A 在y 轴上,距离原点4个单位长度,则A 点的坐标是 。
(2)矩形ABCD 中,A 、B 、C 三点的坐标分别是(0,0)(6,0)(6
D 点关于x 轴的对称点是 。
(3)如图,以等腰梯形ABCD 的顶点D 为原点建立直角
坐标系,若AB=4,CD=10,AD=5,则图中各顶点的
坐标分别是A ,
B ,
C ,
D 。
(4)点A 在y 轴右侧,
距y 轴4个单位长度,距x 轴3点的坐标是 ,A 点离开原点的距离是 。
(5)点A (a -1,5),B (3, b )关于
y 轴对称,则____=+b
a 。
6)在x 轴上与点(0,-2
)距离是4个单位长度的点有 。
7 如图,正方形OABC 的各顶点A 、B 、C 的坐标如图,
则点A 、B 、C 分别关于x 轴,y 轴,原点的坐标分别
是 , , 。
(6)如图(2),正方形ABCO 的边长是2,E 是BC 中点,则E 点的坐标是 ,析式是 。
(10)如图,△AOB 是边长为5
标分别是
A ,
B 二选择
1. A. 4 B. 5.5 C. 4.5 D.5
2. 点P(2,1+--b a )关于x 轴对称与关于y 轴对称的点的坐标相同,则b a ,的值分别是 。
A. –1, 2
B. –1, –2 C . –2, 1 D. 1, 2
3)将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是 。
A.关于轴对称
B.关于y 轴对称
C.关于原点对称
D.无法确定
三 建立坐标系表示右面图形各顶点的坐标
直角梯形上底3,下底5,底角︒45
七、观察图形由(1) (2) (3) (4)的变化过程,写出每一步图形是如何变化的,图形中各顶点的坐标是如何变化的。
(6分)
五、作图分析题:(每小题2分,共10分)
(1) 在如图直角坐标系中,描出点(9,1)
(11,6)(16,8)(11,10)(9,15) (7,10)(2,8)(7,6)(9,1), 并将各点用线段顺次连接起来。
(2) 这个图形是中心对称图形吗?如果是,它的对称中心的坐标是什么?
(3) 将上面各点的横坐标不变,纵坐标缩小为原来的一半,求出各点的坐标,再将各点依次
连接起来。
与原图形相比,所得图形有什么变化?
(4) 如果将原图形上各点的横坐标加2、纵坐标减5,猜一猜,图形会发生怎样的变化?
(5) 如果想让变化后的图形与原图形关于原点对称,原图形各点的坐标应该如何变化?
2、建立坐标系表示下列图形各顶点的坐标:(12分)
(1)菱形ABCD ,边长3,︒=∠60B (2)长方形ABCD ,长6宽4,建坐标系
使其中C 点的坐标(-3,2)
3、在图中A (2,-4)B (4,-3)C (5,0),求四边形ABCO 的面积。
(6分)
(1) (2) (3) ) (4,1) ( A
B C D。