Erdas里面利用NDVI提取植被指数的步骤(附图)
ERDAS-NDVI【MODELER】

另外,ERDAS MODEL做NDVI分类首先说如何做NDVI,虽然ERDAS里有个现成专门可以做NDVI的的地方,但是我们注意到TM4+TM3可能为0,当除数为0时系统会报错,所以应该在分母上加0.001或0.0001都可以。
这样分母就不会为0了,同时注意输出图象类型要是float single,否则做出来的结果可能是空白图象。
NDVI:归一化植被指数和植物的蒸腾作用、太阳光的截取、光合作用以及地表净初级生产力等密切相关。
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;1、植被覆盖度是指植被植株冠层或叶面在地面的垂直投影面积占植被区总面积的比例(周国林,1982;Greig-Smith,1964;Chapman,1976),又称为投影盖度(曲仲湘等,1983)。
这一指标具有一定的相对性,同一片植被,因被纳入统计的范围不同而表现为不同的植被覆盖度。
其范围分布在0-1之间,数值越大表明植被覆盖度越高。
国内外研究表明,植被指数反映了植被的状况,同植被覆盖度有良好的相关关系,通过计算NDVI(归一化植被指数),建立NDVI同植被覆盖度之间关系的经验公式,来计算植被覆盖度。
2、NDVI(Normalized Difference Vegetation Index)归一化植被指数,又称标准化植被指数。
其计算公式为:NDVI=NIR-R/NIR+R其中,NIR为近红外波段(0.7-1.1µm),R为红波段(0.4-0.7µm)。
ndvi提取

基于Ndvi因子的植被覆盖度提取根据遥感估算模型原理,对郑州2001年和1988年的植被覆盖度进行估算。
1 NDVI植被覆盖因子提取在ERDAS面板工具条上,选择Interpreter模块Spectral Enhancement/indices打开如下对话框,如下设置:点击view打开如下对话框进行进行建模,双击方框和圆框进行参数设置,注意:数据类型都为float,在圆框计算器中由于只有三个图层,编号为1,2,3,计算时将4换为1,3换为2在菜单上选择Process/run进行运算,结果如下:2 植被覆盖度图像的分类打开Classifier模块,选择Unsupervised Classification打开如下对话框,确定分类数目为10,最大循环次数为24,设置循环收敛阈值为0.95,OK执行。
3分类重编码/打开Interpreter模块,选择GIS Analysis/Recode代开对话框选择Setup Recode,打开Thematic Recode对话框,在New Value 字段里,将1——10类等间距两两合并分为5类。
Recode 2001遥感图像Recode1988遥感图像4 植被覆盖图像动态变化研究在ArcGIS中分别打开2001年和1988年的植被覆盖图像,将其NDVI值进行五类级,如下2001年植被覆盖分析图1988年植被覆盖分析图在ArcGIS中打开2001年和1988年的重分类图像,自定义五类分类值,如下2001年重分类编码后的遥感图像1988年重分类编码后的遥感图像5 统计分析在ERDAS中打开重编码后的分类图像,在视窗菜单条点击Raster\Attributes,打开属性表,点击editor/add area column,得到1988年和2002年植被覆盖度统计表植被覆盖度面积统计表(单位:公顷)覆盖面积占总面积的百分比。
植被覆盖度提取

植被覆盖度等级划分
按照-1-0.2、0.2-0.4、 0.4-0.6、0.6-0.8、 0.8-I五级分类,得到区植 被覆盖度分级图
专题图
谢
Hale Waihona Puke 植被盖度提取地信151 黎敏 27
注:文本框可根据需求改变颜色、移动位置;文字可编辑
学习基于 像元二分 模型的植 被盖度提 取方法
lanier.img. 基于遥感技 术的植被覆 盖度估算与 变化实验分 析
参考文献介 绍的方法用 lanier.img 数据做出该 区域的植被 盖度图
植被盖度提取
目录
归一化植被指数(NDVI) 基于NDVI的像元二分模型 植被覆盖度等级划分 专题图
归一化植被指数(NDVI)
NDVI=(NIR—RED)/(NIR+RED)
基于NDVI的像元二分模型
Fc=(NDVI—NDVIsoi1)/(NDVlveg—NDVIsoil) 像元NDVI累积概率分布为1%附近的值所对应的NDVI值为 NDVlmin,99%附近的值所对应的NDVI值为NDVlmax
ERDAS下植被覆盖度的计算

植被覆盖度的计算
植被覆盖度的介绍
NDVI的计算 的计算
Fcover的计算 的计算
植被覆盖度的介绍 植被覆盖度的介绍
植被覆盖度是指植被植株冠层或叶面在地面的 垂直投影面积占植被区总面积的比例(周国林等, 1982;Greig-Smith,1964;Chapman,1976),又 称为投影盖度(曲仲湘等,1983)。这一指标具有 一定的相对性,同一片植被,因被纳入统计的范围 不同而表现为不同的植被覆盖度。其范围分布在01之间,数值越大表明植被覆盖度越高。国内外研 究表明,植被指数反映了植被的状况,同植被覆盖 度有良好的相关关系,通过计算NDVI(归一化植被 指数),建立NDVI同植被覆盖度之间关系的经验公 式,来计算植被覆盖度.
在此,我们给大家介绍一个最为简便的方法。即找出 NDVI最大值最小值将其确定为NDVIsoil和NDVIveg。
首先单击 图标,打开Image Info 对话框。找出NDVI最大最小值。
构建Forever计算模型
首先是打开ERDAS软件, 选择MODELER工具,单击 Model Maker打开工具面 板,开始创建模型。
该图为经Fcoever 公式计算后影像
Байду номын сангаас
根据NDVI在ERDAS中计算出影像的植被覆盖度Fcover。 植被覆盖度值分布在0-1之间,0表示地表无植被覆盖,1表 示地表全部被植被所覆盖,数值越高说明地表植被覆盖越 好。
该图为Fcoever公式 计算后植被覆盖度 柱状图
构建NDVI计算模型
首先是打开ERDAS软件, 选择MODELER工具,单击 Model Maker打开工具面 板,开始创建模型。
erdas和envi变化信息提取方法

第四章土地利用动态遥感监测方法4.5变化信息提取4.5.1变化信息自动提取方法土地利用变化监测(即变化信息自动发现)方法主要有影像相减法、植被指数相减法、变化矢量分析法、主分量分析法、光谱特征变异法、分类结果比较法等。
前5种方法只是检测出可能的变化,而并没有给出土地利用变化的定量信息(如面积)和变化中类型的转化信息(如地类属性)。
分类结果比较法的最终精度受到影像分类精度的限制,而且它对影像的全部范围都要进行分类计算而不管它们是否已经发生变化,增加了变化信息检测的计算量。
即使对于同一地物,由于条件的不同,得到的影像灰度值也不太一样。
因此对于影像相减法而言,单纯相减所得的变化模板中肯定会含有大量的假变化信息和噪声信息,要从这些信息中提取出真正的变化仍旧是个棘手问题。
由于异物同谱现象的存在,许多真正的变化信息也会因为相减而被漏掉,从而影响了最终变化信息的获得。
植被指数相减的方法同样有着本身的局限性,它对不同时相植被覆盖情况的变化敏感,而不能很好地发现其他类型变化。
4.5.2不同时相遥感影像变化信息发现在没有土地利用基础图件的情况下,利用两个不同时相或序列不同时相的遥感影像进行变化信息的发现方法主要包括:光谱特征变异法、主成分分析法、假彩色合成法、图像差值法、分类后比较法、波段替换法及变化矢量分析法。
下面对几种比较成熟的方法做简单介绍。
(一)光谱特征变异法同一地物反映在SPOT影像上的信息与其反映在TM影像上的光谱信息是一一对应的。
因此对同一时相的TM和SPOT影像进行融合后,地物光谱属性可以如实正确地表现出来。
但如果同一地物在两者上的信息表现为不一致时,那么融合后影像中此地物的光谱就表现得与正常地物的光谱有所差别,此时称地物发生了光谱特征变异,我们也就可以根据发生变异的光谱特征确定变化信息的发生。
发生变化的区域在融合后的影像上表现为含有纹理特征的亮绿色,区别于周围植被地物的绿色特征和正常的居民地信息,判定为该区域新增了一块建设用地。
利用ERDASIMAGINE从遥感影像中提取植被指数

Abstracting Vegetati on Index From Remote Sensing Images Using ERDAS IMEGINE
总第 109 期 2005 年第 6 期
西部探 矿工程 W EST - CH IN A EXPL OR AT ION EN GIN EERIN G
ser ies No . 109 Jun. 2005
文章编号 : 1004
5716( 2005) 06
0210
03
中图分类号 : P237 文献标识码 : A
IM A GIN E 遥感图像处理软件对遥感影像进行植被指数提取 。 对植被 指数提取 的关键 部分进 行分析 , 并给 出植被 指数 提取的技术关键 。 关键词 : 植被指数 ; ERDA S; 遥感 ; ND VI 1 概述 植被指数是遥感监测地面 植物生 长和分布 的一种 方法。由 于不同绿色植被对不 同波 长光 的吸 收率 不同 , 光 线照 射在 植物 上时 , 近红外波段的光大部分 被植物 反射 , 而可见 光波段 的光则 大部分被植物吸收 , 通过 对近 红外 和红 波段 反射 率的 线性 或非 线性组合 , 可以消除地物光谱 产生的 影响 , 得到的 特征指 数称为 植被指数。 植被指数经过近 20 年的发展 , 目前有几十种 , 但常用的植被 指数有 : 归一化植 被指数 N DV I( N or malized Differ ence Veg eta t ion Index) 、 比值 植被指数 RV I( R atio Veg etation Index ) 、 差值植 被指数 DV I ( Differ ence V eg etatio n I ndex ) 、 土壤 调 节 植 被指 数 SAV I( the Soil Adjusted V egetation Index) 、 修正型土壤植被指数 M SAV I( M odified Soil A djusted V eg etatio n I ndex) [ 1] 等。 在遥感应用领域 , 植 被指 数已 广泛 用来 定性 和定 量评 价植 被覆盖及其生长活力。植被指数有助于增强遥感影像的解译力 , 并已作为一种遥感手 段广 泛应 用于 土地 利用 覆盖 探测、 植 被覆 盖密度评价、 作物识别和作物预报等方面 [ 2] 。 2 植被指数提取 植被指数提取的 方法 很多 , 最 为常 用的 一种 方法 是通 过遥 感影像处理软件对遥 感影 像不 同波 段进 行处 理 , 从而 得到 各类 植被指数。 目前常见的 Landsat T M 遥感影像 , 共有 7 个波段 , 其中 T M 3 ( 波长 0. 63~ 0. 69 m) 为红 外波 谱段 , 为 叶绿 素主 要吸 收 波段 ; T M4( 波长 0. 76~ 0. 90 m) 为近红外波谱段 , 对绿色植被的差异敏 感, 为植被通用波 段。 M odis 遥感 影像共 有 36 个 光谱通 道, 其第 一波段 ( 0. 62~ 0. 67 m) 、 第二波段 ( 0. 841~ 0. 876 m) 分别是红色 和近红外波段 , 可以用第一和第二波段计算植被指数。 例如归一化植被指数 N DV I 的定义是 : ND VI= N IR- Red ( 其 中 N IR 代表近 红外波 段 , R ed 代表红 N IR+ Red 波段 ) 要计 算 NDV I, 就是 在遥感 处理软 件中 , 计算近 红外波 段与 红波段之差 , 再除以两个波段之和。 利用遥感影像处理 软件提取植 被指数流 程一般 为 : ( 1) 使用 遥感处理软件 打开遥感图像。 ( 2) 依据 植被指 数公式 , 对图 像不 同波段进行波 段计算。( 3) 生成植被指数影像文件。 3 植被指数提取中存在的问题 在计算归 一化植被指数 ND VI 时 , 此时若采用 N DV I 公式直 接进行波段计 算 , 如果 N IR+ R ED ( 近红外 波段 + 红波段 ) 的值 为零时 ( 见图 2) , 对这些点的计算就会产生 结果溢出的 现象。此 类情况在干旱 区植被覆盖度较低的遥感影像处理中较为常见。 生成 ND VI 植被指数影像图时 , 如 果不进 行适当 处理 , 在对 生成的植被指 数影像 文件分 析判 读时 , 就 会 与实 测数 据产 生很 大的误差。特别要注意 的是 , 在计算植被覆盖面积、 生物量估算、 图像分类等过 程中 , 卫星影像中 的这些 点就有 可能被 忽略 , 计算 结果的精度就 无法保证。 图 1 是 新疆 天山北 坡 M odis 2003 年 10 月 15 日影 像 , 图 2 是图 1 经过分析处理后 N ir+ R ed 值为零的像元图像。从图 2 中 可以看到 , 在影像的下方有一条明显的轮廓 , 在实测中发现 , 此轮 廓正是位于 新 疆古 尔班 通 古特 沙漠 与 新疆 阜 康 绿洲 之 间的 绿 洲 4 荒漠交 错带。 在 ERDAS 中提取植被指数 ERD AS IM AG IN E 中的 M odeler 是一个面向 目标的图 形模 型语言 , 用户可据此设计出高级 的空间 分析模 型 , 实现复杂 的分 析和处理功能 , 整个 过程 只需用 其提 供的 工 具栏 在窗 口中 绘出 模型的流程图 、 指定流程图的意义、 所用参数等 , 即可完成模型的 设计 , 无需进行 具体 而复杂 的编 程过 程。 ERDA S IM AG IN E 为 用户提供了高 层次的 设计工 具和 手段 , 同 时 可使 用户 将更 多的 精力集中在专 业领域的研究 [ 3] ( 图 3 就是利用 ERDA S 的 M o del
基于ERDAS的植被信息提取的方法研究

基于ERDAS的植被信息提取的方法研究摘要:在遥感影像处理中,植被指数提取广泛应用于评价植被覆盖,长势,面积等植被信息。
本文主要利用ERDAS IMAGINE遥感图像处理软件对遥感影像进行归一化植被指数NDVI的提取,对植被指数图像进行非监督分类处理,结合目视解译等方法,对信阳地区的植被信息进行提取。
关键词:植被指数;ERDSA;遥感;NDVI引言植被主要包括林地(有林地、灌木地和疏林地)、草地(高覆盖度草地、中覆盖地草地和低覆盖度草地)和农作物[1]。
植被在维护生态平衡中起着重要的作用,用一种切实有效地技术和方法对植被的情况进行掌控又成为时代所需。
随着遥感技术的应用和发展,它为植被指数的提取和植被覆盖度的测算提供了一种新的方法。
相较于传统的地面测算,遥感方法在很大程度上减少了外业测算工作,同时解决了时效性和测算范围等方面的问题。
1 研究区植被概况信阳位于河南省南部,东经114°01′-114。
06′,北纬31°46′-31°52′。
信阳地势南高北低,是岗川相间、形态多样的阶梯地貌。
西部和南部是由桐柏山、大别山构成的豫南山地。
中部是丘陵岗,北部是平原和洼地,信阳地跨淮河,位于秦淮分界上,属亚热带向暖温带过渡区。
信阳市一座绿色茶城,城区主要植物种类是茶树及绿化植物。
2 数据来源及数据预处理2.1 数据来源实验数据采用的是2002年7月9日的LANDSAT7 ETM+影像数据。
ETM+影像有8个光谱波段,空间分辨率是30m(1、2、3、4、5、7波段)、60m(6波段)和15m(全色波段)。
2.2 植被指数及数据预处理2.2.1 植被指数植被指数(vegetation index)是遥感监测地面植物生长和分布的一种方法,是不同遥感光谱波段间的线性或非线性组合,是植被长势的一种指示,通常可反映90%以上的植被信息,并能消除外在因素的影响,从而较好地反映绿色植物的空间分布和生长状况,并能宏观地反映绿色植物的生物量和盖度等生物的物理特征,所以被广泛应用于土地利用覆盖探测、植被覆盖密度评价和作物识别等方面[3]。
植被物候方法NDVI提取

2.数据处理
因为DNVI影像通过公式(NDVI*200)+50 计算过,所以我 把每一幅影像通过NDVI波段计算使NDVI值处于-0.25-1之间。
3.制图
• 对20幅影像在同一位置选出20个点制作一条曲线(选取两个不同位置)
1 0.9 0.8 0.7 NDVI NDVI 0.6 0.5 0.4 0.3 0.2 0.1 0 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 day of year
植被物候方法ndvi提取ndvi植被覆盖度归一化植被指数ndvi植被指数ndvienvi提取ndvindvi指数envi计算ndvindvi计算公式ndvi数据下载modisndvi产品
汇报
2013-11-21
1.数据收集
• ftp:///modis/NDVI/(Global Land Cover Facility University of Maryland, College Park, USA ) • 2000年49-353天 16天et al. Global land cover mapping from MODIS: algorithms and early results. 2 Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS.
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
成熟期
衰退期
返青期
0.2 0.1
0 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 DAY OF YEAR
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Erdas里面利用NDVI提取植被指数的步骤
NDVI:归一化植被指数和植物的蒸腾作用、太阳光的截取、光合作用以及地表净初级生产力等密切相关。
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;
2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;
3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;
4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;
在erdas里面利用NDVI提取植被指数的步骤如下:
1、在Erdas的主工具中选择Interpreter模块,出现Image Interpreter 对话框
2、然后选择Spectral Enhancement,会弹出Spectral Enhancement对话框
3、再选择Indices选项出现Indices对话框
以SPOT
数据为例进行说明,选择InputFile ,选择Output File ,在OutputOptions 的Sensor 中选择SPOT XS/XI ,在SelectFunction 里面选择NDVI ,DataType 默认为Float 不用改变,可以发现最下面的Function 显示band 3 - band 2 / band 2 +band 3,这个就是NDVI 的计算公式。
最后选择OK 即可完成,这里要注意的是没有OutputFile 的话Ok 按钮时不能使用的。
如果NDVI 计算的话在ENVI 是最方便的在Transform 菜单下就有,同时ENVI 的波段计算功能也很方便完成NDVI 计算。