动力锂离子电池管理系统设计方案
动力电池系统方案设计评审报告

动力电池系统方案设计评审报告尊敬的领导:根据贵公司要求,我们进行了动力电池系统方案的设计评审,并撰写了该报告,以便您了解我们的设计方案和评审结论。
一、设计方案概述我们的设计方案旨在为电动汽车提供高效、可靠、安全的动力电池系统。
我们的设计方案包括三个主要部分:电池组设计、电池管理系统(BMS)设计和电池冷却系统设计。
1.电池组设计我们在电池组设计中采用了大容量、高能量密度的锂离子电池。
电池组由若干电池模块串联而成,通过平衡电流均匀分配电荷和减小模块间的电压差,提高整个电池组的循环寿命和充电/放电性能。
此外,我们还采用了优化结构和隔热材料,提高电池组的安全性和散热性能。
2.电池管理系统(BMS)设计BMS是保证电池组正常工作和延长使用寿命的关键。
我们的BMS设计包括电池状态监测、电流控制、电压平衡、充电控制等功能。
通过实时监测电池组的状态和控制充电/放电过程,我们可以确保电池组的安全性和性能稳定性。
3.电池冷却系统设计电池冷却系统在电池组工作中起到关键的作用,可以有效控制电池组的温度,提高电池的循环寿命和功率输出能力。
我们的电池冷却系统采用了液冷技术,通过循环冷却剂与电池组接触,快速散热,并保持适宜的工作温度。
二、设计评审结论在对我们的设计方案进行评审后,我们得出以下结论:1.电池组设计合理,能够满足电动汽车的动力需求。
2.BMS设计完善,可以准确监测电池组的状态,并进行相应的控制。
3.电池冷却系统设计科学合理,能够有效控制电池组的温度。
然而,我们在设计方案中仍存在以下改进的地方:1.需进一步优化电池组的结构和隔热材料,提高电池组的安全性和散热性能。
2.BMS设计需要增加故障诊断功能,以提高电池组的可靠性。
3.开发更高效的电池冷却系统,以提高散热效果和降低冷却系统的能耗。
三、下一步工作计划基于评审的结果和改进的需求,我们将制定以下下一步工作计划:1.优化电池组的结构和隔热材料,提高电池组的安全性和散热性能。
动力锂离子电池管理系统设计方案

沈小忠( 潮 州正 龙 电池 工业 有 限公 司 , 广东 潮州 5 1 5 6 4 4 )
摘要 : 相 比传 统镍镉 电池 、 铅 酸 电池而 言 , 动力锂 离子 电池 动 力锂 离子 电池 在 电路 保护 设计上 , 作者认 为要侧 重三 个 具有电能高、 电压 高 、 寿命 长 、 便 携性 以及 适应 环 境 性 强等 特 方面 , 分别是 : 过 充电保护 、 过放 电保护以及过 电流短路 保护 。 点, 是2 0 世 纪代表性 的新 型高能 电池产品 。尤其动 力锂 离子 电 首先, 电池 管理 系统在设 计时 要实现单 节 电池 电量 限制 和 池 的便 携性特 点 ( 质量 轻 、 高能量 、 无 污染 ) , 极 大地推 动 了它的 总 体 电量 控制 。参 考 锂离 子 电池 特 点 , 在单 节 电池 充 电过 程
以继 电器为 切换 元件 , 实现 不 同电池 组的 能量 平衡 和 随 着计算 机技 术的发 展 , 各 类终端 数码设 备大 量涌现 , 如: 态 检测 , 转移 。 笔记本 电脑 、 手机、 数码 相机 、 D V等 , 动 力锂离 子 电池开 始进入
大 规 模应 用 阶段 , 其 中以手 机 为典 型代 表 , 在 一定 程 度上影 响 3 结语 了动力锂 离子 电池的发展 方 向。 随着 我 国经济 发 展和 科技 , 动 力锂 离子 电池 的发展 。动 力锂 离子 电池的 发展呈 源 的需 求将 会 更加 旺盛 , 结合动 力锂离 子 电池取 得 的成果 , 如 现 出“ 从小 到 大” 的趋 势 , 这不 仅包 括 电池规 模大 小 , 也包 括容 在 电动 车产 品 、 电动 汽车 产 品方面 的应 用 , 未 来的 发展 前景 将 量、 适 用范 围、 适用 产 品等多个 方面 。就 国内而言 , 无论是研 究 会更 为广 阔。同时 , 进入 2 1 世纪计 算机技 术、 网络技术 的发展 ,
动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图电动汽车是指全部或部分由电机驱动的汽车。
目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。
电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。
锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。
但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。
而电池管理系统能够解决这一问题。
当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。
此外,还具有过温、过流、剩余电量估测等功能。
本文所设计的就是一种基于单片机的电池管理系统。
1电池管理系统硬件构成针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。
1.1MCU模块MCU是系统控制的核心。
本文采用的MCU是M68HC08系列的GZ16型号的单片机。
该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。
该单片机具有以下特性:(1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。
1.2检测模块检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。
1.2.1电压检测模块本系统中,单片机将对电池组的整体电压和单节电压进行检测。
对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。
采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。
所以采用分压的电路进行检测。
10串锰酸锂电池组电压变化的范围是28V~42V。
采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。
对于单体电池的检测,主要采用飞电容技术。
基于"飞电容"技术的动力锂离子电池组保护系统的设计

b 保 护 系统 的过 充 、 放等 电压保 护 值 可 由用 户 ) 过 任意设 置 , 设置 范 围为 20V~ . . 4 5V。 c 具有 断线 保 护 功 能 。每个 电池 的 正 负 极 均 有 ) 检测线连 接至保 护 系统 , 电池 组 由于受震 动等原 因 , 当 检测线 出现 断路 , 护 系统 能 马上 发 现并 立 即切 断 主 保
锂离子电池的研发队伍 中, 尽管动力锂离子电池相对
于镍氢 、 铅酸 以及镍镉 电池 在 比能量 、 积 、 命 、 体 寿 环保 性 等各方 面都 具有无 可 比拟 的优 势 , 且 它 的规 模应 而 用也是 大势所 趋 , 电池组 的成本 、 但 安全 性等 方面 的因 素仍然 制约着 动力锂 离子 电池市 场 的扩大 。锂离子 电 池都需要 配备 电子保 护 系 统 , 防止 电池 出 现过 充或 以 过 放而 发生爆炸 , 由于各 厂 家 制造 动 力 锂离 子 电池 但 所 采用 的材料 以及 配方 均不 尽相 同 , 致使 电池 的过充 、 过放保 护 电压 多种 多样 , 用 现 有 的锂 电单节 或 多节 采
机 , 出了相应 的硬件 设计 方案 , 引入 了分 时运行 的软件 设计 方 法 , 提 还 实现 了低 功 耗 的 设计 目标 。 实
验结果表明, 系统可靠性高, 该 适应性广, 成本低廉 , 可进一步推进动力锂 离子电池的广泛应用。
关键 词 : 电容 ; 力锂 离子 电池 ; 飞 动 断线检 测
维普资讯
第 3 卷第 8 3 期
20 07年 8月
电 子 工 叠 师
ELEC n 0NI C ENGI NEER
V 13 . 0 . 3 No 8 Aug 2 0 . 07
电动汽车动力锂电池组电源管理系统设计

电动汽车动力锂电池组电源管理系统设计张辉;李艳东;李建军;赵丽娜【摘要】电动汽车的快速发展,对于动力锂电池进行管理是必不可少的.在电池进行充电时,对电池状态的监控及均衡充电可很好地保护电池的寿命和安全.在需要对大量电池进行管理时,可以通过CAN通信将需要监控的电池进行统一管理.为了更好的管理电池,采用了液晶显示器和上位机对电池进行监控.当电池充电发生故障或者电池充满时,通过电压组的均衡来保护电池组,并发出相应的提示信号.在控制设计方面,主控制处理器采用的是DSP处理器,芯片采用的是C语言编程,通信方式运用了SCI、SPI、CAN等传输形式.上位机是在LabVIEW开发平台上进行设计.【期刊名称】《电源技术》【年(卷),期】2016(040)007【总页数】5页(P1407-1411)【关键词】DSP;电池管理;上位机;CAN总线【作者】张辉;李艳东;李建军;赵丽娜【作者单位】齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006;齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006;齐齐哈尔大学理学院,黑龙江齐齐哈尔161006;齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006【正文语种】中文【中图分类】TM912为了缓解全国环境污染问题,纯电动汽车得到了快速的发展。
而纯电动汽车发展的瓶颈之一却又在动力蓄电池方面,这给纯电动汽车在续航、动力和安全方面带来了很多麻烦,在蓄电池技术没有很大改进的前提下,对纯电动汽车提升性能方面目前最有效的方法是对电池的管理,使其在电池寿命、安全、续航等方面得到很大的改善,所以说一个好的电池管理方案对纯电动汽车是至关重要的[1]。
人们很早就对电池的管理开始进行了研究,并且取得了很大的成就。
早在1997年日本青森工业研究中心就开始对BMS的实际应用进行研究,美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测,丰田、本田及通用汽车公司等都把BMS纳入技术开发重点[2-3]。
叉车动力锂电池系统设计方案

叉车动力锂电池系统设计方案设计者:目录第1章系统概述 (3)1.1 设计内容 (3)1.2 设计特点 (3)1.3 设计依据 (3)1.3.1 客户要求 (3)1.3.2 项目技术规范 (4)1.3.3 相关标准 (4)1.4 设计实力 (5)第2章系统总体设计 (6)2.1 系统概述 (6)2.4电池成组方案设计 (7)2.5系统主要技术参数及指标 (7)2.5.1系统技术指标 (7)2.5.2单体电池介绍及规格参数 (8)2.5.3电池系统设计及介绍 (9)2.5.4电池管理系统介绍及主要技术参数 (10)第3章系统物料清单 (16)第4章优缺点对比 (16)第1章系统概述1.1设计内容此次叉车动力锂电池系统项目的设计内容包括磷酸铁锂电池、电池管理系统、内部结构设计,以及电池箱体设计。
电池型号:100AH (单体)电池模组容量:5.12kWh电池系统容量:10.24KWh/15.36KWh/20.48KWh电池数量:32PCS100AH/48PCS100AH/64PCS100AH1.2设计特点叉车动力锂电池系统总体设计特点如下➢采用成熟可靠的、高能量密度、长使用寿命的磷酸铁锂电池,可快速充放电,满足功率输出所需求得容量;➢全自动智能化电池管理技术,可自动实现单体电池的一致性均衡,确保电池的使用寿命;➢采用国际知明品牌的元器件和控制芯片,确保系统性能可靠;➢完善的直流保护功能,确保系统的安全性;➢系统结构简单、便于运输、安装及维护;➢支持多种通讯接口,可根据客户需求进行选择;➢外型美观、可配有友好的人机操作界面。
1.3设计依据本次项目主要按客户具体要求、项目技术规范、相关标准来完成整个动力锂电池系统方案的设计。
1.3.1客户要求客户要求主要有如下:1)锂电叉车系统单体模组100AH(48V100AH)5.12 kWh;2)规格为:48V200AH;48V300AH;48V400AH;三种规格六个型号;3)充电功率:19.2KW4)BMS的通讯接口采用RS485或CAN5)系统安装方式为叉车内部安装,IP54。
锂离子电池管理系统的设计

锂离子电池管理系统的设计
随着移动设备和电动汽车的快速发展,锂离子电池作为一种高能量密度和长寿命的电池技术得到了广泛应用。
然而,由于锂离子电池的特性,如充电过程中的热失控和过充、过放等问题,使得电池管理系统(BMS)变得至关重要。
锂离子电池管理系统的设计旨在确保电池的安全、稳定和有效使用。
首先,BMS需要实时监测电池的状态,包括电压、电流、温度等参数。
通过传感器和电路的组合,BMS能够准确地监测电池的工作状态,并及时采取措施,防止电池过热、过充或过放。
其次,BMS需要具备电池的均衡功能,即当电池组中的某个单体电池电压过高或过低时,BMS能够自动调整每个单体电池之间的电压差,使其保持在一个合理的范围内。
这样可以提高整个电池组的寿命和性能,并避免因单体电池失效导致整个电池组无法正常工作的情况。
另外,BMS还需要具备充电和放电保护功能。
在充电过程中,BMS需要监测电池的充电电流和电压,并根据电池的特性和充电速率进行控制,以防止过充和过放。
同时,在放电过程中,BMS 需要监测电池的放电电流和电压,并根据负载的要求进行控制,以确保电池能够正常供电,并避免过度放电造成电池损坏。
最后,BMS还需要具备故障诊断和报警功能。
当电池组中的某个单体电池出现故障或异常时,BMS能够及时发出警报并提供相应的故障诊断信息,以便维修人员及时排查和修复问题,确保电池组的正常运行。
综上所述,锂离子电池管理系统的设计是一个复杂而重要的工程。
通过实时监测电池状态、均衡电池、充放电保护以及故障诊断和报警功能的实现,BMS能够确保电池的安全、稳定和有效使用,提高电池组的性能和寿命,为移动设备和电动汽车的发展提供可靠的能源支持。
锂离子电池管理系统的设计与实现

一、锂离子电池管理系统的基本功能
3、电池均衡:BMS需要确保电池组中的每个电池都处于均衡状态,避免过充 或欠充。
4、数据采集与传输:BMS需要将电池的实时数据采集并传输给上位机或云平 台,以便用户或管理人员了解电池的状态和性能。
二、锂离子电池管理系统的设计
1、硬件设计
1、硬件设计
BMS的硬件设计需要考虑以下几个方面的因素: (1)主控芯片的选择:主控芯片是BMS的核心部件,需要选择具有强大的数 据处理能力和足够的I/O接口的芯片。常用的主控芯片包括ARM、FPGA、单片机等。
三、锂离子电池管理系统的设计
3、软件设计:软件设计应考虑电池管理系统的实时性、可靠性和安全性。例 如,可以采用先进的控制算法来实现精确的能量管理和热管理。此外,软件设计 还应考虑与车辆其他系统的通信和交互,如发动机管理系统、充电管理系统等。
三、锂离子电池管理系统的设计
4、人机界面设计:人机界面是EV驾驶员与电池管理系统交互的桥梁。良好的 人机界面设计可以提高驾驶员的便利性和安全性。例如,可以设计直观的图形界 面来显示电池的状态和健康状况。
1、硬件设计
(2)传感器的选择:传感器是监测电池状态的关键部件,需要选择具有高精 度、稳定可靠的传感器。常用的传感器包括电压传感器、电流传感器、温度传感 器等。
1、硬件设计
(3)通信接口的选择:BMS需要与上位机或云平台进行通信,需要选择稳定 可靠的通信接口。常用的通信接口包括CAN、RS485、蓝牙、WiFi等。
2、软件设计
(3)数据存储与传输:BMS需要将电池的实时数据采集并传输给上位机或云 平台,因此需要选择可靠的数据存储与传输方式。常用的方式包括SD卡存储、U 盘存储、网口传输等。
三、锂离子电池管理系统的实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力锂离子电池管理系统设计方案
摘要:本文讨论了动力锂电池管理系统的设计方案,以实现对锂电池动力电池组的过充电保护、过放电保护、过流保护和均衡充电等功能。
关键词:锂离子动力电池组;管理系统;过流;过放电;过充电;均衡控制
引言
锂离子电池的广泛应用已有十多年,但早期主要用于手机、笔记本电脑、摄像机、DVD等一系列小型移动式电子产品,这些场合往往都单串使用,负载电流较低,安全系数高。
最近两年来,锂离子电池以其轻便、高能量密度、无污染等特点,已经开始在电动自行车、电动工具和动力玩具领域上得到快速应用,并逐步应用于混合动力车和电动车辆领域。
但动力锂离子电池的安全性仍是人们目前最为关注的问题,所以对其的保护就非常重要。
除了确保锂离子电池自身安全性的持续改进,必须同时研究电池的管理系统,使电池及其应用能均衡发展。
锂离子电池的保护主要包括过充电保护、过放电保护、过电流及短路保护等。
1 保护电路的功能
1.1 过充电保护
对锂离子电池来说,其充电后单节电芯最高电压不得超过规定值,否则电池内的电解质会被分解,使得温度上升并产生气体,降低电芯的使用寿命,严重时甚至会引起爆炸,所以保护电路一定要保证绝对不可过度充电,必须对电池组中每一节电池的端电压进行监控,当电芯的电压超过设定值时,即激活过充电保护功能,由保护电路切断充电回路,中止充电。
在电芯电压回归到允许的电压并解除过充锁定模式时,才能停止保护。
不同材料的锂离子电池其保护电压和释放电压都有其不同的规定值。
另外,还必须注意因噪声所产生误动作,为了防止误判和误操作,还要设置过充保护延时,并且延迟时间不能短于噪声的持续时间。
当电压持续超过过充检测电压一定时间以上才会触发过充保护。
1.2 过放电保护
锂离子电池的过度放电,也会缩短其使用寿命,而且对电池造成的损害往往是不可逆的。
为了防止锂离子电池的过放电状态,当锂离子电池电压低于其过放电电压检测点时,即激活过放电保护,中止放电,并将电池保持在低静态电流的待机模式,参数设置类似过充保护。
1.3 过电流/短路保护
锂离子电池的最大放电电流有一定限制,过大的放电电流同样会引起锂电池的不可恢复的损坏,影响其使用寿命。
短路保护这个功能其实是过流保护的扩展,若由于外部短路等原因引起的大电流放电时要立刻停止放电,否则对锂电池本身和外部设备都可能会造成严重的损害。
过流保护的延时时间一般至少要几百微秒至毫秒,而短路保护的延时时间是微秒级的,几乎是短路的瞬间就切断了回路,可以避免短路对电池带来的巨大损伤。
就电动工具而言,保护电流值和延时时间的设置还必须和电动工具本身的参数结合起来,否则会影响工具的输出扭矩和电机的寿命。
1.4 电池均衡
动力锂离子电池一般都要几串、几十串甚至几百串以上,由于电池在生产过程中,从涂膜开始到成为成品要经过很多道工序,即使经过严格的检测程序,使每组电源的电压、电阻、容量一致,但使用一段时间以后,电池内阻、电压、容量等参数产生波动,形成不一致的状态,就会产生这样或那样的差异。
这种差异体现为电池组充满或放完时串联电池芯之间的电压不相同。
这种情况下导致电池组充电的过程中,电压过高的电池芯提早触发电池组过充电保护,而在放电过程中电压过低的电池芯导致电池组过放电保护,从而使电池组的整体容量明显下降,整个电池组体现出来的容量为电池组中性能最差的电池芯的容量,而且使用时很容易发生过充和过放现象,且不易发现,导致提前失效。
因此要求保护电路能够完成电池单元的均衡操作,用以从具有较高电压的电池抽取多余的电流,消耗多余的电量,实现电池均衡,最大限度地发挥动力锂电池的效用,延长电池的使用寿命,增加安全性。
目前常用的均衡方法有储能均衡和电阻均衡。
储能均衡是利用电池对电感或电容等储能元件的充放电,通过继电器或者开关器件实现储能元件在不均衡电池间的切换,达到电池间的能量转移。
这种均衡充电方法一般控制网络复杂,安全性管理要求高,在使用中应注意掌握好储能元件的充放电时间,其最大的优点是充、放电(工作)使用中,都可平衡各单元电池的功能,且不消耗锂离子电池组的电能。
电阻均衡一般是通过控制器控制电阻网络的通断对电池组进行分流均衡,这种方法可以同时对多节电池进行均衡,控制简单。
但是均衡过程中如果电阻选的过大,则均衡电流太小,效果甚微;如果电阻选的过小,则电阻功率很大,系统能量损耗大,均衡效率低,系统对热管理要求较高,需要进行温度检测控制。
电阻均衡的原理是在电池组充电的过程中,当某节电池充电速度较快,电压高于其他电池,系统通过控制开关控制均衡电阻的导通分流,降低电池的充电速度,以达到各节电池均衡充电的目的。
2 保护功能的实现
对于锂离子电池的保护方法主要有两种:单片机控制和集成电路保护芯片。
2.1 IC控制
目前可以实现锂离子电池保护功能的芯片很多,国外、台湾、大陆都有很多种芯片可以选择,目前日系理光和精工的方案采用的比较多,方案成熟,外围电路简单,但是价格比较贵。
各种保护IC实现的功能相差无几,其保护模式和外部线路也大同小异,在实际应用中可根据需要选择不同IC。
选择IC的时候要多方考虑,不同型号的IC的过充电保护电压是不同的,有4.25V也有4.35V的,还有IC的自身功耗、外围电路是否够简单、保护IC的各参数精度是否符合要求,体积是否足够小,都要考虑周到。
保护板除了保护功能完善以外,低功耗也是重要的参数。
为防止过度放电,保护IC必须检测电池电压,一旦达到过度放电检测电压以下,就必须关断功率MOSFET而截止放电。
但此时电池本身仍有自然放电及保护IC的消耗电流存在,因此需要使保护IC消耗的电流降到最低程度,在保护状态时,其静态耗电流必须要小0.1uA。
另外动力锂离子电池包工作或充电时瞬间会有高压产生,因此保护IC应满足耐高压的要求。
图1是以精工S-8254A为保护IC的4串应用原理图。
S-8254 系列内置高精度电压检测电路和延迟电路,是用于3节或4节串联锂离子或者锂聚合物可充电电池保护的IC。
通过SEL端子的切换,可用来保护3节或4节串联电池。
图1 S-8254A 4串保护原理图
当然目前的电池保护芯片一般最多能保护4节锂离子电池,然而很多应用都需要5节以上的锂离子电池串联工作,比如电动工具、电动自行车和UPS,此时又如何解决呢?如图2所示,该电路可以实现20A/ 24V的输出功率,以精工S-8254AAV作为控制芯片的一个应用实例,它同时使用两个保护芯片串联在一起,保护8串锂离子电池组,过放保护电压为2.70V±0.080V,过充保护电压为4.250V±0.025V。
图2 8串动力锂离子电池保护电路
该电路均衡控制采用R5408芯片,电压测量精度比较高,均衡电流可达1A。
2.2 MCU控制
现有的一些集成电路保护芯片主要是针对4节电芯以下的电池组的保护,而对于4节以上的电池组可以采用多个单级保护芯片串联的方式或几个多级保护芯片串联的方式。
但这种利用多个保护芯片串联的方式对4节电芯以上的电池组进行保护的电路可扩展性差。
同时,集成保护芯片往往只针对一种或一类电池的特性,缺乏灵活性,成本往往也比较高。
为此,结合锂离子动力电池的充放电特点,许多场合动力锂离子电池保护电路,采用以MCU(微处理器)为核心的设计方案。
以微处理器作为各种功能控制的核心,除了对锂离子电池组提供过充、过放、过流保护,有效地对锂离子电池组内各单节锂电的充、放电提供动态均衡、温度保护、短路保护外,同时可以提供如容量预测、通讯、身份识别等功能。
3 硬件抗干扰措施
动力锂离子电池管理系统作为一个应用系统的一部分,会经常受到各种电磁干扰,其实际的工作环境是比较恶劣,有必要在硬件设计和PCB板的布线上采取一定的抗干扰措施。
4 其他要求
因为电池主要是用来给主应用项目供电,因此要求BMS只有极低的功耗。
5 结束语
动力锂离子电池组的监控是一个较新的课题,其管理系统将会综合监测保护技术设计思想,具有对电池组进行静止、充电、放电、管理、自动维护等基本功能,达到实用、可靠的使用要求。