面积和体积的公式大全
面积体积公式大全

面积体积公式大全
以下是一些常见的面积和体积公式:
1. 三角形的面积公式:A = 1/2 * 底边长 * 高
2. 矩形的面积公式:A = 长 * 宽
3. 平行四边形的面积公式:A = 底边长 * 高
4. 梯形的面积公式:A = 1/2 * (上底 + 下底) * 高
5. 圆的面积公式:A = π * 半径²
6. 球的表面积公式:A = 4 * π * 半径²
7. 球的体积公式:V = (4/3) * π * 半径³
8. 圆柱体的表面积公式:A = 2π * 半径 * 高+ 2π * 半径²
9. 圆柱体的体积公式:V = π * 半径² * 高
10. 锥体的表面积公式:A = π * 半径 * 斜高+ π * 半径²
11. 锥体的体积公式:V = 1/3 * π * 半径² * 高
12. 圆锥台的表面积公式:A = π * 上底半径 * 斜高+ π * 下底半径 * 斜高+ π * (上底半径² + 下底半径²)
13. 圆锥台的体积公式:V = 1/3 * π * 高 * (上底半径² + 上底半径 * 下底半径 + 下底半径²)
这些只是常见的公式,还有其他形状和几何体的面积和体积公式,具体情况可以根据具体形状来查找或计算。
(完整版)面积和体积的公式大全

(完整版)⾯积和体积的公式⼤全公式⼤全⼀、平⾯图形1、三⾓形⾯积:S=ah/2(2).已知三⾓形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)](3).已知三⾓形两边a,b,这两边夹⾓C,则S=1/2 * absinC(4).设三⾓形三边分别为a、b、c,内切圆半径为rS=(a+b+c)r/2(5).设三⾓形三边分别为a、b、c,外接圆半径为RS=abc/4R(6).根据三⾓函数求⾯积:S= absinC/2 a/sinA=b/sinB=c/sinC=2R注:其中R为外切圆半径。
周长:l=a+b+c2、圆⾯积:S=π*R^2=π*D^2/4= l^2/4π(D:直径,l:周长)周长:l=2πR=πD3、扇形⾯积:S=nπ*R^2/360=aR^2 (n:为扇形的圆⼼⾓,a:扇形的圆⼼⾓弧度制)周长:l=nπR/180+2R=aR+2R4、椭圆⾯积:S=abπ5、正⽅形⾯积:S=a^2周长:l=4a6、长⽅形⾯积:S=ab周长:l=2(a+b)7、平⾏四边形⾯积:S=ah=absinx(a:为底,h:为⾼,b:是a的邻边,x:是a、b边的夹⾓) 周长:l=2(a+b) 8、菱形适⽤于平⾏四边形的计算公式另还有:⾯积:S=ab (a、b为两对⾓线的长)周长:l=4x (x为边长)9、梯形⾯积:S=(a+b)h/2 (a,b 为上下底,h 为⾼)等腰梯形⾯积:S=csinA(a+b)/2 (c 为腰,A 是锐⾓底⾓)10、圆环⾯积:S=(R^2-r^2)π(R 外圆半径,r 内圆半径)11、弧与⼸形弧长:l=nπR/180=aR(n:为弧所对的圆⼼⾓,a:弧度制)⼸形⾯积:i,圆上割下的⼸形(1)当⼸形弧是劣弧时,S⼸形=S扇形-S三⾓形;(2)当⼸形弧是优弧时,S⼸形=S扇形+S三⾓形.ii,抛物⼸形以割线为底,以平⾏于底的切线的切点为顶点的内接三⾓形的3/4⼆、⽴体图形1、球表⾯积:S=4*π*R^2体积:V=4πR^3/32、正⽅体表⾯积:S=6a^2体积:V=a^33、长⽅体表⾯积:S=2(ab+bc+ac)体积:V=abc4、棱柱体积:V=Sh (S:为底⾯积,h:⾼)6、圆柱表⾯积:S=2πRh+πR^2 (R:底⾯圆的半径,h:侧⾯⾼)体积:V=Sh (S:为底⾯积,h:⾼)=πR^2 h7、圆锥、棱锥圆锥的表⾯积:S=πRh+πR^2(R:底⾯圆的半径,h:侧⾯长)圆锥、棱锥的体积:V=Sh/3 (S:为底⾯积,h:⾼)8、棱台设棱台的上、下底⾯⾯积分别为S1、S2,⾼为h,体积:V=(1/3)[S1+√(S1S2)+S2] ×h(√表⽰平⽅根)9、圆台体积:V=[S+S′+√(SS′)]h÷3=πh(R^2+Rr+r^2)/3(-上底半径R-下底半径h-⾼)。
周长面积体积表面积公式大全

周长面积体积表面积公式大全周长、面积、体积和表面积是几何学中常用的概念。
它们是用来描述和计算几何图形的重要指标。
以下是一些常见几何图形的周长、面积、体积和表面积的公式。
一、平面图形的周长和面积公式:1.正方形:-周长:4×边长-面积:边长²2.长方形:-周长:2×(长边+短边)-面积:长边×短边3.圆形:-周长:2×π×半径-面积:π×半径²4.三角形:-周长:边长1+边长2+边长3-面积:底×高÷25.梯形:-周长:边长1+边长2+边长3+边长4-面积:(上底+下底)×高÷2二、立体图形的表面积和体积公式:1.立方体:-表面积:6×边长²-体积:边长³2.圆柱体:-表面积:2×π×半径×高+2×π×半径²-体积:π×半径²×高3.圆锥体:-表面积:π×半径×(半径+斜高)-体积:π×半径²×高÷34.球体:-表面积:4×π×半径²-体积:4/3×π×半径³以上是一些常见几何图形的周长、面积、体积和表面积的公式,下面我将进一步介绍其中几个公式的推导和应用。
首先是三角形的面积公式,它是底乘以高再除以2、这个公式可以通过将三角形划分为两个直角三角形并计算其面积得出。
其次是圆形的周长公式和面积公式,它们都涉及到圆的半径。
周长是半径乘以2π,面积是半径的平方乘以π。
这个公式可以通过将圆看作是无数个细小的线段组成的近似多边形,并计算其周长和面积来推导得出。
对于立体图形,立方体的体积公式是边长的立方,表面积公式是边长的平方乘以6、这个公式可以通过计算立方体的六个矩形的面积之和来得出。
面积体积公式大全

面积,体积公式大全三角形:S=21⨯⨯高底 正方形:S=边长*边长 长方形:S=长*宽直角梯形(等腰梯形):S=(上底+下底)*高*1/2 平行四边形:S=边长*高长方体:V=长*宽*高=底面积*高 正方体:V=边长的立方圆锥:V=1/3底面积*高 圆柱:V=底面积*高 球:V=4/3*派*R 的立方S=4*派*R*R ∆⨯ℜ⨯ℜ⨯4 ⑴周长(外周围的长度) C △=三边长之和 C 长方形 =(长+宽) ×2C 平行四边形=相邻两边长之和的2倍 C 正方形=边长×4 C 菱形=边长×4C 圆=2πr(r 为半径)= πd(d 为直径) C 梯形=两底长+两腰长 ⑵面积 S △=底×高÷2S 长方形=长×宽 S 平行四边形=底×高 S 正方形=边长的平方 S 菱形=对角线乘积的一半 S 圆=πr2(r 是半径) S 梯形=(上底+下底) ×高÷2 圆柱体的计算公式如下:圆柱体侧面积公式:侧面积=底面周长×高 S 侧=C 底×h圆柱体的表面积公式:表面积=2πr2+底面周长×高 S 表=S 底+C 底×h圆柱体的体积公式:体积=底面积×高 V 圆柱=S 底×h长方体的体积公式: 长方体的体积=长×宽×高 如果用a 、b 、h 分别表示长方体的长、宽、高则公式为:V 长=abh正方体的表面积公式: 表面积=棱长×棱长×6 S 正=a ^2×6正方体的体积公式:正方体的体积=棱长×棱长×棱长.如果用a 表示正方体的棱长,则正方体的体积公式为v 正=a·a·a =a ^3圆锥体的体积=1/3×底面面积×高 V 圆锥=1/3×S 底×h . 体积公式圆柱体的体积公式:体积=底面积×高 ,如果用h 代表圆柱体的高,则圆柱=S 底×h 长方体的体积公式:体积=长×宽×高如果用a 、b 、h 分别表示长方体的长、宽、高 则 长方体体积公式为:V 长=abh正方体的体积公式:体积=棱长×棱长×棱长. 如果用a 表示正方体的棱长,则 正方体的体积公式为V 正=a·a·a =a³ 锥体的体积=底面面积×高÷3 V圆锥=S 底×h÷3台体体积公式:V=[ S 上+√(S 上S 下)+S 下]h÷3 圆台体积公式:V=(R²+Rr+r²)hπ÷3 球缺体积公式=πh²(3R -h)÷3 球体积公式:V =4πR³/3 棱柱体积公式:V =S 底面×h =S 直截面×l (l为侧棱长,h 为高)棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h注:V :体积;S1:上表面积;S2:下表面积;h :高。
空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。
对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。
下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。
一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。
二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。
三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。
四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。
五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。
以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。
同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。
小学所有的面积公式体积公式单位之间的换算关系运算定律

小学所有的面积公式体积公式单位之间的换算关系运算定律小学所有面积公式:1.正方形的面积公式:A=a²,其中a表示正方形的边长。
2.长方形的面积公式:A=l×w,其中l表示长方形的长度,w表示长方形的宽度。
3.三角形的面积公式:A=1/2×b×h,其中b表示三角形的底边长,h表示三角形的高。
4.梯形的面积公式:A=1/2×(a+b)×h,其中a和b表示梯形的上底和下底的长度,h表示梯形的高。
小学所有体积公式:1.立方体的体积公式:V=a³,其中a表示立方体的边长。
2.长方体的体积公式:V=l×w×h,其中l、w和h分别表示长方体的长度、宽度和高度。
3.圆柱体的体积公式:V=π×r²×h,其中r表示圆柱体的底面半径,h表示圆柱体的高度。
单位之间的换算关系:1.长度单位换算关系:- 1 米(m)= 100 厘米(cm)= 1000 毫米(mm)- 1 公里(km)= 1000 米(m)2.面积单位换算关系:3.容积单位换算关系:运算定律:1.加法的运算定律:-交换律:a+b=b+a-结合律:(a+b)+c=a+(b+c)-零元素:a+0=a2.减法的运算定律:-减法等式:a-b=c,则c+b=a3.乘法的运算定律:-交换律:a×b=b×a-结合律:(a×b)×c=a×(b×c)-分配律:a×(b+c)=a×b+a×c4.除法的运算定律:-乘法逆元素:a×(1/a)=15.分数的运算定律:-分数的加法和减法:-分母相同:a/b+c/b=(a+c)/b- 分母不同:a/b + c/d = (ad + bc)/bd-分数的乘法和除法:-乘法:(a/b)×(c/d)=(a×c)/(b×d)-除法:(a/b)÷(c/d)=(a×d)/(b×c)以上是小学阶段涉及的面积公式、体积公式、单位换算关系和运算定律的相关内容。
空间几何体的体积与面积的全部公式

空间⼏何体的体积与⾯积的全部公式空间⼏何体的体积与⾯积的全bai部公式:1、圆柱体(duR为圆柱体上下底圆zhi半径,h为圆柱体⾼)S=2πdaoR²+2πRhV=πR²h2、圆锥体(r为圆锥体低圆半径,h为其⾼)S=πR²+πR[(h²+R²)的平⽅根]V=πR²h/33、正⽅体(a为边长)S=6a²V=a³4、长⽅体(a为长,b为宽,c为⾼)S=2(ab+ac+bc)V=abc5、棱柱(S为底⾯积,h为⾼)V=Sh6、棱锥(S为底⾯积,h为⾼)V=Sh/37、棱台(S1和S2分别为上、下底⾯积,h为⾼)V=h[S1+S2+(S1S2)^1/2]/38、圆柱(r为底半径,h为⾼,C为底⾯周长,S底为底⾯积,S侧为侧⾯积,S表为表⾯积)C=2πr,S底=πr²,S侧=ChS表=Ch+2S底V=S底h=πr²h9、圆台(r为上底半径,R为下底半径,h为⾼)S= πR²+πrl+πRl+πr²V=πh(R²+Rr+r²)/310、球(r为半径,d为直径)S=4πr²V=4/3πr^3=πd^3/6扩展资料:巧记空间⼏何体中的⾯积和体积公式的⽅法:1. ⾯积问题:空间⼏何体的⾯积主要分为两类:侧⾯积和表⾯积,其中的重点是旋转体的侧⾯积公式。
对于多⾯体的⾯积,其各个⾯都是多边形,这个在⼩学阶段就研究过了。
其中,只需要记住圆台的侧⾯积公式就够了。
将圆台侧⾯打开,是⼀个扇环,很像⼀个梯形。
所以圆台的侧⾯积就按照梯形来进⾏计算,就很容易理解。
如下图所⽰:圆台侧⾯积公式对于圆柱和圆锥的侧⾯积公式,不需要单独去记忆,只需要将其看成⼀个特殊的圆台就⾏了。
圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。
2. 体积问题:按照上⾯的思路,把柱体和椎体看成⼀个特殊的台体,因此也只需要记住⼀个台体的体积公式就可以啦。
常用面积体积公式大全

常用面积体积公式大全在日常生活和学习中,我们经常会遇到需要计算面积和体积的问题。
掌握常用的面积和体积公式可以帮助我们更快、更准确地解决这些问题。
下面是一些常见的面积和体积公式:1.矩形的面积公式:矩形的面积=长×宽2.正方形的面积公式:正方形的面积=边长×边长3.三角形的面积公式:三角形的面积=底边长×高÷24.梯形的面积公式:梯形的面积=(上底+下底)×高÷25.平行四边形的面积公式:平行四边形的面积=底边长×高6.圆的面积公式:圆的面积=π×半径×半径7.正圆锥的体积公式:正圆锥的体积=圆锥的底面积×高÷3=π×半径×半径×高÷38.球体的体积公式:球体的体积=4/3×圆的面积×半径9.直角梯形的体积公式:直角梯形的体积=(上面积+下面积+上底×下底)×高÷310.圆柱体的体积公式:圆柱体的体积=圆的面积×高=π×半径×半径×高11.弧长公式:弧长=θ×半径其中,θ为弧度(以弧长所对的圆心角所对应的弧长)12.扇形面积公式:扇形的面积=θ×π×半径×半径÷360°其中,θ为弧度(以弧长所对的圆心角所对应的弧度)13.椭圆的面积公式:椭圆的面积=π×长轴×短轴14.菱形的面积公式:菱形的面积=对角线1×对角线2÷215.立方体的体积公式:立方体的体积=边长×边长×边长16.正方体的表面积公式:正方体的表面积=6×边长×边长17.圆柱体的侧面积公式:圆柱体的侧面积=π×直径×高18.圆锥的侧面积公式:圆锥的侧面积=π×半径×斜高19.球体的表面积公式:球体的表面积=4×π×半径×半径20.圆锥的全面积公式:圆锥的全面积=圆锥的侧面积+圆锥的底面积通过掌握上述面积和体积公式,我们可以在实际问题中快速准确地进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式大全
一、平面图形
1、三角形
面积:S=ah/2
(2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)
S=√[p(p-a)(p-b)(p-c)]
=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
(3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC
(4).设三角形三边分别为a、b、c,内切圆半径为r
S=(a+b+c)r/2
(5).设三角形三边分别为a、b、c,外接圆半径为R
S=abc/4R
(6).根据三角函数求面积:
S= absinC/2 a/sinA=b/sinB=c/sinC=2R
注:其中R为外切圆半径。
周长:l=a+b+c
2、圆
面积:S=π*R^2
=π*D^2/4
= l^2/4π(D:直径,l:周长)
周长:l=2πR
=πD
3、扇形
面积:S=nπ*R^2/360
=aR^2 (n:为扇形的圆心角,a:扇形的圆心角弧度制)
周长:l=nπR/180+2R
=aR+2R
4、椭圆
面积:S=abπ
5、正方形
面积:S=a^2
周长:l=4a
6、长方形
面积:S=ab
周长:l=2(a+b)
7、平行四边形
面积:S=ah
=absinx(a:为底,h:为高,b:是a的邻边,x:是a、b边的夹角) 周长:l=2(a+b)
8、菱形
适用于平行四边形的计算公式另还有:
面积:S=ab (a、b为两对角线的长)
周长:l=4x (x为边长)
9、梯形
面积:S=(a+b)h/2 (a,b 为上下底,h 为高)
等腰梯形面积:S=csinA(a+b)/2 (c 为腰,A 是锐角底角)
10、圆环
面积:S=(R^2-r^2)π(R 外圆半径,r 内圆半径)
11、弧与弓形
弧长:l=nπR/180=aR(n:为弧所对的圆心角,a:弧度制)
弓形面积:
i,圆上割下的弓形
(1)当弓形弧是劣弧时,S弓形=S扇形-S三角形;
(2)当弓形弧是优弧时,S弓形=S扇形+S三角形.
ii,抛物弓形
以割线为底,以平行于底的切线的切点为顶点的内接三角形的3/4
二、立体图形
1、球表面积:S=4*π*R^2
体积:V=4πR^3/3
2、正方体表面积:S=6a^2
体积:V=a^3
3、长方体表面积:S=2(ab+bc+ac)
体积:V=abc
4、棱柱体积:V=Sh (S:为底面积,h:高)
6、圆柱表面积:S=2πRh+πR^2 (R:底面圆的半径,h:侧面高)
体积:V=Sh (S:为底面积,h:高)
=πR^2 h
7、圆锥、棱锥
圆锥的表面积:S=πRh+πR^2(R:底面圆的半径,h:侧面长)
圆锥、棱锥的体积:V=Sh/3 (S:为底面积,h:高)
8、棱台
设棱台的上、下底面面积分别为S1、S2,高为h,
体积:V=(1/3)[S1+√(S1S2)+S2] ×h(√表示平方根)
9、圆台体积:V=[S+S′+√(SS′)]h÷3=πh(R^2+Rr+r^2)/3
(-上底半径R-下底半径h-高)。