第2章变压器n资料

合集下载

第2章 变压器的运行原理和特性

第2章 变压器的运行原理和特性
16

E U 20 2
Y,d接线 D,y接线
U 1N k 3U 2 N
k
3U1N U2N
由于 R m R1 , X m X 1 ,所以有时忽略漏阻抗,空载等效电路只是一 个Z m元件的电路。在 U1一定的情况下,I 0大小取决于Z m的大小。从运行角度 讲,希望 I 0 越小越好,所以变压器常采用高导磁材料,增大 Z m,减小 I 0 , 提高运行效率和功率因数。
使

1 与 I 0成线性关系; 1)性质上: 0 与 I 0 成非线性关系;
– 变压器各电磁量正方向
• 由于变压器中各个电磁量的大小和方向都随时间以 电源频率交变的,为了用代数式确切的表达这些量 的瞬时值,必须选定各电磁量的正方向,才能列式 子。 • 当某一时刻某一电磁量的瞬时值为正时,说明它与 实际方向一致; 当某一时刻某一电磁量的瞬时值为负时,说明它与 实际方向相反。 • 注:正方向是人为规定的有任选性,而各电磁量的 实际方向则由电磁定律决定。

(2)二次侧电动势平衡方程
U1
I 0
0
) (I 2

E U 20 2
(3)变比
U 1
U2
E 1
使
E 1
1
E 2
U 20
u2

对三相变压器,变比为一、二次侧的相电动势之比,近似为 额定相电压之比,具体为 Y,d接线
U1N k 3U 2 N
8

22

F F F 1 2 0 N I 或 N1 I 1 2 2 N1 I 0 N I I ( 2 ) I I ( 2 ) I I 用电流形式表示 I 2 0 0 1L 1 0 N1 k

第二章 变压器的运行原理

第二章 变压器的运行原理
答:变压器空载运行时也需要从电网吸收电功率,以供给变压器本身功 率损耗,它转化成热能消耗在周围介质中。小负荷用户使用大容量变压器时, 在经济、技术两方面都不合理。对电网来说,由于变压器容量大,励磁电流 较大,而负荷小,电流负载分量小,即有功分量小,使电网功率因数降低, 输送有功功率能力下降;对用户来说投资增大,空载损耗也较大,变压器效 率低。
Electric Machinery
本章节重点和难点: 重点: (1)变压器空载运行时磁动势、电动势平衡关系,等值电路和相 量图; (2)变压器负载运行时磁动势、电动势平衡关系,等值电路和相 量图; (3)绕组折算前后的电磁关系; (4)变压器空载实验和短路实验,变压器各参数的物理意义; (5)变压器的运行特性。 难点: (1)变压器绕组折算的概念和方法; (2)变压器的等值电路和相量图; (3)励磁阻抗Zm与漏阻抗Z1的区别; (4)励磁电流与铁芯饱和程度的关系; (5)参数测定、标么值。
空载损耗约占额定容量的(0.2~1)%,随 容量的增大而减小。这一数值并不大,但因为 电力变压器在电力系统中用量很大,且常年接 在电网上,因而减少空载损耗具有重要的经济 意义。工程上为减少空载损耗,改进设计结构 的方向是采用优质铁磁材料:优质硅钢片、激 光化硅钢片或应用非晶态合金。
Electric Machinery
漏电动势 : E1
2 2
fN 1 1
2 fN 1 1
Electric Machinery
E 1 j 2 f

N 1 1


I 0 j 2 fL 1 I 0 j I 0 x 1



I0
x 1 2 f
N1
2
为一次侧漏抗,反映漏磁通的作用。

电机学:变压器第二章变压器的运行分析 04

电机学:变压器第二章变压器的运行分析 04

用一台副绕组匝数等于原绕组匝数的假想变压器来模拟实际变压器,假想变压器与实际变压器在物理情况上是等效的。

2)3) 有功和无功损耗不变。

2I实际上的二次侧绕组各物理量称为实际值或折合前的值。

折合后,二次侧各物理量的值称为其折合到一次绕组的折合值。

当把副边各物理量归算到原边时,凡是单位为伏的物理量(电动势、电压等)的归算值等于其原来的数值乘以k;凡是单位为欧姆的物理量(电阻、电抗、阻抗等)的归算值等于其原来的数值乘以k2;电流的归算值等于原来数值乘以1/k。

参数意义220/110V,1R m E 0I 2I ′ U 2I简化等效电路R k 、X k 、Z k 分别称为短路电阻、短路电抗和短路阻抗,是二次侧短路时从简化等效电路一次侧端口看进去的电阻、电抗和阻抗。

R k =R 1+2R ′, X k =X 1+2X ′ Z k =R k +j X k应用基本方程式作出的相量图在理论上是有意义的,但实际应用较为困难。

因为,对已经制造好的变压器,很难用实验方法把原、副绕组的漏电抗x 1和x 2分开。

因此,在分析负载方面的问题时,常根据简化等效电路来画相量图。

短路阻抗的电压降落一个三角形ABC ,称为漏阻抗三角形。

对于给定的一台变压器,不同负载下的这个三角形,它的形状是相似的,三角形的大小与负载电流成正比。

在额定电流时三角形,叫做短路三角形。

讨论:变压器的运行分析感性负载时的简化相量图2U ′− 21I I ′−= 2ϕ 1kI r kx I j 1 1U ABC()()1111111121111210211220m2211P U I E I R jX I E I I RE I I I R I R E I I R =⎡⎤=−++⎣⎦=−+′=−−+′′=++ i i i i i()em 222222222222P E I U I R jX I U I I R ′′=′′′′′⎡⎤=++⎣⎦′′′′=+ i i i 有功功率平衡关系,无功功率平衡关系例题一台额定频率为60Hz的电力变压器,接于频率等于50Hz,电压等于变压器5/6倍额定电压的电网上运行,试分析此时变压器的磁路饱和程度、励磁电抗、励磁电流、漏电抗以及铁耗的变化趋势。

第二部分 变压器 第二章 变压器

第二部分   变压器 第二章       变压器

四、变压器铭牌: 用以标明该设备的额定数据和使用条件。 额定值:保证设备能正常工作,且能保证一
定寿命而规定的某量的限额。
1、额定容量: S N
视在功率,伏安,千伏安,兆伏安。 在稳定负载和额定使用条件下,加额定电压, 额定频率时能输出额定电流而不超过温升限值 的容量。对 三相变压器指三相容量之和。
(无功分量)
铁耗电流 IFe :产生损耗

Im I IFe
(有功分量)
附:1、磁化电流波形分析(磁化曲线) 2、激磁电流波形分析(考虑磁滞损耗) 3、向量图
3、感应电势与激磁电流的关系: 主磁通所感应的电势与产生主磁通的磁化电流的
关系为: N1i m
e1


N1
d
dt
三、变压器的结构:
器身:铁心、绕组、绝缘和出线装置; 油箱; 冷却装置; 保护装置 (一)、铁芯:磁路部分。 含硅量高的(0.35~0.5mm)厚硅钢片迭压而成。 (为减少磁滞,涡流损耗)分为铁芯柱和铁轭两部分 结构的基本形式有芯式和壳式两种。
单相心式变压器
单相壳式 变压器
(二)绕组:电路部分。 高压绕组,低压绕组

U1


I1


F1


N1 I1

E1


I0
Zm





I 2 F2 N 2 I2


E2

2 E 2
I 2R2


U2 I2 Z L
2、磁动势平衡关系: 负载时建立主磁通的磁动势为 F1 F2 空由载空时载建到立负主 载磁,通电的源磁电动压势不为变,F0主磁通基本不变,

第2章 变压器的基本作用原理与理论分析

第2章 变压器的基本作用原理与理论分析

3、油枕 4、高低压绝缘套管 5、油标` 6、起吊孔
1、油箱
2、散热管
7、铭牌
18
大型电力变压器
19
五、变压器的额定值
1 额定容量S N (kVA) : 、
指铭牌规定的额定使用条件下所能输出的视在功率。
2 额定电流I1N 和I 2 N ( A) : 、
指在额定容量下,允许长期通过的额定电流。在三相 变压器中指的是线电流
铁轭
铁芯柱
铁芯叠片
装配实物
11
铁芯各种截面
充分利用空间
提高变压器容量
减小体积。
12
㈡、绕组
变压器的电路,一般用绝缘铜线或铝线绕制而成。
按照绕组在铁芯中的排列方法分为:铁芯式和铁壳式两类 按照变压器绕组的基本形式分为:同芯式和交叠式两种.
1、铁芯式:
(1)、每个铁芯柱上都套有
高压绕组和低乐绕组。为了绝
3 额定电压U1N 和U 2 N (kV ) : 、
指长期运行时所能承受的工作电压( 线电压)
U1N是指加在一次侧的额定 电压,U 2 N 是指一次侧加 U1N时二次的开路电压对三相变压器指的是线 . 电压.
20
三者关系:
单相 : S 三相 : S
N N
U 1 N I1 N U 2 N I 2 N 3U1N I1N 3U 2 N I 2 N
同理,二次侧感应电动势也有同样的结论。
则:
e2 N 2 d 0 2fN 2 m sin(t 90 0 ) E2 m sin(t 90 0 ) dt
有效值: E2 4.44 fN2m
相量:
E2 j 4.44 fN2m
25
⒉ E1﹑E2在时间相位上滞后于磁通 0 900. 其波形图和相量图如图2—8所示

第2章 变压器的工作原理和运行分析

第2章 变压器的工作原理和运行分析

SN SN ,I 2 N 3U 1 N 3U 2 N
注意!对于三相系统,额定值都是指线间值。
第二节 变压器空载运行
空载:一次侧绕组接到电源,二次侧绕组开路。 一、电磁现象
u1
Φm
i0
Φ 1σ
e1 e1σ
N1
N2
e2
u20
i



二、参考方向的规定
e
i i

e

e
三、变压原理、电压变比
对于变压器的原边回路,根据电路理论有:
u1 i0 r1 e1 e1
空载时 i0r1 和 e1σ 都很小,如略去不 计,则 u1 = - e1 。设外加电压 u1 按 正弦规律变化,则 e1 、Φ 和e2 也都 按正弦规律变化。 设主磁通 m sin t ,则:
u1
Φm
u1
Φm
e1
e2
ωt 0 180° 360°
现在的问题是,要产生上述大小的主磁通 Φm ,需 要多大(什么样)的激磁电流 Im ?
励磁电流的大小和波形受磁路饱和、磁滞及涡 流的影响。
1、磁路饱和对励磁电流的影响
mm mm
i0 tt
00
i0i0 tt
00
i0 i0
tt
tt
磁路不饱和时,i0 ∝φ,其波形为正弦波。
磁路饱和时,i0与φ 不成线性关系,φ越大,磁路 越饱和,i0/φ比值越大,励磁电流的波形为尖顶波。
六、漏抗 漏电势的电路模型与励磁特性的电路模型类似, 只是漏磁通所经路径主要为空气,磁阻大,磁通量 小,磁路不饱和,因此可以忽略漏磁路的铁耗,即 漏电势的电路模型中的等效电阻为零,即漏电势

第02章_变压器的基本理论

第02章_变压器的基本理论
短路试验时电流为额定电流短路损耗包括额定铜损耗和短路时的铁损耗由于短路电压很低磁4通很小短路时的铁损耗远远小于额定铜损耗可忽略所以短路损耗可看作额定负载时的铜损耗
第 2 章 思考题与习题参考答案
2.1 试述变压器空载和负载运行时的电磁过程。
,建立磁动势 F ,由其产生主磁通 Φ 和 答:空载时,原边接交流电源,原绕组中流过交流电流 I 0 0 0
负载: R L = 3Ω , X L = 4Ω 。分别用 T 形等效电路、近似等效电路和简化等效电路计算 I 1 、 I 0 、 I 2 、
U 2 ,并比较三次计算的结果。
解:(1)用 T 形等效电路计算 根据已知参数可得: k =
U 1N 380 = = 1.7273 U 2 N 220
′ = k 2 R2 = 1.7273 2 × 0.035 = 0.104Ω R2 ′ = k 2 RL = 1.7273 2 × 3 = 8.951Ω RL
2.11 试说明变压器等效电路中各参数的物理意义,这些参数是否为常数?
′ 分别为副边一相绕组的电阻和漏电 ′和 X2 答: R1 和 X 1 分别为原边一相绕组的电阻和漏电抗, R2
′ 的大小分别反映了原、副绕组漏磁通的大小。 Rm 是 抗的折算值,上述四个参数为常数,其中 X 1 、 X 2
反映铁心损耗的等效电阻,称为励磁电阻, X m 是反映主磁通大小的电抗,称为励磁电抗,这两个参数 也是一相参数,当电源电压不变时, Rm 和 X m 近似为常数。 2.12 利用 T 形等效电路进行实际问题计算时,算出的一次和二次侧电压、电流、损耗、功率是否 均为实际值,为什么? 答: 一次各物理量数值均为实际值,二次电压、电流是折算值,二次损耗、功率是实际值。因为对 二次绕组进行折算时,是以等效为原则,其中,折算前、后的二次侧损耗、功率是保持不变的。 2.13 变压器空载实验一般在哪侧进行?将电源加在低压侧或高压侧所测得的空载电流、空载电流 百分值、空载功率、励磁阻抗是否相等? 答:空载实验一般在低压侧进行。空载电流不等,高压侧空载电流是低压侧的 1 / k ;空载电流百 分值相等;空载功率相等;励磁阻抗不等,高压侧励磁阻抗是低压侧的 k 倍。 2.14 变压器短路实验一般在哪侧进行?将电源加在低压侧或高压侧所测得的短路电压、短路电压 百分值、短路功率、短路阻抗是否相等? 答:短路实验一般在高压侧进行。短路电压不等,高压侧短路电压是低压侧的 k 倍;短路电压百分 值相等;短路功率相等;短路阻抗不等,高压侧短路阻抗是低压侧的 k 倍。 2.15 为什么可以把变压器的空载损耗看作铁耗?短路损耗看作额定负载时的铜耗? 答:空载试验时外加额定电压,空载损耗包括额定铁损耗和空载铜损耗,由于空载电流很小,空载 铜损耗远远小于额定铁损耗,可忽略,所以空载损耗可看作铁损耗。 短路试验时电流为额定电流,短路损耗包括额定铜损耗和短路时的铁损耗,由于短路电压很低,磁

第二章 变压器 电机学原理

第二章 变压器 电机学原理

E 10 jL 1 I 0 jI 0 X 1 作为I 0的电抗压降, 1 2fLσ1为漏磁电抗 X
C、原绕组回路的电压方程:
u1 e10 e 10 i 0 R1
U1 I 0 R 1 (-E 10 ) (-E10 ) I 0 (R1 jX 1 ) (-E10 ) -E10 U1 E10 4.44fN 0 m 1
23

i1
i2
e1
u1
e
N1
1
2
e2 u e 2
Z
N2
原边的电压方程:
u1 e1 e 1 i1R1
副边的电压方程:

m sin t d 2fN1 m sin(t 900 ) E1m sin(t 900 ) 则 e1 N1 dt d e2 N 2 2fN 2 m sin(t 900 ) E 2 m sin(t 900 ) dt 有效值 E1 4.44 fN1 m 有效值 E2 4.44 fN 2 m
U1 I1 (R1 jX 1 ) (-E1 ) -E1 4.44fN m 1
U1为外加电源,空载与负载均相同,所以 4.44fN 0m 4.44fN m 1 1

0m m 由于磁通近似相等,磁阻不变,所以空载与负载磁动势近似相等。 i 0 N 1 R m 0 i1 N1 i 2 N 2 R m
当原边电压和负载功率因数一 定时, 副边电压随负载电流 的变化关系曲线 即U 2 f(I2 ), 称为为变压器的外特 . , 性
RS
I1
I2
RS ~ ES
~ E
S
R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
忽略 Z1 和 Z2
集美大学信息工程学院
2.1 变压器的工作原理
(2) 电流变换 i2 的大小由什么决定? i1 的大小由什么决定? I2 由 |ZL | 决定; I1 取决于 I2 。 N1i1 I1 随 I2 变化的原因: ↓ ① 能量守恒。 N1i0 →Φ ② 从电磁关系分析: ↑ U1N Φ m≈ = 常数 N2i2 4.44 f N1 磁通势平衡方程: N1I1 + N2I2 = N1I0 当:I2 = I2N ,I1 = I1N(满载) 在满载或接近满载时, I0 可忽略不计。
集美大学信息工程学院
2.1 变压器的工作原理
N1I1 + N2I2 = 0 大小关系: I1 N2 I2 = N1
N2 I2 I 1 =- N1 1 = k ——电流变换。
i2
相位关系: I1与 I2 相位相反。
i1 I2 具有去磁性质: + e I2 削弱Φm 1 u1 e 1 →Φm 不变 - → I1 增加 →以维持Φm 不变。 因此 I2↑→I1↑ 。
2.1 变压器的工作原理
1. 单相变压器
i1 + e1 u1 e1

一次 绕组
Φ
1 2
i2 + e2 ZL u 2 e2

二次 绕组1
施加:u1→i1 →N1 i1
→e1 →L1 e1 Φ e2
u2→i2 →N2 i2 →2 →e 2 →L2
集美大学信息工程学院
2.1 变压Байду номын сангаас的工作原理
U2

等 效
=
k2
U2 I2
| Ze | = k2 | ZL |
变压器的阻抗变换
集美大学信息工程学院
2.1 变压器的工作原理
【例 2.1.1】 某半导体收音机的输出需接一 只电阻为 800 的扬声器(喇叭),而目前市场 上供应的扬声器电阻只有 8 。问利用电压比为 多少的变压器才能实现这一阻抗匹配? 解: k= = Re RL 800 = 10 8
集美大学信息工程学院
2.1 变压器的工作原理
二次侧电路 E2 =-j4.44 f N2Φm U2 = E2-(R2 + jX2) I2 = E2-Z2I2 U2 = ZLI2 ※R2、X2、Z2 :二次绕组的电阻、漏电抗、漏阻抗。 忽略 Z2 ,则 U2≈E2 一、二次绕组的电动势之比称为电压比 E1 N1 U1 k= E2 = N2 ≈ U2
Φ
1
2
+ ZL u2 e2 - e2
集美大学信息工程学院
2.1 变压器的工作原理
(3) 阻抗变换 忽略 Z1、Z2 、 I0 ,则 I2 N1 U1 U2 = I1 = N2 = k U1 kU2 | Ze | = I = I2/ k 1
I1 + U1 - I1 + U1 - k2|ZL| N1 N2 |ZL| I2 +
(1) 电压变换 一次侧电路 E1 =-j4.44 f N1Φm
+ i1
U1 = -E1 + (R1 + jX1) I1 = -E1 + Z1I1
※ R1 :一次绕组电阻。
u1

- e1 +
i2 + + e2 ZL u2 - -
图形符号表示的电路图
X1 :一次绕组漏电抗。 Z1 :一次绕组漏阻抗。 忽略 Z1 ,则 U1≈-E1
电机与拖动
第2章 变压器
2.1 变压器的工作原理 2.2 变压器的基本结构 2.3 变压器的运行分析 2.4 变压器的参数测定 2.5 变压器的运行特性 2.6 三相变压器的联结组 2.7 三相变压器的并联运行 2.8 自耦变压器 2.9 三绕组变压器 2.10 仪用互感器
返回主页
第 2 章 变压器
第 2 章 变压器
2.2 变压器的基本结构
1. 主要部件
(1) 铁心 由硅钢片叠成或非晶合金制成。
奇 数 层 2 1 2 3 偶 数 层
3
4
1 4
(2) 绕组 用绝缘圆导线或扁导线绕成。 (3) 其他 外壳、油箱、油、油枕、绝缘导管等。
集美大学信息工程学院
2.2 变压器的基本结构
2. 主要种类
(1) 按用途分类
2.1 变压器的工作原理
【例 2.1.2】 某三相变压器,Y,d 联结。向某对称
三相负载供电。已知一次绕组的线电压 U1L = 66 kV, 线电流 I1L= 15.76 A;二次绕组的线电压 U2L = 10 kV, 线电流 I2L= 104 A。负载的功率因数 2 = cos2 = 0.8。 求该变压器一、二次绕组的相电压和相电流以及变压器输 出的视在功率、有功功率和无功功率。
= 1.732×10×104 kV· A = 1 800 kV· A
P2 = 3 U2L I2L cos2 = 1.732×10×104×0.8 kW = 1 441 kW Q2 = 3 U2L I2L sin2 = 1.732×10×104×0.6 kvar = 1 080.8 kvar
集美大学信息工程学院
解:(1) 一次绕组的相电压和相电流 U1L 66 U1P = = kV = 38.11 kV 3 1.732 I1P = I1L= 15.76 A (2) 二次绕组的相电压和相电流 U1P = U1L= 10 kV
集美大学信息工程学院
2.1 变压器的工作原理
I2L 104 I2P = = A = 60.05 A 3 1.732 (3) 输出的视在功率、有功功率和无功功率 S2 = 3 U2L I2L
电力变压器、电炉变压器、整流变压器、仪用变压器等。
集美大学信息工程学院
2.1 变压器的工作原理
2. 三相变压器
(1) 三相变压器的种类 三相组式变压器、三相心式变压器。
① 三相组式变压器 特点:三相之间只有电的联系,没有磁的联系。
U1 u1 V1
v1 W1
w1
U2
u2 V2
v2 W2
w2
集美大学信息工程学院
2.1 变压器的工作原理
② 三相心式变压器 特点:三相之间既有电的联系,又有磁的联系。
U1 U2 u1 u2 V1 V2 v1 v2 W1 W2 w1 w2
集美大学信息工程学院
2.1 变压器的工作原理
(2) 三相绕组的联结方式
联结方式 星形有中性线 星形无中性线 三角形 高压绕组 YN Y D 低压绕组 yn y d
GB: Y,yn、Y,d、YN,d、Y,y、YN,y
最常用的三种
集美大学信息工程学院
相关文档
最新文档