光纤位移传感器静态动态实验
光纤位移传感器实验报告

光纤位移传感器实验报告篇一:光纤位移传感器测位移特性实验实验二十六光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。
三、器件与单元:主机箱中的?15V直流稳压电源、电压表;,型光纤传感器、光纤传感器实验模板、测微头、反射面(抛光铁圆片)。
四、实验步骤:1、观察光纤结构:二根多模光纤组成Y形位移传感器。
将二根光纤尾部端面(包铁端部)对住自然光照射,观察探头端面现象,当其中一根光纤的尾部端面用不透光纸挡住时,在探头端观察面为半圆双D形结构。
2、按图安装、接线。
?安装光纤:安装光纤时,要用手抓捏两根光纤尾部的包铁部分轻轻插入光电座中,绝对不能用手抓捏光纤的黑色包皮部分进行插拔,插入时不要过分用力,以免损坏光纤座组件中光电管。
?测微头、被测体安装:调节测微头的微分筒到5mm处(测微头微分筒的0刻度与轴套5mm刻度对准)。
将测微头的安装套插入支架座安装孔内并在测微头的测杆上套上被测体(铁圆片抛光反射面),移动测微头安装套使被测体的反射面紧贴住光纤探头并拧紧安装孔的紧固螺钉。
3、将主机箱电压表的量程切换开关切换到20V档,检查接线无误后合上主机箱电源开关。
调节实验模板上的RW、使主机箱中的电压表显示为0V。
4、逆时针调动测微头的微分筒,每隔0.1mm(微分筒刻度0,10、10,20……)读取电压表显示值线性度最好区域:5、根据表26数据画出实验曲线并找出线性区域较好的范围计算灵敏度和非线性误差。
实验完毕,关闭电源。
实验二十七光电传感器测转速实验一、实验目的:了解光电转速传感器测量转速的原理及方法。
二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示,,即可得到转速,=10f。
光纤传感器的位移特性实验(精)

光纤传感器的位移特性实验
一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成Y 型光纤,探头为半圆分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦即探头,它与被测体相距X,由光源发出的光通过光纤传到端部射出后再经被测体反射回来,由另一束光纤接收反射光信号再由光电转换器转换成电压量,而光电转换器转换的电压量大小与间距X有关,因此可用于测量位移。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源±15V 、反射面。
四、实验步骤:
1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上光电变换座孔上。
其内部已和发光管D及光电转换管T 相接。
图9-1 光纤传感器安装示意图
2、将光纤实验模板输出端V 01与数显单元相连,见图9-2。
图9-2 光纤传感器位移实验接线图
3、调节测微头,使探头与反射平板轻微接触。
4、实验模板接入±15V电源,合上主控箱电源开关,调R W使数显表显示为零。
5、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表9-1。
表9-1光纤位移传感器输出电压与位移数据
6、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。
五、思考题:
光纤位移传感器测位移时对被测体的表面有些什么要求?。
光电检测实验报告

实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。
四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。
2、将光纤实验模板输出端V0与数显单元相连,见图9-2。
3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。
4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。
5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。
注:电压变化范围从0→最大→最小必须记录完整。
表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。
并认为X=4mm时为最小的0。
6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。
答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。
光纤位移传感器实验报告

光纤位移传感器实验报告光纤位移传感器实验报告篇一:光纤位移传感器测位移特性实验实验二十六光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。
三、器件与单元:主机箱中的?15V直流稳压电源、电压表;,型光纤传感器、光纤传感器实验模板、测微头、反射面(抛光铁圆片)。
四、实验步骤:1、观察光纤结构:二根多模光纤组成Y形位移传感器。
将二根光纤尾部端面(包铁端部)对住自然光照射,观察探头端面现象,当其中一根光纤的尾部端面用不透光纸挡住时,在探头端观察面为半圆双D形结构。
2、按图安装、接线。
?安装光纤:安装光纤时,要用手抓捏两根光纤尾部的包铁部分轻轻插入光电座中,绝对不能用手抓捏光纤的黑色包皮部分进行插拔,插入时不要过分用力,以免损坏光纤座组件中光电管。
?测微头、被测体安装:调节测微头的微分筒到5mm处(测微头微分筒的0刻度与轴套5mm刻度对准)。
将测微头的安装套插入支架座安装孔内并在测微头的测杆上套上被测体(铁圆片抛光反射面),移动测微头安装套使被测体的反射面紧贴住光纤探头并拧紧安装孔的紧固螺钉。
3、将主机箱电压表的量程切换开关切换到20V档,检查接线无误后合上主机箱电源开关。
调节实验模板上的RW、使主机箱中的电压表显示为0V。
4、逆时针调动测微头的微分筒,每隔0.1mm(微分筒刻度0,10、10,20……)读取电压表显示值线性度最好区域:5、根据表26数据画出实验曲线并找出线性区域较好的范围计算灵敏度和非线性误差。
实验完毕,关闭电源。
实验二十七光电传感器测转速实验一、实验目的:了解光电转速传感器测量转速的原理及方法。
二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示,,即可得到转速,=10f。
光纤位移传感器实验报告

光纤位移传感器实验报告
实验报告
光纤位移传感器实验报告
一、实验目的
本次实验旨在掌握光纤位移传感器的原理和应用,通过实验了解其测量精度和稳定性。
二、实验原理
光纤位移传感器是一种基于菲涅尔衍射原理的传感器。
其基本原理是将激光光源照射到一根光纤上,光纤的端面形成一定的折射角,使得光束沿着光纤内部进行传输,当光纤存在位移时,光束经过光纤端面的折射角发生变化,从而产生了光程差。
通过检测光程差的变化,可以测量出位移的大小。
三、实验步骤
1.按照实验要求搭建实验装置,其中包括激光光源、光路系统、待测物体、光功率检测器等。
2.调节激光光源的位置和光路系统的组成,使得激光能够正常
发出。
3.将光纤位移传感器连接到待测物体上,确保其位置不变。
4.调整光纤位移传感器上的折射角,使得检测光束经过光纤后
能够与基准光束相互衍射。
5.通过光功率检测器检测检测光束的功率变化,计算出待测物
体的位移。
四、实验结果与分析
经过实验发现,光纤位移传感器在测量位移时具有较高的精度
和稳定性。
我们通过调整折射角和光纤的长度,可以进一步提高
其测量精度和稳定性。
在实验中我们还发现,光纤位移传感器对外界环境的干扰较小,可以在恶劣的环境下正常工作。
五、实验结论
通过本次实验,我们成功地掌握了光纤位移传感器的原理和应用,实验结果表明,光纤位移传感器具有较高的测量精度和稳定性,在工业生产和科学研究中具有广泛的应用前景。
光纤传感器位移特性实验

光纤传感器位移特性实验报告一、实验目的:了解反射式光纤位移传感器的原理与应用。
二、实验仪器:光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。
三、实验原理:反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。
探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。
接通电源预热数分钟。
2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。
3.实验模块从主控台接入±15V电源,打开实验台电源。
4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。
5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。
五、数据记录与分析1、数据记录表格X(mm)0.10.20.30.40.50.60.70.80.9 1.0Uo(V)0.080.180.280.400.520.640.750.870.97 1.06光纤传感器位移特性曲线X/mmU o /VX /mmU o /V光线位移传感器特性曲线2、用matlab 绘制的X -Uo 曲线图3、由上图知光纤传感器大致的线性范围为:0.3mm -0.9mm4、灵敏度和非线性误差的计算拟合直线y = p1*x + p2 p1 = 1.1194 p2 = -0.040667 由图读出Δm=0.0376 故 灵敏度S =ΔU/ΔX =p1=1.1194v/mm非线性误差δf =(0.0376/1.06) ×100%=3.54%六、实验报告1.根据所得的实验数据,确定光纤位移传感器大致的线性范围,并给出其灵敏度和非线性误差。
光纤测位移实验报告

一、实验目的1. 理解光纤位移传感器的原理和结构。
2. 掌握光纤位移传感器的操作方法和数据处理技巧。
3. 通过实验验证光纤位移传感器的测量精度和稳定性。
二、实验原理光纤位移传感器是利用光纤的传输特性,将光信号作为信息载体,通过测量光信号的强度、相位、频率或偏振态等变化,实现对位移的测量。
本实验采用的光纤位移传感器为反射式光纤位移传感器,其工作原理如下:1. 激光光源发出的光经光纤传输到传感器探头。
2. 光探头将光束照射到被测物体表面,部分光被反射回来。
3. 反射光经光纤传输至光电转换器,将光信号转换为电信号。
4. 通过分析电信号的变化,可以计算出被测物体的位移。
三、实验仪器与设备1. 光纤位移传感器一套2. 激光光源一台3. 光电转换器一台4. 测微头一台5. 数显电压表一台6. 光功率计一台7. 光纤连接器若干8. 反射面一块9. 实验台一个四、实验步骤1. 搭建实验装置:将光纤位移传感器、激光光源、光电转换器等设备连接好,确保各部件连接牢固,信号传输畅通。
2. 调整激光光源:调节激光光源的输出功率,确保光信号强度适中。
3. 设置测微头:将测微头与被测物体固定,确保测微头能够精确测量被测物体的位移。
4. 调整光纤探头:将光纤探头放置在测微头前端,确保光纤探头与被测物体表面紧密接触。
5. 数据采集:启动实验设备,观察数显电压表和光功率计的读数,记录被测物体的位移和相应的电信号变化。
6. 数据处理:根据实验数据,分析光纤位移传感器的测量精度和稳定性。
五、实验结果与分析1. 测量精度:通过多次实验,分析光纤位移传感器的测量精度。
实验结果表明,光纤位移传感器的测量精度较高,能够满足实际应用需求。
2. 稳定性:观察光纤位移传感器的输出信号,分析其稳定性。
实验结果表明,光纤位移传感器的输出信号稳定,具有良好的重复性。
3. 影响因素:分析实验过程中可能影响测量结果的因素,如光纤连接质量、环境温度等。
六、实验结论1. 光纤位移传感器是一种可靠的位移测量工具,具有测量精度高、稳定性好、抗干扰能力强等优点。
实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07(光纤传感器的位移测量及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。
学会对实验测量数据进行误差分析。
二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。
三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。
四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤位移传感器静态和动态实验
【教学目的】
1.了解光纤传输的基本原理。
2.了解反射式光纤传感器的原理、结构、性能。
3.学习用光纤传感器进行相关物理量的测量。
【教学重点】
1.反射式光纤位移传感器的结构与工作原理。
2.反射式光纤传感器的输出特性曲线。
【教学内容】
光纤传感器是以光学技术为基础,将被敏感的状态以光信号形式取出。
光信号不仅人能直接感知,而且,利用半导体二极管诸如光电二极管、雪崩光电二极管、发光二极管之类的小型而简单的元件很容易进行光电、电光转换,所以易与高度发展的电子装置匹配,这是光纤传感器的突出优点。
此外,由于光纤不仅是敏感元件而且也是一种优良的低损耗传输线,因此不必考虑测量仪器和被测物体的相对位置,从而特别适用于电子传感器等不太适用的地方。
与其它机械量相比,位移是既容易检测又容易获得高精度的检测量,所以测量中常采用将被测对象的机械量转换成位移来检测的方法。
例如将压力转换成膜的位移,将加速度转换成重物位移等;而且这种方法结构简单,所以位移传感器是机械量传感器中的基本传感器。
光纤位移传感器有强度型和干涉型两大类,本实验所用传感器为反射式强度型光纤传感器。
反射式强度型光纤传感器具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量(如位移、压力、振动、表面粗糙度等)的测量中获得成功应用。
这种位移传感器在小的测量范围内能进行高速位移测量,它具有非接触、探头小、频响高、线性度好等特点。
一、实验原理
1)光导纤维与光纤传感器的一般原理
图1光纤的基本结构
光导纤维是利用光的完全内反射原理传输光波的一种介质。
如图1所示,它是由高折射率的纤芯和包层所组成。
包层的折射率小于纤芯的折射率,直径大致为0.1mm~0.2mm。
当光线通过端面透入纤芯,在到达与包层的交界面时,由于光线的完全内反射,光线反射回纤芯层。
这样经过不断的反射,光线就能沿着纤芯向前传播。
由于外界因素(如温度、压力、电场、磁场、振动等)对光纤的作用,引起光波特性参量(如振幅、相位、偏振态等)发生变化。
因此人们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。
2)反射式位移传感器的结构原理
反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图2所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
图3所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
图2反射式位移传感器原理
图3反射式光纤位移传感器的输出特性
二、实验仪器
光纤、光电变换器、低频振荡器、电压表、支架、反射板、测微头、测速电机、电压/频率表、双踪示波器。
三、实验内容
1.连接、调节装置。
在仪器支架上安装光纤探头,探头对准镀铬反射板,调节光纤探头端面与反射板平行,距离适中;将光纤传感器光电转换装置与光电变换器相连接,接通电源预热数分钟。
2.作反射式光纤传感器输出特性曲线。
转动测微头,使反射板与光纤探头端面紧密接触,此时光纤变换器输出电压为零。
然后旋动测微器,使反射板离开探头,每隔0.100mm读出一次输出电压U值,填入数据表,作U~x曲线,求得线性范围Δx和灵敏度S=ΔU/Δx。
3.测量微小振动的振幅与频率
(1) 了解激振线圈在实验仪上所在位置及激振线圈的符号。
(2) 接入低通滤波器和示波器,如图4接线。
4
(3) 将测微头与振动台面脱离,测微头远离振动台。
将光纤探头与振动台反射纸的距离调整在光纤传感器工作点即线性段中点上(利用静态特性实验中得到的特性曲线,选择线性中点的距离为工作点,目测振动台上的反射纸与光纤探头端面之间的相对距离即线性区ΔX 的中点)。
(4) 将低频振荡信号接入振动台的激振线圈上,开启主、副电源,调节低频振荡器的频
(5) 保持低频振荡器输出的Vp-p幅值不变,改变低频振荡器的频率(用示波器观察低频振荡器输出的Vp-p值为一定值,在改变频率的同时如幅值发生变化则调整幅度旋钮使
Vp-p相同),将频率和示波器上所测的峰峰值Vp-p(此时的峰峰值Vp-p是指经低通后的Vp-p
(6) 关闭主、副电源,把所有旋钮复原到原始最小位置。
4.测量电机转速。
(1) 了解电机控制,小电机(小电机端面上贴有两张反射纸)在实验仪上所在的位置,小电机在振动台的左边。
(2) 按图5接线,将差动放大器的增益置最大,F/V表的切换开关置2V,开启主、副电源。
图5
(3) 将光纤探头移至电机上方对准电机上的反光纸,调节光纤传感器的高度,使电压表显示最大。
再用手稍微转动电机,让反光面避开光纤探头。
调节差动放大器的调零,使电压表显示接近零。
(4) 旋动电机控制电位器,使电机运转。
(5) 频率/转速表置频率档、显示频率,置转速档可显示转速,也可用示波器观察F0输出端的转速脉冲信号。
(6) 根据脉冲信号的频率f及电机上反光片的数目p换算出此时的电机转速n=60f/p。
(7) 实验完毕关闭主、副电源,拆除接线,把
四、注意事项
1.电机叶片转动时VO输出电压峰值之差是比较小的,而且要特别注意背景光的影响。
2.光纤探头在电机叶片上方安装后须用手转动叶片确认无碰擦后方可开启电机,否则极易擦伤光纤端面。
【思考题】
1.如何利用光纤传感器位移测试的原理,设计一个光纤传感器压力测试单元?
提示:压力致使物体产生形变
2.能否根据光纤传感器位移测试的原理做一个光纤测温实验装置?
提示:将器件在温度场中感受到的温度变化量转化为光纤探头反射面间距变化。