传统ES打靶基因敲除敲入小鼠技能
传统ES打靶基因敲除敲入小鼠技能

传统ES打靶基因敲除敲入小鼠技能传统ES 打靶基因敲除/敲入小鼠技术技术原理传统的基因打靶技术制备基因敲除(KO )/敲入(KI )基因打靶技术是建立在DNA同源重组与胚胎干细胞等技术基础上的分子生物学技术。
同源重组是指当外源DNA 片段与宿主基因组片段同源性高时,同源DNA 区部分可与宿主DNA 的相应片段发生交换(即同源重组)。
基因打靶就是通过同源重组技术将外源基因定点整合入靶细胞基因组上某一确定的位点,以达到定点修饰改造染色体上某一基因的目的。
基因打靶技术目前已被广泛认为是一种理想的特定修饰与改造生物体遗传物质的最佳方法。
尤其是条件性和诱导性基因打靶系统的建立,使得对基因在时间和空间上的靶位修饰更加明确、效果更加精确可靠,该技术的发展已经为发育生物学、分子遗传学、免疫学及医学等学科提供了一个全新的、强有力的研究和治疗手段,并已显示出巨大的应用前景及商业价值。
服务流程和周期、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。
在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。
管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。
线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。
、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。
基因敲除小鼠(Knockoutmice)制备技术方法

基因敲除小鼠(Knockoutmice)制备技术方法基因敲除小鼠,人们使用复杂的方法使小鼠体内的某一个基因不表达,从而使小鼠呈现这个基因缺失的状态,可用于研究这个基因的功能。
但如果某个基因功能特别重要,这个基因缺失可能具有胚胎致死性,那我们就无法得到这种基因敲除的小鼠了,于是人们发明了条件性基因敲除技术。
这一技术可以实现在特定的时间、特定的细胞或组织内使某个基因沉默。
方法是首先在目的基因(就是打算敲除的那个基因)的两侧分别插入一段名为LoxP的DNA序列(LoxP序列是一段34bp的DNA序列,两端的13个碱基为回文序列,中间的8个碱基决定LoxP的方向。
然后我们需要用到一种带有Cre酶的转基因小鼠了。
Cre重组酶于1981年从P1噬菌体中发现,属于λ Int酶超基因家族。
Cre重组酶基因编码区序列全长1029bp(EMBL数据库登录号X03453),编码38kDa蛋白质。
是一种位点特异性重组酶,能介导两个LoxP位点(序列)之间的特异性重组,使LoxP位点间的基因序列被删除或重组。
LoxP(locus of X-over P1)序列来源于P1噬菌体,是有两个13bp反向重复序列和中间间隔的8bp序列共同组成,8bp的间隔序列同时也确定了LoxP的方向。
Cre 在催化DNA链交换过程中与DNA共价结合,13bp的反向重复序列是Cre酶的结合域。
其序列如下:5' - ATAACTTCGTATA - ATGTATGC - TATACGAAGTTAT - 3'3' - TATTGAAGCATAT - TACATACG - ATATGCTTCAATA - 5'Cre-LoxP系统的特性Cre重组酶介导两个LoxP位点间的重组是一个动态、可逆的过程,可以分成三种情况:1、如果两个LoxP位点位于一条DNA链上,且方向相同,Cre重组酶能有效切除两个LoxP位点间的序列;2、如果两个LoxP位点位于一条DNA链上,但方向相反,Cre重组酶能导致两个LoxP位点间的序列倒位;3、如果两个LoxP位点分别位于两条不同的DNA链或染色体上,Cre酶能介导两条DNA链的交换或染色体易位。
Knockout(基因敲除) - ES细胞囊胚显微注射

ES细胞囊胚显微注射技术原理囊胚。
将获得的嵌合体小鼠和野生型小鼠交配,以确定嵌合体小鼠的生殖系传递能力,一般情况下,大约有一半左右的嵌合体小鼠具有生殖系传递能力品系选择囊胚品系:C57BL/6×C57BL/6这是目前制备基因敲除鼠最常用品系,也是成功率最高的一敲除鼠需要转换成C57等品系JM8A3(derived from C57BL/6N mice, Coat Color: Agouti囊胚获取2.5 d 培养到3.5 d 囊胚期 3.5 d 囊胚期ES 细胞打靶和筛选1.同源重组臂构建:两侧同源臂之和不小于5 kb, 单侧不最好一长一短是正筛选基因(neo),在长3.保持ES 细胞的分化全能性:1.打靶载体转染ES 细胞:2.电转后的ES 细胞接种到性的细胞克隆3.具有抗性的细胞克隆大多的结果,只有及少部分发服务描述注射ES细胞制备1. 胚胎干细胞在显微注射前必需通过MAP检测,无结果2. 早代数、培养在滋养层上的胚胎干细胞更易于产3.用胰蛋白酶处理胚胎干细胞使细胞呈单细胞状态,ES注射后代小鼠的鉴定传统上最广泛利用的胚胎干细胞系来自129-亚系,具有浅有黑色的毛。
因此,所获得的嵌合体小鼠毛具有黑色和棕由于注射的胚胎干细胞(129)是XY基因型,虽然所获生殖系的传递,这样所获得的嵌合体小鼠将大部分是雄性1.对于首建者小鼠:通常为杂合子,可以通过与野生型小鼠交配,获得纯合转基因小鼠获得该品系的转基因小鼠获取到优良的基因敲除品系。
建系时的鉴定方法除了基表型及经验等方法进行鉴定,如有毛色差异的嵌合体如有生殖系传递的能力;通常情况下,具有低比列的来自ES细胞毛色的嵌合体是不贡献给生殖系的,一般都把它ES注射一些进展The information come from university of california.irvienJM8囊胚注射JM8A3囊胚注射定点原核显微注射谢谢!!!。
基因敲除小鼠的实验流程

基因敲除小鼠的实验流程
一、前期准备
1、检索标记基因:采用全基因组测序技术或大规模基因组关联分析法筛选出敲除对研究有重要作用的基因;
2、设计敲除构建:根据筛选出的基因特异性序列,对基因进行深入分析,结合已有研究成果,根据基因的功能和结构确定可有效敲除的基因结构模型;
3、制备修饰质粒:根据设计模型,制备适当的质粒,使其具有足够的重组能力和具有全套的特异性对象;
4、选择载体:选择合适的载体(含有敲除的质粒),使敲除的基因更容易被载入小鼠细胞中进行修饰;
二、基因敲除实验
1、小鼠胚胎动物模型:小鼠胚胎是敲除小鼠研究的传统动物模型,采用小鼠母体体外受精,利用载体质粒将敲除基因引入胚胎,敲除的基因将被遗传给后代小鼠;
2、小鼠嵌合体模型:采用基因修饰技术将敲除基因嵌入小鼠细胞的质粒,多功能的抗体定位蛋白可以用来将质粒载入小鼠细胞,利用抗体定位系统,将修饰的嵌入小鼠胚胎,诱导而成嵌合体,使敲除的基因能够传递给后代;
3、选择敲除后的小鼠:将敲除实验的小鼠孵化。
基因敲除小鼠的制作方法

一、常规基因敲除鼠( Conventional Knockout )常规基因敲除是通过基因打靶,把需要敲除的基因的几个重要的外显子或者功能区域用 Neo Cassette 替换掉。
这样的小鼠其全身所有的组织和细胞中都不表达该基因产物。
此类基因敲除鼠一般用于研究某个基因在对小鼠全身生理病理的影响,而且这个基因没有胚胎致死性。
二、条件性基因敲除小鼠( Conditional Knockout )条件性基因敲除小鼠是通过基因打靶,把两个 loxP 位点放到目的基因一个或几个重要的外显子的两边。
该小鼠和表达 Cre 酶小鼠杂交之前,其目的基因表达完全正常。
当和组织特异性表达 Cre 酶的小鼠进行杂交后,可以在特定的组织或细胞中敲除该基因,而该基因在其他组织或细胞表达正常。
条件性基因敲除鼠适用范围为:( 1 )该基因有胚胎致死性;( 2 )用于研究该基因在特定的组织或细胞中的生理病理功能。
三、基因敲入小鼠( Knockin )基因敲入小鼠是通过基因打靶,把目的基因序列敲入到小鼠的相应基因位点,使用小鼠的表达调控元件指导目的基因表达。
此类基因敲入鼠一般用于药物的筛选,信号通路的研究等。
一、 ZFN 技术制作基因敲除鼠ZFN 能够识别并结合指定的基因序列位点,并高效精确地切断。
随后细胞利用天然的DNA 修复过程来实现 DNA 的插入、删除和修改,这样研究人员就能够随心所欲地进行基因组编辑。
这在过去是无法想象的,传统的基因敲除技术依赖细胞内自然发生的同源重组,其效率只有百万分之一,而 ZFN 的基因敲除效率能达到 10% 。
利用这些技术进行小鼠基因的定点敲除和敲入,可以把时间从一年缩短到几个月。
这项技术中设计特异性的 ZFN 是最关键的环节,目前研究者采用计算生物学方法设计高特异性的 ZFN,但 ZFN的脱靶( off target ),也就是把不该切的地方切了的问题仍是一个挑战。
也正因为这个原因,利用 ZFN 技术进行小鼠的基因修饰还无法完全取代传统技术。
基因敲除小鼠技术共9页word资料

转基因、基因敲入/敲除动物技术已经成为现代生命科学基础研究和药物研发领域不可或缺的重要技术,该技术从上世纪七八十年代诞生以来,已有近四十年的历史,经典技术如DNA原核显微注射、胚胎干细胞显微注射技术一直以来经久不衰,并逐渐从基础研究实验室转向商业模式,成为一项高度标准化的新兴产业一、技术介绍与研究进展转基因、基因敲入/敲除动物技术已经成为现代生命科学基础研究和药物研发领域不可或缺的重要技术,该技术从上世纪七八十年代诞生以来,至今已有近四十年的历史,经典技术如DNA原核显微注射、胚胎干细胞显微注射技术一直以来经久不衰,在小鼠模型构建方面日趋完善,并且如同剪切酶和抗体等常规分子生物学试剂的制备技术一样,逐渐从基础研究实验室转向商业模式,成为一项高度标准化的新兴产业,催生了数以百计的创新药物和数以千计的优秀文章。
尽管如此,传统技术仍然存在一些难以克服的缺陷,如步骤繁琐、周期漫长、成功率低、费用高昂等,而ZFN和TALEN等新技术的出现,或有可能将这一局面彻底改变。
二、同源重组技术原理基因敲除鼠技术是上世纪80年代中后期基于DNA同源重组的原理发展起来的,Capecchi和Smithies在1987年根据同源重组(homologous recombination)的原理,首次实现了ES的外源基因的定点整合(targeted integration),这一技术称为"基因打靶"(gene targeting)或"基因敲除"(gene knockout),利用这种ES的显微注射就可以制作出基因敲出小鼠(KO Mice: knockout mice);由于这一工作,Capecchi和Smithies 于2007年与Evans分享了诺贝尔医学奖。
同源重组(homologous recombination)定义:是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。
基因敲除小鼠

基因敲除小鼠摘要基因敲除小鼠是一种常用的实验动物模型,可以帮助科学家研究基因在生物体发育和功能中的作用。
本文将介绍基因敲除小鼠的定义、用途以及常用的敲除方法,帮助读者了解基因敲除小鼠在生物学研究中的重要性和应用。
引言基因敲除小鼠是指通过干扰或删除特定基因,使小鼠体内该基因表达受到抑制或消失的实验模型。
这种模型被广泛应用于基因功能研究、疾病机制研究以及药物开发等领域。
基因敲除方法基因敲除小鼠的制备有多种方法,其中最常用的是胚胎干细胞敲除和CRISPR/Cas9系统。
胚胎干细胞敲除胚胎干细胞敲除是一种传统的基因敲除方法。
首先,从小鼠胚胎中获得胚胎干细胞,然后通过基因转染或基因突变等方式,使目标基因发生敲除突变。
最后,将敲除的胚胎干细胞注入到早期小鼠胚胎中,形成敲除小鼠。
CRISPR/Cas9系统CRISPR/Cas9系统是一种新兴的基因编辑技术,已经在基因敲除小鼠制备中得到广泛应用。
该系统利用Cas9核酸酶和特定的引导RNA来定向切割目标基因的DNA链,从而导致基因发生敲除或突变。
基因敲除小鼠的应用基因敲除小鼠在生物学研究中有着广泛的应用,以下是其中几个重要的应用领域:基因功能研究通过敲除特定基因,科学家可以观察与该基因相关的表型变化,从而揭示该基因在生物体发育和功能中的作用。
这对于揭示基因调控网络、疾病机制的研究具有重要意义。
疾病模型研究基因敲除小鼠常被用来构建各种疾病模型,如癌症、心血管疾病等。
这些模型可以模拟人类疾病的发生和发展过程,为相关疾病的研究提供了有力的工具。
药物开发基因敲除小鼠在药物开发中也起着重要的作用。
通过敲除特定基因可以观察药物对目标基因的影响,从而评估药物的疗效和安全性。
结论基因敲除小鼠是一种重要的实验动物模型,被广泛应用于基因功能研究、疾病模型研究以及药物开发等领域。
不同的敲除方法可根据具体实验需求选择使用。
基因敲除小鼠在解析基因功能、揭示疾病机制和评估药物疗效方面发挥着重要的作用,为生物学研究提供了强大的工具。
基因敲除小鼠制备的流程

基因敲除小鼠的制备流程基因敲除小鼠已经成为现代生命科学基础研究和药物研发领域不可或缺的实验动物模型,在生命科学、人类医药和健康研究领域中发挥着重要的作用。
基于胚胎干细胞的基因打靶技术、EGE技术(基于Crispr cas9技术)是当下比较火热的基因敲除小鼠制备技术。
利用这两种技术制备基因敲除小鼠的流程是什么样的?一、基于胚胎干细胞的基因打靶技术制备基因敲除小鼠的流程:1.课题设计,订购课题BAC菌;2.按照课题设计,完成打靶载体设计和构建;3.将重组载体电转到胚胎干细胞中,用G418筛选转染后的胚胎干细胞,得到阳性克隆;4.进一步通过PCR和southern blot杂交技术(基因敲除小鼠检测金标准)对上一步得到的阳性克隆进行筛选,得到稳定整合外源基因的胚胎干细胞阳性克隆;5.将胚胎干细胞阳性克隆注射到小鼠囊胚中,并植入到假孕小鼠的子宫内;6.得到嵌合鼠,并获得F1阳性杂合子小鼠。
基于胚胎干细胞的基因打靶技术制备基因敲除小鼠是目前为止唯一一个可以满足几乎所有基因组修饰要求的打靶技术,但目前只应用在小鼠的基因敲除上,而且其周期长工作量大。
二、利用EGE技术(基于Crispr cas9技术)制备基因敲除小鼠的流程1.设计构建识别靶序列的sgRNA;2.设计构建致靶基因切割的EGE系统载体质粒;3.利用百奥赛图自主开发的UCA试剂盒对sgRNA/Cas9进行活性检测;4.设计构建打靶载体;5.体外转录sgRNA/Cas9 mRNA;6.小鼠受精卵原核注射sgRNA/Cas9 mRNA和打靶载体;7.获得Fo代小鼠,利用PCR对Fo代小鼠进行基因型鉴定;8.获得F1代小鼠,利用PCR和southern blot杂交技术(基因敲除小鼠检测金标准)对F1代小鼠进行基因型鉴定。
虽然EGE技术(基于Crispr cas9技术)制备基因敲除小鼠看似比基于胚胎干细胞的基因打靶技术制备基因敲除小鼠流程繁琐,其实不然,EGE技术(基于Crispr cas9技术)系统构建简单,基因敲除/敲入效率高,速度快,可实现多基因、多物种基因敲除/敲入,最快2个月即可得到F0代阳性鼠,5个月得到F1F1代杂合子小鼠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传统ES打靶基因敲除/敲入小鼠技术
技术原理
传统的基因打靶技术制备基因敲除(KO)/敲入(KI)基因打靶技术是建立在DNA 同源重组与胚胎干细胞等技术基础上的分子生物学技术。
同源重组是指当外源DNA片段与宿主基因组片段同源性高时,同源DNA区部分可与宿主DNA的相应片段发生交换(即同源重组)。
基因打靶就是通过同源重组技术将外源基因定点整合入靶细胞基因组上某一确定的位点,以达到定点修饰改造染色体上某一基因的目的。
基因打靶技术目前已被广泛认为是一种理想的特定修饰与改造生物体遗传物质的最佳方法。
尤其是条件性和诱导性基因打靶系统的建立,使得对基因在时间和空间上的靶位修饰更加明确、效果更加精确可靠,该技术的发展已经为发育生物学、分子遗传学、免疫学及医学等学科提供了一个全新的、强有力的研究和治疗手段,并已显示出巨大的应用前景及商业价值。
服务流程和周期
小鼠品系
ES细胞品系:129 (agouti)、C57BL/6N(black)、C57BL/6(agouti)。
基因打靶常用小鼠模型
(1)完全性基因敲除小鼠(Conventional Knockout,KO)
完全性基因敲除是通过基因敲除技术,把需要敲除目的基因的所有外显子或几个重要的外显子或者功能区域敲除掉,获得全身所有的组织和细胞中都不表达该基因的小鼠模型。
应用:用于研究某个基因(要求该基因非胚胎致死性基因)对全身生理病理的功能。
(2)条件性基因敲除小鼠(Conditional Knockout,CKO)
条件性基因敲除是通过基因敲除把两个loxp位点放到目的基因一个或几个重要的外显子的两端制备出floxed小鼠,该floxed小鼠在与表达Cre酶小鼠杂交之前,该目的基因表达完全正常,而当该floxed小鼠与组织特异性表达Cre酶的小鼠进行杂交后,可以在特定的组织或细胞中敲除该基因,而该基因在其它组织或细胞表达正常。
应用:用于具有胚胎致死性目的基因的研究;用于研究基因在特定的组织或细胞中的生理病理功能;与控制Cre或Flp表达的其它诱导系统相结合,还可以对某一基因的表达同时实现在时间和空间两方面的调控。
(3)基因敲入小鼠(Knockin,KI)
基因敲入可以在目的基因位置引进特定的突变或外源基因。
比如在目的基因上引入点突变(模拟人类遗传疾病模型) ;或将报告基因(如EGFP,mRFP,mCherry,mYFP,或LacZ等)通过同源重组的方式引入目的基因的特定位点,从而可以通过报告基因的表达跟踪目标基因的表达。
通过报告基因的表达可以研究基因的表达谱。
也可以用报告基因取代小鼠本身的基因,使KO/KI同时发生。
应用:用于药物筛选相关研究;用于信号通路的研究;用于示踪的相关研究。
(4)人源化小鼠(Humanized )
人源化小鼠模型是指带有功能性的人类基因、细胞或组织的小鼠模型。
这种模型通常被用于人类疾病体内研究(in vivo study)的活体替代模型。
由于人类生理与动物生理有显著的差别,利用动物模型得到的实验结果有时不能适用到人体上。
比如,有些利用小鼠等动物模型开发的药物在人体上并没有效果。
所以,利用转基因或同源重组的方法,将人类基因“放置”在小鼠模型上所制备的人源化小鼠模型,大大提高了这类小鼠模型作为模拟某些人类疾病的有效性。
应用:在艾滋病、癌症、传染病、人类退化性疾病、血液病研究领域等都有广泛的应用;药物临床前模拟实验。
(5)KO First基因敲除小鼠
KO-First技术是通过在内含子中插入一个两边带有FRT位点的基因破坏盒来达到敲除的目的,这个破坏盒含有Splice acceptor,报告基因和Neo。
除此之外,在目的基因敲除的外显子两侧各插入两个LoxP位点。
因此得到的小鼠是目的基因敲除同时敲入报告基因与抗性基因的小鼠。
通过灵活选择Cre/LoxP重组系统或者Flp/FRT重组系统,可达到同时获得完全性敲除和条件性敲除的实验目的。
即当该小鼠与表达Cre的小鼠交配时,可获得目的基因敲除同时敲进报告基因的小鼠;当该小鼠与Flp小鼠交配时,可还原已敲除基因的表达,获得基因条件性敲除小鼠,在此基础上Cre小鼠交配又可获得目的基因敲除小鼠。