压水堆与沸水堆..

合集下载

核反应堆工作原理

核反应堆工作原理

核反应堆工作原理核反应堆是一种产生和控制核裂变反应的设备,是核能利用的关键组成部分。

它通过裂变核燃料中的核素,释放出巨大能量,用于发电或其他应用。

一、核反应堆的基本构造核反应堆主要由以下部分组成:燃料棒、冷却剂、控制杆和反应堆压力壳。

1. 燃料棒燃料棒是装载核燃料的圆柱形结构,通常由浓缩铀或钚等可裂变材料制成。

燃料棒中的裂变核素在受到中子轰击时发生核裂变,产生能量和额外的中子,维持连续的链式反应。

2. 冷却剂冷却剂是用于带走核反应堆中产生的热量的介质,可以是水、重水、液态金属或气体。

冷却剂通过循环在燃料棒附近流动,吸收燃料棒释放的热量,同时保持核反应堆的温度稳定。

3. 控制杆控制杆用于调节核反应堆中的裂变反应速率。

控制杆通常由吸收中子的材料制成,如硼化硼。

当控制杆插入核反应堆时,它吸收了部分中子,减慢了反应速率;当控制杆抬起时,反应速率增加。

4. 反应堆压力壳反应堆压力壳是一个密封的容器,用于保护核反应堆内部免受外部环境的影响,并防止辐射泄漏。

它通常由厚实的钢制成,能够承受高压和高温。

二、核反应堆的工作原理核反应堆的工作原理是基于核裂变和中子链式反应。

1. 核裂变核裂变是指重核(如铀-235)被中子轰击后分裂成两个更轻的核碎片的过程,并释放出大量的能量和中子。

裂变反应是连锁反应,每一次裂变都会释放出2-3个中子,进而引发周围其他核燃料材料的裂变。

2. 中子链式反应核反应堆中的裂变释放的中子可以引发其他核燃料的裂变,形成中子链式反应。

中子链式反应是自持续的,只要提供足够的核燃料和恰当的条件,反应就可以持续进行。

在核反应堆中,裂变反应迅速释放出大量热能,增加燃料棒温度。

冷却剂通过燃料棒的表面流过,并吸收热能,随后经过热交换装置将热能传递给工质,如水或蒸汽。

工质的温度升高,通过涡轮机驱动发电机,将热能转化为电能。

同时,控制杆的调节可以控制核反应堆的反应速率。

当控制杆插入核反应堆时,它吸收了中子,减慢了反应速率。

沸水堆与压水堆的区别

沸水堆与压水堆的区别

一.沸水堆与压水堆工作原理沸水堆(Boiling Water Reactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。

福岛核电站建于20世纪70年代,属于沸水堆。

压水堆(Pressurized Water Reactor)字面上看就是采用高压水来冷却核燃料的一种反应堆,其工作原理为:主泵将120~160个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环。

中国建成和在建共有13台核电机组,除秦山三期采用CANDU 堆技术,山东荣成采用高温气冷堆,其余均为压水堆,二.沸水堆与压水堆共同点沸水堆和压水堆都是属于轻水堆,两者都使用低浓铀燃料,采用轻水作为冷却剂和慢化剂,沸水堆系统比压水堆简单,特别是省去了蒸汽发生器;燃料都是以组件的形式在堆芯排布,组件由栅格排布的燃料栅元组成,燃料栅元由燃料芯块、包壳构成;燃料放置于压力容器当中,外面有安全壳,具备包壳、压力边界、安全壳三重防泄露屏障;沸水堆和压水堆的发电部分功能也都一样。

三.沸水堆与压水堆的主要区别沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达150个大气压,冷却水不产生沸腾。

四.压水堆相对沸水堆的优势沸水堆控制棒从堆芯底部引入,因此发生“在某些事故时控制棒应插入堆芯而因机构故障未能插入”的可能性比压水堆大,即在停堆过程中一旦丧失动力,就会停在中间某处,最终可能导致临界事故发生;而压水堆的控制棒组件安装在堆芯上部,如果出现机械或者电气故障,控制棒可以依靠重力落下,一插到底,阻断链式反应。

第五章 沸水堆

第五章 沸水堆

27
28
29
30
31
32
33
34
35
7 燃料元件尺寸大,元件棒间隙也大,堆芯直径大。 8 控制棒设计和布置的独特性
14
沸水堆的改进和发展
沸水堆的六次重大改进: 1 德累斯顿为代表的示范堆 二回路 2 奥斯特 克来格沸水堆 直接循环 3德累斯顿-2号 为代表,喷射泵 4 布朗费力 电站 单堆功率达到百万千瓦 5 齐姆核电站 安全性的改进 6 ABWR
4
堆芯结构
核燃料组件,控制棒, 中子测量探头
核燃料组件:
与压水堆的相同与区 别
分区换料
5
燃料组件结构
8×8正方形栅格 燃料棒 定位棒 流水棒
6
控制棒结构
十字形 炭化硼粉末 控制棒从堆芯底部插
入堆芯
7
燃料组件结构
8
汽水分离器和干燥器
9
喷射泵
再循环流程 功率调节
10
11
沸水堆安全壳
为容纳一回路系统破裂时 所释放出来的全部物质, 设置了安全壳称水堆一 般采用带有蒸汽降压措 施的安全壳,如图1.9 所示。抑压水池的热容 量很大,事故时能冷凝 反匝堆所放出来的蒸汽, 又能滞留放射性裂变产 物。
15
ABWR的改进
1 单堆功率达到130万千瓦,效率提高到31.6%, 经济效益明显提高
2 改进的堆芯设计 8×8替代7×7,轴向分区 3 控制棒驱动的改进 电力水力联合驱动 4 堆内设置内装式再循环泵 图5-6 5 采用钢筋混凝土安全壳
16
17
18
19
20
21
22
23
24
25
力容器厚度可以减薄,但堆内设备多, 压力壳尺寸较大。

核反应堆课后题

核反应堆课后题

核反应堆课后题第一章思考题1.压水堆为什么要在高压下运行?2.水在压水堆中起什么作用?3.压水堆与沸水堆的主要区别是什么?4.压水堆主冷却剂系统都包括哪些设备?5.一体化压水堆与分散式的压水堆相比有哪些优缺点?6.重水堆使用的核燃料富集度为什么可以比压水堆的低?7.在同样的堆功率情况下,重水堆的堆芯为什么比压水堆的大?8.气冷堆与压水堆相比有什么优缺点?9.石墨气冷堆中的百墨是起什么作用的?10.快中子堆与热中子堆相比有哪些优缺点?11.快中子堆在核能源利用方面有什么作用?12.回路式制冷堆与池式饷冷堆的主要区别是什么?13.在使用铀作为反应堆冷却剂时应注意些什么问题?14.快中子堆内使用的燃料富集度为什么要比热中子反应堆的高?第二章思考题1.简述热中子反应堆内中子的循环过程。

2.为什么热中子反应堆中通常选用轻水作慢化齐IJ?3.解释扩散长度、中子年龄的物理意义。

4.述反射层对反应堆的影响。

5.简述反应性负温度系数对反应堆运行安全的作用。

6.解释“腆坑”形成的过程。

7.什么是反应堆的燃耗深度和堆芯寿期?8.大型压水堆通常采取哪些方法控制反应性?9.简述缓发中子对反应堆的作用。

10.简述反应性小阶跃变化时反应堆内中子密度的响应。

第三章思考题1.能用于压水反应堆的易裂变同位素有哪些,它们分别是怎样生成的?2.为什么在压水堆内不直接用金属铀而要用陶瓷U02作燃料?3.简述U02的熔点和热导率随温度、辐照程度的变化情况。

4.简述U02芯块中裂变气体的产生及释放情况。

5.燃料元件的包壳有什么作用?6.对燃料包壳材料有哪些基本要求?目前常用什么材料?7.为什么错合金用作包壳时,其使用温度要限制在350℃以下?8.何谓错合金的氢脆效应,引起氢脆效应的氢来源何处?9.错合金包壳的氢脆效应有何危害,应如何减轻这种不利影响?10.什么是U02燃料芯块的肿胀现象,应采取什么防范措施?11.控制棒直径较细有什么好处?12.定位格架采用什么材料制戚,为什么?13.定位格架有何功用?14.对用作控制棒的材料有什么基本要求?15.通常用作控制棒的元素和材料有哪些?16.简单说明Ag-In-Cd控制材料的核特性。

常见的核电站堆型有哪几种

常见的核电站堆型有哪几种

常见的核电站堆型有哪几种核电站是一座或若干座利用核裂变(NuclearFission)或核聚变(NuclearFusion) 反应所释放的核能转换成热能来发电兼供热的动力设施。

其中核反应堆是核电站最主要的关键作业设备,链式裂变反应就在该设备中进行;目前,全球核电站常用的反应堆有压水堆、沸水堆、重水堆和改进型气冷堆以及快堆等。

其中压水反应堆作为最成熟、最成功的一种动力堆堆型,运用最为广泛,我国大多数核电站其反应堆都属于该类反应堆。

一、核电站工作原理核电站主要是通过将由铀、杯制成的核燃料在反应堆设备内发生裂变从而释放出大量的核能,再利用处于高压下的水将核能转化为热能,在蒸汽发生器中加热水产生蒸汽,蒸汽推动汽轮发电机发电,使机械能转变成电能。

一般来说,核电站本身的工作原理和所需要的设备条件与普通火电站发电机制大同小异,主要在于核反应堆。

二、常见的核电站堆型:1、压水堆核电站以压水堆为热源的核电站。

其工作原理主要是利用处于高压下的循环冷却水将反应堆中核燃料裂变反应释放出的大量核能转换成热能,之后加热水产生蒸汽,推动汽轮机,进而推动发电机旋转发电。

注:压水堆的水在正常工况下是处于不沸腾状态;2、沸水堆核电站以沸水堆为热源的核电站。

沸水堆和压水堆都是属于轻水堆,其工作原理相似,不同的是沸水堆采用沸腾的水将核能转换为电能,而压水堆则是利用高压下的循环冷却水;沸水堆整体系统比压水堆较为简单,省去了蒸汽发生器这一设备。

注:日本福岛核电站属于沸水堆核电站。

3、重水堆核电站以重水堆为热源的核电站。

其工作原理与压水堆、沸水堆工作原理相同,不同点在于重水堆核电站是利用重水作为作为慢化剂和冷却剂;重水堆核电站其核燃料为天然铀作燃料,相对来讲,重水堆比压水堆的燃料成本低,但用作慢化剂和冷却剂的重水则十分昂贵。

注:重水(2H20)无臭无味的液体,对人体有害的。

4、快堆核电站由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站。

压水堆与沸水堆

压水堆与沸水堆

沸水堆与压水堆的主要区别
• 沸水堆采用一个回路,压水堆有两个回路; 沸水堆由于堆芯顶部要安装汽水分离器等 设备,故控制棒需从堆芯底部向上插入, 控制棒为十字形控制棒,压水堆为棒束型 控制棒,从堆芯顶部进入堆芯;沸水堆具 有较低的运行压力(约为70个大气压), 冷却水在堆内以汽液形式存在,压水堆一 回路压力通常达150个大气压,冷却水不产 生沸腾。
7
中核集团首台百万级压水堆核电站的蒸汽发生器
我国正在运行的核电机组(除秦山三期)全部为压水堆堆型,作为一种 技术相当成熟的堆型,具有以下特点:
1.压水堆以轻水作慢化剂及冷却剂,反应堆体积小,建设周期短.造价较低。 2.压水堆采用低富集度铀作燃料,铀的浓缩技术已经过关。
3.压水堆核电厂有放射性的一回路系统与二回路系统相分开,放射性冷却剂 不会进入回路而污染汽轮机,运行、维护方便,需要处理的放射惮废气、 废水、废物量较少。

20世纪90年代,美国和欧洲核电先进国家对今 后建设的核电厂的安全、技术、经济性确定了一 系列具体的奋斗目标。各国也着手研发同时满足 这些要求的第三代压水堆。其中有代表的有法、 德合作开发的欧洲动力堆EPR和美国西屋公司研 发的AP1000。EPR提出在未来压水堆设计中采用 共同的安全方法,通过降低堆芯熔化和严重事故 概率和提高安全壳能力来提高安全性,从放射性 保护、废物处理、维修改进、减少人为失误等方 面根本改善运行条件;AP1000则以全非能动安全 系统、简化设计和布置以及模块化建造为主要特 色。
9
压水堆堆芯(reactor core)
堆芯设计满足的一般要求: 1 堆芯功率分布尽量均匀,以便堆芯有最大的功率输出 2 尽量减少堆芯内不必要的中子吸收材料,提高中子经济性
3 要有最佳的冷却剂流量分配和最小的流动阻力

HAF0201用于沸水堆、压水堆和压力管式反应堆的安全功能和部件分级

HAF0201用于沸水堆、压水堆和压力管式反应堆的安全功能和部件分级

用于沸水堆、压水堆和压力管式反应堆的安全功能和部件分级(HAF0201)(1986年10月30日国家核安全局批准发布)本导则自发布之日起实施本导则由国家核安全局负责解释1 引言《核电厂设计安全规定》(HAF0200,以下简称《规定》)制订了对陆上固定式热中子堆核电厂设计的最低安全要求。

本导则是对《规定》有关条款的说明和补充,编写本导则的目的是为划分核电厂内安全有关的构筑物、系统和部件的安全功能和部件的安全等级提供具体指导。

正确划分安全功能和部年的安全等级是正确选择和采用设计规范、标准的前提,因而本导则是《规定》的基础性导则。

在实际工作中可采用不同于本导则规定的方法和方案,但必须向国家核安全局证明所采用的方法和方案具有与本导则相等的安全水平,并不会对核电厂厂区人员和公众增加风险。

一座核电厂的合理设计要求考虑很多因素,而这些因素的综合作用决定了核电厂总的安全性和可靠性。

设计中必须考虑诸如自然现象和人为事件等与厂址有关、又能影响电厂安全运行的因素。

核电厂内有许多构筑物、系统和部件对总的安全性和可靠性也起重要作用,设计人员必须细致地予以考虑。

设计中还必须认真考虑电厂运行的各个方面,这样才能在寿期内维持高度的安全性。

设计人员可运用《规定》中提到的多种手段达到上述安全目标,其中包括对影响安全的系统、部件和构筑物采用多重性设计、多样性设计以及实体分隔。

为使安全上重要的系统、部件和构筑物达到必要的高质量,设计人员应仔细选用材料,认真制订并实行质量保证大纲,周到地设计核电厂,使其能在运行期间根据需要实施在役检查大纲,以及正确地选定规范和标准。

在核电厂设计中,应该认识到某些系统、部件和构筑物对安全的作用要比另一些系统、部件和构筑物更大。

安全重要性方面的这种分级,在设计中可用几种方法来体现。

可用来确定对安全有关的系统、部件和构筑物的分级要求的两种方法就是确认论法和概率论法。

目前国际上大都混合采用这两种方法。

在确定论法中常对那些安全上重要的、其损坏能导致重大的放射性释放事故的系统、部件和构筑物提出各种要求。

压 水 堆 与 沸 水 堆

压 水 堆 与 沸 水 堆

压水堆与沸水堆核反应堆(Nuclear Reactor)分核裂变反应堆和核聚变反应堆两类,目前投入商业使用的核反应堆都是裂变堆。

裂变堆按照慢化剂分类,可分为轻水堆、重水堆和石墨沸水反应堆。

轻水堆是目前普遍使用的堆型,又分为沸水堆和压水堆,我国主要以压水堆为主,也有部分沸水堆(中国台湾)和重水堆(秦山三期)。

轻水反应堆(Light Water Reactor,简称LWR)是以水和汽水混合物作为冷却剂和慢化剂的反应堆。

在发生核反应过程中,慢中子轰击铀235,会使其变成2~3种较轻的原子核,同时产生2~3个快中子,水可使产生的快中子减速,变为慢中子,然后继续与铀235发生反应,保证链式反应能够继续进行。

压水堆(Pressurized Water Reactor,简称PWR)特征是水在堆芯内不沸腾,因此水必须保持在高压状态。

燃料用的是二氧化铀陶瓷块,这样的铀芯块本身就起防止放射性物质外逸的作用,即构成了第一道安全屏障。

把这些小的铀块重叠在锆合金管内封闭,即成为铀棒。

锆合金管也能防止放射性物质逸出,故构成第二道安全屏障。

若干根铀棒排列后形成燃料元件,一台百万千瓦的压水堆核电站有100多个这样的燃料元件。

这些燃料原件即构成了整个堆芯放反应堆压力容器内。

压力容器可挡住放射性物质外泄,即使堆芯中有1%的核燃料元件发生破坏,放射性物质也不会从它里面泄漏出来,这就构成了第三道安全屏障。

反应堆压力容器内部压力为155个大气压,可把水加热到330℃以上。

温度升高了的水进入蒸汽发生器内,器内有很多细管,细管中的水接收热量变成蒸汽进入蒸汽轮机发电。

压水堆的第四道屏障是安全壳厂房。

它是阻止放射性物质向环境逸散的最后一道屏障,它一般采用双层壳体结构,对放射性物质有很强的防护作用,万一反应堆发生严重事故,放射性物质从堆内漏出,由于有安全壳厂房的屏障,对厂房外的环境和人员的影响也微乎其微。

沸水堆(Boiling Water Reactor,简称BWR)所用的燃料和燃料组件与压水堆相同,但其工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型压水堆压力容器与堆芯结 11 构原理图
堆芯横截 面图
12
压 水 堆 纵 剖 面 图
13
压水堆堆芯组件
核燃料组件
棒束控制棒组件
可燃毒物组件
中子源组件
阻力塞组件
14
核燃料组件
采用无盒、带指形控制组件的 棒束型燃料组件。 主要结构:燃料棒+骨架
骨架:上下管座,8
层定位格架,导向管采用 17×17=289=264+24+1 正方形 排列。
15
16
控制棒组件
结构组成:24跟吸收剂棒+星形架 组件数目保证: 卡棒准则,功率 分布,弹棒事故
17
堆芯相关组件
可燃毒物组件,初级中子源组件,次级中子源组件, 阻力塞组件
结构上的共同点:
支承结构:一个压紧组件形成的支承结构 24 根棒束
18
可燃毒物组件
作用:用于第一燃料循环,降低硼浓度, 半尺慢化剂的负温度系数 可燃毒物材料:硼玻璃管(B2O3+SiO2) 初装料:48×12(棒)+ 18×16(棒)+2×16=896 第一次换料时全部卸出,换阻力塞组件
• 反应堆的功率调节除用控制棒外,还可用改变再循环流量 来实现。再循环流量提高,汽泡带出率就提高,堆芯空泡 减少,使反应性增加,功率上升,汽泡增多,直至达到新 的平衡。这种功率调节比单独用控制棒更方便灵活。仅用 再循环流量调节就可使功率改变25%满功率而不需控制棒 任何运动。 • 沸水堆不用化学补偿(反应性)。燃耗反应性亏损除 用控制棒外,还用燃料棒内加Gd203可燃毒物进行补偿。 • 沸水堆蒸汽直接由堆内产生,故不可避地要挟带出由 水中16O原子核经快中子(n,p)反应所产生的16N。 16N有很强的辐射,因此汽轮机系统在正常运行时都带有 强放射性,运行人员不能接近,还需有适当的屏蔽,但 16N的半衰期仅7.13s,故停机后不久就可完全衰变,不 影响设备检修。
• 从维修来看,压水堆因为一回路和蒸汽系统分开,汽轮机 未受放射性的沾污,所以,容易维修。而沸水堆是堆内产 生的蒸汽直接进入汽轮机,这样,汽轮机会受到放射性的 沾污,所以在这方面的设计与维修都比压水堆要麻烦一些。 • 以沸水堆为动力源的核电厂。沸水堆是以沸腾轻水为 慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽 的动力堆。沸水堆与压水堆同属轻水堆,都有结构紧凑、 安全可靠、建造费用低和负荷跟随能力强等优点;它们都 须使用低浓铀,且须停堆换料。截至1996年底为止,全世 界已运行的沸水堆有94座,总功率78285MW,占全世界 已运行核电厂反应堆总数的21.7%和总功率的22.7%,仅 次于压水堆;在建的沸水堆有6座,总功率7320MW,占 全世界在建核电厂反应堆总数的9.5%和总功率的14.1%。
19
中子源组件
作用: 1 提高中子通量水平 2 点火 初级中子源
结构与材料:锎
次级中子源
结构与材料:锑、铍
20
阻力塞组件
作用:
阻力塞组件 thimbleplugassembly在不 插控制棒、可燃毒物和中子 源的燃料组件内,为限制导 向管旁流而设置的组件

前述各种堆芯相关组件 都含有中子源组件, 只有阻力塞组件全 部是阻力塞组件

目前全世界核电站、核潜艇和核动力航空 母舰等使用的反应堆中均以压水堆为主, 截至2000年底,全世界有258座运行中的反 应堆,占总数的64.6% • 最早用作核潜艇的军用反应堆。1961年, 美国建成世界上第一座商用压水堆核电站。 压水堆由压力容器、堆芯、堆内构件及控 制棒组件等构成。压力容器的寿命期为40 年。

20世纪90年代,美国和欧洲核电先进国家对今 后建设的核电厂的安全、技术、经济性确定了一 系列具体的奋斗目标。各国也着手研发同时满足 这些要求的第三代压水堆。其中有代表的有法、 德合作开发的欧洲动力堆EPR和美国西屋公司研 发的AP1000。EPR提出在未来压水堆设计中采用 共同的安全方法,通过降低堆芯熔化和严重事故 概率和提高安全壳能力来提高安全性,从放射性 保护、废物处理、维修改进、减少人为失误等方 面根本改善运行条件;AP1000则以全非能动安全 系统、简化设计和布置以及模块化建造为主要特 色。
沸水堆工作原理图:
沸水堆内部结构图
沸水堆内部结构图
先进沸水堆
• 利用先进技术和成熟的经验,代表当今核电站发展水平。 它与GE研制的前六代沸水堆(BWR1-BWR6)及欧洲沸水堆相 比,就单相系统或设备的设计而言,在技术上没有明显的 突破,但它集以往沸水堆技术及经验之大成, 更符合先进 轻水堆URD设计规范,在整体上体现出了它综合的优势。 • 精密控制棒驱动系统维修率低,高性能的防辐射材料,长 寿命的中子监视器,改进的水化学系统等等。 • 先进沸水堆通过改进堆芯及燃料的设计使功率振荡衰减比 非常小,堆的稳定性大大提高。 • 先进堆堆内设置自动运行,保护器禁止堆运行在高功率密 度/低流量区,来防止两相流不稳定性的发生。
压水堆与沸水堆

自从核电站问世以来,在工业上成熟的发 电堆主要有以下三种:轻水堆、重水堆和 石墨汽冷堆。它们相应地被用到三种不同 的核电站中,形成了现代核发电的主体。 目前,热中子堆中的大多数是用轻水慢化 和冷却的所谓轻水堆。轻水堆又分为压水 堆和沸水堆.
压水堆
• 压水反应堆(Pressurized Water Reactor,缩写为PWR)是美国贝蒂斯原 子能实验室(英语:Bettis Atomic Power Laboratory)开发成功的一种轻水核反应 堆。
工作原理及主要特点
• 来自汽轮机系统的给水进入反应堆压力容器后,沿堆芯围筒与容器内 壁之间的环形空间下降,在喷射泵的作用下进入堆下腔室,再折而向 上流过堆芯,受热并部分汽化。汽水混合物经汽水分离器分离后,水 分沿环形空间下降,与给水混合;蒸汽则经干燥器后出堆,通往汽轮 发电机,做功发电。蒸汽压力约为7MPa,干度不小于99.75%。汽轮 机乏汽冷凝后经净化、加热再由给水泵送入反应堆压力容器,形成一 闭合循环。再循环泵的作用是使堆内形成强迫循环,其进水取自环形 空间底部,升压后再送入反应堆容器内,成为喷射泵的驱动流。某些 沸水堆用堆内循环泵取代再循环泵和喷射泵。 • 沸水堆的控制棒从堆底引入,原因是:①沸水堆堆芯上部蒸汽含 量较多,造成堆芯上部中子慢化不足,这样,堆芯热中子通量分布不 均匀,其峰值下移。控制棒由堆芯底部引入有助于展平中子通量密度。 ②可以空出堆芯上方空间以安装汽水分离器和干燥器。但控制棒自堆 底引入后就不能在控制动力源丧失后靠重力自动插进堆芯,因此沸水 堆的控制棒驱动机构需非常可靠,通常都采用液压驱动,也有采用机 械/液压或电气/液压驱动。在后两种设计中,机械或电气驱动用于正 常控制。快速紧急停堆则都用液压驱动,且每个机构或每两个机构配 有一单独的蓄压器。
• 安全可靠是核电站发展的基石,中国 也始终把核电安全放在第一位。我们 有理由相信,随着经验的积累以及技 术的进步,核电站的安全性能将逐步 得到进一步提高,将要发展的第三代 反应堆和未来的第四代反应堆会为我 们安全利用核能营造新的环境。
7
Hale Waihona Puke 中核集团首台百万级压水堆核电站的蒸汽发生器
我国正在运行的核电机组(除秦山三期)全部为压水堆堆型,作为一种 技术相当成熟的堆型,具有以下特点:
1.压水堆以轻水作慢化剂及冷却剂,反应堆体积小,建设周期短.造价较低。 2.压水堆采用低富集度铀作燃料,铀的浓缩技术已经过关。
3.压水堆核电厂有放射性的一回路系统与二回路系统相分开,放射性冷却剂 不会进入回路而污染汽轮机,运行、维护方便,需要处理的放射惮废气、 废水、废物量较少。
沸水堆与压水堆的主要区别
• 沸水堆采用一个回路,压水堆有两个回路; 沸水堆由于堆芯顶部要安装汽水分离器等 设备,故控制棒需从堆芯底部向上插入, 控制棒为十字形控制棒,压水堆为棒束型 控制棒,从堆芯顶部进入堆芯;沸水堆具 有较低的运行压力(约为70个大气压), 冷却水在堆内以汽液形式存在,压水堆一 回路压力通常达150个大气压,冷却水不产 生沸腾。
压水堆相对沸水堆的优势
• 沸水堆与压水堆不同之处在于沸水堆没有蒸汽发 生器,一回路水通过堆芯加热变成约285℃的蒸 汽并直接引入汽轮机,因此常规岛布置有一回路 的冷却剂管道,管道失效可能引起冷却剂泄漏。 压水堆的一回路和蒸汽系统通过蒸汽发生器分隔 开,而且蒸汽发生器安置在安全壳内,只要蒸汽 发生器完整,放射性物质不会释放到环境中,即 使蒸汽发生器故障破损,利用安全壳贯穿件关闭, 放射性物质也不会释放到环境中。
BWR追求简易化的历史
刻意追求简易-直接循环 采用验证技术 传统式BWR 初期的BWR
内置循环泵 取消堆芯周围管道 (1990年代~至今) 带蒸气包/汽水分离器 双重循环式 (1950年代~60年代)
ABWR
内置汽水分离器 直接循环式 (1960年代)
内置射流泵 减少周围管道式 (1970年代~至今)
9
压水堆堆芯(reactor core)
堆芯设计满足的一般要求: 1 堆芯功率分布尽量均匀,以便堆芯有最大的功率输出 2 尽量减少堆芯内不必要的中子吸收材料,提高中子经济性
3 要有最佳的冷却剂流量分配和最小的流动阻力
4 有较长的堆芯寿命,适当的减少换料操作次数 5 堆芯结构紧凑,换料要简易方便。
10
沸水堆简介
• 沸水堆与压水堆不同之处在于冷却水保持在较低的压力 沸水堆是轻水堆的一种,沸水堆核电站工作流程是:冷却 剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃 (约为 70个大气压)下,水通过堆芯变成约285℃的蒸 料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物, 汽,并直接被引入汽轮机。所以,沸水堆只有一个回路, 经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽 省去了容易发生泄漏的蒸汽发生器,因而显得很简单。 轮发电机组发电。 总之,轻水堆核电站的最大优点是结构和运行都比 • 较简单,尺寸较小,造价也低廉,燃料也比较经济,具 沸水堆是由压力容器及其中间的燃料元件、十字形控 制棒和汽水分离器等组成。汽水分离器在堆芯的上部,它 有良好的安全性、可靠性与经济性。它的缺点是必须使 的作用是把蒸汽和水滴分开、防止水进入汽轮机,造成汽 用低浓铀,目前采用轻水堆的国家,在核燃料供应上大 轮机叶片损坏。沸水堆所用的燃料和燃料组件与压水堆相 多依赖美国和独联体。此外,轻水堆对天然铀的利用率 同。沸腾水既作慢化剂又作冷却剂。 低。如果系列地发展轻水堆要比系列地发展重水堆多用 • 天然铀50%以上。
相关文档
最新文档