我国压水堆核电站与日本沸水堆核电站的比较..
压水堆与沸水堆..

典型压水堆压力容器与堆芯结 11 构原理图
堆芯横截 面图
12
压 水 堆 纵 剖 面 图
13
压水堆堆芯组件
核燃料组件
棒束控制棒组件
可燃毒物组件
中子源组件
阻力塞组件
14
核燃料组件
采用无盒、带指形控制组件的 棒束型燃料组件。 主要结构:燃料棒+骨架
骨架:上下管座,8
层定位格架,导向管采用 17×17=289=264+24+1 正方形 排列。
15
16
控制棒组件
结构组成:24跟吸收剂棒+星形架 组件数目保证: 卡棒准则,功率 分布,弹棒事故
17
堆芯相关组件
可燃毒物组件,初级中子源组件,次级中子源组件, 阻力塞组件
结构上的共同点:
支承结构:一个压紧组件形成的支承结构 24 根棒束
18
可燃毒物组件
作用:用于第一燃料循环,降低硼浓度, 半尺慢化剂的负温度系数 可燃毒物材料:硼玻璃管(B2O3+SiO2) 初装料:48×12(棒)+ 18×16(棒)+2×16=896 第一次换料时全部卸出,换阻力塞组件
• 反应堆的功率调节除用控制棒外,还可用改变再循环流量 来实现。再循环流量提高,汽泡带出率就提高,堆芯空泡 减少,使反应性增加,功率上升,汽泡增多,直至达到新 的平衡。这种功率调节比单独用控制棒更方便灵活。仅用 再循环流量调节就可使功率改变25%满功率而不需控制棒 任何运动。 • 沸水堆不用化学补偿(反应性)。燃耗反应性亏损除 用控制棒外,还用燃料棒内加Gd203可燃毒物进行补偿。 • 沸水堆蒸汽直接由堆内产生,故不可避地要挟带出由 水中16O原子核经快中子(n,p)反应所产生的16N。 16N有很强的辐射,因此汽轮机系统在正常运行时都带有 强放射性,运行人员不能接近,还需有适当的屏蔽,但 16N的半衰期仅7.13s,故停机后不久就可完全衰变,不 影响设备检修。
中国核电发展的安全性研究

wae e co ( t rr a t r PW R)wih Fu u h ma b i n — tr ra tr ( t k s i o l g wa e e co BW R) i a a i n J p n,i i p it d t s on e
电 安 全 性 的 基 础 ; 安 全文 化 是 核 电 站 安 全 运 行 的 重 要 保 障 。对 比 中 国压 水 堆 和 日本 福 岛 沸 水 堆 , 文 阐 述 核 本
了 中 国 现 有 的 压 水 堆 及 正 在 发 展 的第 三 代 A 10 P 0 0的 典 型 安 全 特 征 。通 过 吸 取 福 岛 核 电站 事 故 教 训 。 断 改 不
Th a e y Re e r h o c e r Po r De e o m e t i e S f t s a c n Nu l a we v l p n n Chi a n
ZHOU o,L igjn ,HOU o — e Ta IJn —i g Zh u S n
NO 2 .
Aprl201 i 1
●
能 源 与 环 境 问 题 研 究
中 国核 电发 展 的安 全 性 研 究
周 涛 , 李精 精 , 周森 侯
( 北 电力 大 学 核 热 工 安 全 与 标 准 化 研 究 所 , 京 1 2 0 ) 华 北 0 2 6
摘 要 : 安全 是 中 国 核 电 发 展 的 第 一 原 则 。核 电标 准 建 设 是 核 电安 全 发 展 的前 提 ; 进 的 核 电技 术 是 核 先
核反应堆课后题

核反应堆课后题第一章思考题1.压水堆为什么要在高压下运行?2.水在压水堆中起什么作用?3.压水堆与沸水堆的主要区别是什么?4.压水堆主冷却剂系统都包括哪些设备?5.一体化压水堆与分散式的压水堆相比有哪些优缺点?6.重水堆使用的核燃料富集度为什么可以比压水堆的低?7.在同样的堆功率情况下,重水堆的堆芯为什么比压水堆的大?8.气冷堆与压水堆相比有什么优缺点?9.石墨气冷堆中的百墨是起什么作用的?10.快中子堆与热中子堆相比有哪些优缺点?11.快中子堆在核能源利用方面有什么作用?12.回路式制冷堆与池式饷冷堆的主要区别是什么?13.在使用铀作为反应堆冷却剂时应注意些什么问题?14.快中子堆内使用的燃料富集度为什么要比热中子反应堆的高?第二章思考题1.简述热中子反应堆内中子的循环过程。
2.为什么热中子反应堆中通常选用轻水作慢化齐IJ?3.解释扩散长度、中子年龄的物理意义。
4.述反射层对反应堆的影响。
5.简述反应性负温度系数对反应堆运行安全的作用。
6.解释“腆坑”形成的过程。
7.什么是反应堆的燃耗深度和堆芯寿期?8.大型压水堆通常采取哪些方法控制反应性?9.简述缓发中子对反应堆的作用。
10.简述反应性小阶跃变化时反应堆内中子密度的响应。
第三章思考题1.能用于压水反应堆的易裂变同位素有哪些,它们分别是怎样生成的?2.为什么在压水堆内不直接用金属铀而要用陶瓷U02作燃料?3.简述U02的熔点和热导率随温度、辐照程度的变化情况。
4.简述U02芯块中裂变气体的产生及释放情况。
5.燃料元件的包壳有什么作用?6.对燃料包壳材料有哪些基本要求?目前常用什么材料?7.为什么错合金用作包壳时,其使用温度要限制在350℃以下?8.何谓错合金的氢脆效应,引起氢脆效应的氢来源何处?9.错合金包壳的氢脆效应有何危害,应如何减轻这种不利影响?10.什么是U02燃料芯块的肿胀现象,应采取什么防范措施?11.控制棒直径较细有什么好处?12.定位格架采用什么材料制戚,为什么?13.定位格架有何功用?14.对用作控制棒的材料有什么基本要求?15.通常用作控制棒的元素和材料有哪些?16.简单说明Ag-In-Cd控制材料的核特性。
日本核泄漏事件对我国核电事业发展的影响

日本核泄漏事件对我国核电事业发展的影响摘要:日本特大地震伴随海啸引发了福岛第一核电站爆炸及放射性物质泄漏,触目惊心的核泄漏事件给我们敲响了警钟,给中国核电事业的发展提出了警示。
关键词:核泄漏;自然灾害;核能立法;防护措施等。
3月11日下午,日本东部海域发生9级大地震,并伴随特大海啸,次日,福岛第一核电站发生了爆炸和放射性物质泄漏。
这是自1986年4月26日苏联乌克兰共和国切尔诺贝利核能发电厂发生严重核泄漏以来,人类发生的最严重的核泄漏事故。
虽然日本因地震发生的核泄漏事件不会改变中国发展核电的决心和安排,但这次事件给中国核电事业的发展敲响了警钟。
首先,中国核电发展必须充分考虑环境变化等自然因素,核电站尽量建在不易发生重大灾害的地区。
此次日本核泄漏是由于特大地震伴随海啸袭来仍而引发的,而近几年由于人类对环境的破坏,灾害丛生地震频发。
因此,中国核电建设的当务之急就是在设计的层面上充分考虑发生地震的可能性,在抗震方面的设计应该做好最坏的打算。
只有这样,才能确保不出问题。
在当前东部率先发展的大趋势下,我国沿海地区的经济和人口密度急剧增大。
各级政府必须高度重视海洋灾害可能造成的影响,切实提高沿海地区的灾害防御能力。
其次,中国核电设施应该做好严格的监测和维护,严格禁止这些设施出现超期服役现象,而且不管在怎样的紧急情况下,电站内都必须拥有稳定可靠的“多路”供电系统。
据报道,泄漏的最主要原因是海啸超出了设想的水平,海啸引起的滔天洪水将柴油发电机房淹没,造成应急供电系统不能工作。
并且福岛一期核电站原本设计寿命已经到期,但出于成本考量而继续运作,尽管在今年2月份的评估报告中,东京电力认为这种超期服役不存在风险,但由于其安全设计存在缺陷,最终导致了目前事态的恶化。
中国目前有13座核电站正在运行,虽然已经有严格的监测和维护机制,但仌然马虎不得,尤其是一旦监测出问题,一定要及时处理,才能确保安全。
第三,我国在核安全和辐射安全方面存在法律空白,核能领域基本法原子能法立法一拖再拖,至今依然没有出台,中国核安全法律缺位问题突出。
沸水堆及福岛核事故介绍

目录前言 (1)1 沸水堆简介 (2)1.1概况 (2)1.2沸水堆的发展 (3)1.3沸水堆的基本原理 (5)1.4沸水堆与压水堆的比较 (5)2 福岛第一核电厂简介 (10)2.1概况 (10)2.2沸水堆结构 (11)2.2.1 反应堆 (12)2.2.2 一次安全壳 (13)2.2.3 二次安全壳 (14)2.2.4 乏燃料水池 (14)2.3堆芯应急冷却系统(ECCS) (15)2.3.1 隔离冷凝器系统(1号机组) (16)2.3.2 堆芯隔离冷却系统(2~5号机组) (16)2.3.3 高压安注系统(1~5号机组) (17)2.3.4 自动卸压系统(1~5号机组) (18)2.3.5 堆芯喷淋系统(1~5号机组) (19)2.3.6 低压安注系统 (20)3 福岛核事故 (22)3.1福岛核事故大事记 (22)3.2地震、海啸与全厂断电 (25)3.3停堆与衰变余热 (27)3.4氢爆事故 (28)3.4.1 堆芯应急冷却系统的响应与失效 (28)3.4.2 氢气的产生 (28)3.4.3 氢气的排放与氢爆 (29)3.5乏燃料水池事故 (29)3.6放射性泄漏 (30)4 福岛核电厂反应堆现状 (32)4.1反应堆水位 (32)4.2反应堆温度 (32)4.3反应堆压力 (33)4.4安全壳压力 (34)5 参考文献汇总 (36)前言2011年3月11日,日本东海岸发生里氏9.0级特大地震,由此引发福岛第一核电站的核事故。
福岛核事故导致大量核泄漏,造成广泛的核污染,对复兴中的世界核电事也产生了深远影响。
本报告简要介绍了沸水堆,介绍了迄今为止福岛核事故的发展以及事故分析,旨在帮助更好地了解沸水堆和福岛核事故。
1 沸水堆简介1.1 概况[1]根据国际原子能机构(IAEA)的统计,目前世界上在役核电机组共443台,总装机容量约3.75亿千瓦,发电量约占世界总发电量的17%。
核反应堆主要有6种,即压水堆(PWR)、沸水堆(BWR)、重水堆(PHWR)、轻水冷却石墨慢化堆(LWGR)、气冷堆(GCR)和快中子增值堆(FBR)。
注册核安全工程师学习笔记

综合知识1896年法国科学家贝克勒尔发现天然放射性现象,这一重大发现是原子核物理的开端。
原子的大小半径约为10-8cm的量级(1fm=10-15m=10-13cm),原子核的限度只有几十飞米。
天然存在的核素的个数为332(稳定的约有270个)。
在每立厘米体积中有近3亿吨(2.3亿吨)的核物质。
物质的许多化学性质及物理性质、光谱特性基本上只与核外电子有关;而放射现象则主要与原子核有关。
K层的能级最低。
能级的能量大小就等于该壳层电子的结合能。
原子核中子数或质子数为2,8,20,28,50,82和中子数为126时,原子核稳定。
上述数目称为幻数。
测量原子核电荷半径或核力半径的主要方法包括:中子衍射, 高能电子散射, α粒子散射,质子散射一个中子和一个质子组成氘核时,会释放一部分能量2.225MeV, 这就是氘的结合能。
比结合能表征了原子核结合的松紧程度。
比结合能大,原子核结合紧,稳定性高。
平均寿命比半衰期长一点,是1.44倍。
放射性核素的平均寿命表示经过时间以后,剩下的核素数目约为原来的37%。
放射性指数衰减规律是一种统计规律。
一个放射源在单位时间内发生衰变的原子核数称为它的放射性活度,一个放射源每秒钟有3.7×1010次核衰变定义为一个居里,即:1Ci=3.7×1010s-1。
放射性活度的SI单位叫Bq(贝克[勒尔])。
钍系(4n)半衰期1.41×1010a、铀系(4n+2) 4.47×109a、锕-铀系(4n+3)、人工方法4n+1镎系辐照生产放射性核数一般只需要照射半衰期的6-7倍时间,即可得到放射性活度为的99%的放射源。
电子质量约为质子质量的1/1846。
X射线和γ射线的唯一区别是起源不同。
从原子来说X射线来源于核外电子的跃迁,而γ射线来源于原子核本身高激发态向低激发态(或基态)的跃迁或粒子的湮灭辐射。
自由中子是不稳定的,它可以自发地发生衰变,生成质子、电子和反中微子,其半衰期为10.6分。
压水堆与沸水堆

沸水堆与压水堆的主要区别
• 沸水堆采用一个回路,压水堆有两个回路; 沸水堆由于堆芯顶部要安装汽水分离器等 设备,故控制棒需从堆芯底部向上插入, 控制棒为十字形控制棒,压水堆为棒束型 控制棒,从堆芯顶部进入堆芯;沸水堆具 有较低的运行压力(约为70个大气压), 冷却水在堆内以汽液形式存在,压水堆一 回路压力通常达150个大气压,冷却水不产 生沸腾。
7
中核集团首台百万级压水堆核电站的蒸汽发生器
我国正在运行的核电机组(除秦山三期)全部为压水堆堆型,作为一种 技术相当成熟的堆型,具有以下特点:
1.压水堆以轻水作慢化剂及冷却剂,反应堆体积小,建设周期短.造价较低。 2.压水堆采用低富集度铀作燃料,铀的浓缩技术已经过关。
3.压水堆核电厂有放射性的一回路系统与二回路系统相分开,放射性冷却剂 不会进入回路而污染汽轮机,运行、维护方便,需要处理的放射惮废气、 废水、废物量较少。
•
20世纪90年代,美国和欧洲核电先进国家对今 后建设的核电厂的安全、技术、经济性确定了一 系列具体的奋斗目标。各国也着手研发同时满足 这些要求的第三代压水堆。其中有代表的有法、 德合作开发的欧洲动力堆EPR和美国西屋公司研 发的AP1000。EPR提出在未来压水堆设计中采用 共同的安全方法,通过降低堆芯熔化和严重事故 概率和提高安全壳能力来提高安全性,从放射性 保护、废物处理、维修改进、减少人为失误等方 面根本改善运行条件;AP1000则以全非能动安全 系统、简化设计和布置以及模块化建造为主要特 色。
9
压水堆堆芯(reactor core)
堆芯设计满足的一般要求: 1 堆芯功率分布尽量均匀,以便堆芯有最大的功率输出 2 尽量减少堆芯内不必要的中子吸收材料,提高中子经济性
3 要有最佳的冷却剂流量分配和最小的流动阻力
沸水堆与压水堆的区别

沸水堆与压水堆的区别一.沸水堆与压水堆工作原理沸水堆(Boiling Water Reactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。
福岛核电站建于20世纪70年代,属于沸水堆。
压水堆(Pressurized Water Reactor)字面上看就是采用高压水来冷却核燃料的一种反应堆,其工作原理为:主泵将120~160个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环。
中国建成和在建共有13台核电机组,除秦山三期采用CANDU 堆技术,山东荣成采用高温气冷堆,其余均为压水堆,二.沸水堆与压水堆共同点沸水堆和压水堆都是属于轻水堆,两者都使用低浓铀燃料,采用轻水作为冷却剂和慢化剂,沸水堆系统比压水堆简单,特别是省去了蒸汽发生器;燃料都是以组件的形式在堆芯排布,组件由栅格排布的燃料栅元组成,燃料栅元由燃料芯块、包壳构成;燃料放置于压力容器当中,外面有安全壳,具备包壳、压力边界、安全壳三重防泄露屏障;沸水堆和压水堆的发电部分功能也都一样。
三.沸水堆与压水堆的主要区别沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达150个大气压,冷却水不产生沸腾。
四.压水堆相对沸水堆的优势沸水堆控制棒从堆芯底部引入,因此发生“在某些事故时控制棒应插入堆芯而因机构故障未能插入”的可能性比压水堆大,即在停堆过程中一旦丧失动力,就会停在中间某处,最终可能导致临界事故发生;而压水堆的控制棒组件安装在堆芯上部,如果出现机械或者电气故障,控制棒可以依靠重力落下,一插到底,阻断链式反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国压水堆核电站与日本沸水堆核电站的比较一、中国核电站和日本福岛第一核电厂在安全设计方面的区别1.日本福岛核电站背景资料1.1 日本核电站的堆型及其分布1.2 福岛核电站日本福岛县的核电站有福岛第一核电站和福岛第二核电站,它们都由东京电力公司负责运营。
福岛核电站是目前世界上最大的核电站,位于日本福岛工业区,由福岛一站、福岛二站组成,共10台机组(一站6台,二站4台),均为沸水堆。
其中福岛一站1号机组于1971年 3月投入商业运行,二站1号机组于1982年4月投入商业运行。
福岛第一核电站福岛第二核电站1.3 福岛核电站其他信息2011年2月7日,东京电力公司和福岛第一原子力发电所刚刚完成了一份对于福岛一站一号机组的分析报告,指出这一机组已经服役40年,出现了一系列老化的迹象,包括原子炉压力容器的中性子脆化,压力抑制室出现腐蚀,热交换区气体废弃物处理系统出现腐蚀,并为其制定了长期保守运行的方案。
福岛核电站1号机组已经满了40年的使用寿命,该机组原本计划延寿20年,到2031年退役。
2、沸水堆与压水堆的差异2.1沸水堆简介沸水堆核电站属于轻水堆堆型中的一种,沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。
根据国际核电协会统计,全球正在运行的反应堆一共有426个。
其中轻压水堆258座占比约为61%,重压水堆约为41座占比10%,沸水堆为92座占比约为22%。
沸水堆比例相对较小;从建设期来看,压水堆在80年代后被选用作实施的数量远超过沸水堆技术,体现了其更高的安全性能。
中国目前建成和在建的所有核电站均使用压水堆技术。
从技术上来看,中国发生此类核泄漏事故的风险较小;同时核电技术正在不断升级:核电技术已经经历了一代到二代再到改善型二代的过程。
对安全性的诉求成为了推动核电技术不断发展的重要动力。
2.2沸水堆工作原理及主要特点沸水堆系统示意图沸水堆所用的燃料和燃料组件与压水堆相同。
铀制成的核燃料在压水堆“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。
沸水堆与压水堆不同之处在于冷却水保持在较低的压力(约为70个大气压)下,水通过堆芯变成约285℃的蒸汽,并直接被引入汽轮机。
所以,沸水堆只有一个回路,省去了容易发生泄漏的蒸汽发生器,因而显得很简单,但沸水堆是堆内产生的蒸汽直接进入汽轮机,汽轮机会受到放射性的沾污,其设计与维修更为复杂。
电厂系统有:①主系统(包括反应堆);②蒸汽-给水系统;③反应堆辅助系统,其中包括应急堆芯冷却系统;④放射性废物处理系统;⑤检测和控制系统;⑥厂用电系统。
其中蒸汽-给水系统、放射性废物处理系统、厂用电系统以及反应堆辅助系统中的设备冷却水系统、余热排出系统、厂用水系统等都与压水堆核电厂有关系统类似。
沸水堆的主要特点:➢沸水堆的控制棒从堆底引入;➢反应堆的功率调节除用控制棒外,还可用改变再循环流量来实现;➢沸水堆不用化学补偿(反应性)。
燃耗反应性亏损除用控制棒外,还用燃料棒内加Gd203可燃毒物进行补偿;➢沸水堆蒸汽直接由堆内产生;➢堆功率密度低,堆芯大;➢压力容器内有喷射泵、汽水分离器和干燥器,体积大。
2.2沸水堆与压水堆的比较2.2.1 主设备沸水堆压水堆主设备实现功能主设备实现功能反应堆将核能转变为热能,并将热能传给一回路冷却剂,使其变为饱和蒸汽反应堆将核能转变为热能(高温高压水),并将热能传给一回路冷却剂汽轮机将饱和蒸汽的热能转变为高速旋转的机械能蒸汽发生器将一回路高温高压水中的热量传递给二回路的水,使其变为饱和蒸汽发电机将汽轮机传来的机械能转变为电能汽轮机将饱和蒸汽的热能转变为高速旋转的机械能2.2.2 设计和运行特点3. 田湾核电站设计特点和安全性保障措施3.1田湾核电站设计特点为保障核电站工作人员和周围居民的健康,田湾核电站在选址、设计、建造、运行和退役过程中均贯彻“安全第一、质量第一”的方针,采用纵深防御的原则,建立从实体设备和防护措施上提供多重相互独立、相互支持的安全防护体系,以确保核电站处于安全、可控状态。
(一)抗震设计厂址区域未见明显断裂活动迹象,地震活动水平也较低。
厂址区域最大历史地震为郯城8.5级大震,该地震是田湾核电站的控制地震。
厂址区域不存在发震构造,没有现代火山活动。
近区域不具备发生5.0级以上地震的地震地质背景,对厂址的影响主要来自远域地震。
1992年6月江苏省地震局采用地震构造法和概率法确定厂址设计基准地面运动。
确定性法和概率论法(年超越概率10-4)确定的基岩水平峰值加速度分别为0.190g 和0.138g,地震构造法0.190g最大。
综合评定,将构造法计算所得的最大值0.19g定为厂址设计基准地面运动的值。
1992年10月国家地震局地震烈度评定委员会批复:“同意将连云港核电厂扒山头厂址的地震基本烈度定为七度,设计基准地面运动定为0.19g”。
田湾核电站设计基准地震最终偏保守地采用0.2g。
(二)防御海啸设计我国除了台湾外,大陆沿海都有广阔的大陆架,远源海啸进入大陆沿海海域后,能量衰减较快,对大陆沿海影响较小。
同时,我国滨海核电厂址都建有防浪构筑物,每个核电厂址均考虑了风暴潮、海啸、天文潮高潮位、假潮等洪水起因事件。
田湾核电厂厂址周边条件不具备产生破坏性海啸的条件,并且厂址历史也上没有破坏性海啸记录。
综合各种最不利因素(厂址最高组合潮位如下:最高天文潮(2.96m)+百年一遇增水(2.18m)=5.14m)。
田湾核电厂建立了高为7.04米的防坡提,并设置了高9.5米的挡浪墙,能够有效抵御海啸灾害。
(三)应急电源设计田湾核电厂每台机组设四台应急柴油发电机组和两台可靠柴油发电机组,均进行了抗震设计,此外还设有两台机组共用的第七台柴油发电机为关键仪表和设备供电。
在丧失场外电源情况下,这些柴油发电机组自动启动加载,可保证实现对反应堆装置的长期冷却。
(四)消氢措施田湾核电厂安全壳内设有44台非能动消氢装置,可有效地控制安全壳内的氢气含量,防止发生氢气爆炸事件。
(五)严重事故应对措施田湾核电厂在设计中考虑了充分的严重事故应对措施,设置了双层安全壳、堆芯捕集器、非能动消氢系统和移动式柴油机等,编制了超设计基准和严重事故管理导则,制定了核安全应急预案。
这些系统和规程能够有效的引导操纵人员将反应堆置于安全状态。
(1)供电设计田湾核电站厂用电系统包括厂用电源,6kV交流配电装置,0.4kV交流配电装置,110V/220V直流配电装置。
田湾核电站厂用电的电源包括厂外电源和厂内电源。
厂外电源包括华东500kV 电网和连云港220kV电网。
厂内电源包括汽轮发电机、两台机组柴油发电机、四台应急柴油发电机蓄电池组。
机组正常功率运行时通过发电机出口经两台高厂变给机组供厂用电,同时将电能输送至华东电网,当500kV外电网故障或者线路停运时,发电机可以只带厂用电运行,即“孤岛运行”模式,当发电机也不可用时,可以经高备变(启动变)由220kV电网供电,如果高备变或者220kV电源也不可用,即田湾核电站失去全部厂外交流电源,这时电源只剩下厂内6台柴油发电机和蓄电池。
田湾核电站4台应急柴油发电机组,每一台都能够完成100%的设计功能,连续运行功率5700kW,包括其配套的冷却、通风系统,以及厂房均为抗震I类设计,在安全停堆地震(地面峰值水平加速度0.2g)情况下可以保证其功能,向四段应急6kV母线供电,应急母线再向下列负荷供电:高压安注系统、低压安注系统、安全壳喷淋系统、蒸汽发生器应急给水系统、堆芯应急硼注入系统、核岛设备冷却水系统和安全厂用水系统,以及反应堆装置的监测系统等。
在应急母线下的蓄电池经逆变器向稳压器脉冲安全阀、蒸汽发生器的脉冲安全阀、大气释放阀和主蒸汽隔离阀的脉冲安全阀,一回路应急排气系统阀门和安全仪控系统等供交流电。
2台机组柴油发电机组,为抗震II类设计,在运行基准地震(地面峰值水平加速度0.1g)情况下可以保证其功能,向下列负载供电:容积和硼控系统泵;蒸汽发生器辅助给水系统泵;汽轮机润滑油系统泵;发电机轴油密封系统泵;控制和保护系统;正常仪控系统及一些照明设施。
另外,田湾核电站还设置了第7台移动式柴油机,该柴油机为可移动式的,出口电压0.4KV,主要向堆芯捕集器冷却水阀,一回路应急排气阀门等设备供电。
(2)专设安全设施设计田湾核电站设计了相互独立,实体隔离的4个系列安全系统,包括:1)安全壳喷淋系统安全壳喷淋系统设有四个回路,只要有一个回路可用即可实现50%的设计功能,在安全壳内压力非预期升高时,通过向安全壳内喷淋浓度16g/kg的硼酸溶液降低安全壳压力。
泵组供电等级,交流6kV,功率380kW。
2)高压安注系统高压安注系统设有四个回路,只要有一个回路可用即可实现100%的设计功能,一回路出现破口时向一回路注入浓度16g/kg的硼酸,淹没堆芯。
泵组供电等级,交流6kV,功率630kW。
3)低压安注系统低压安注系统设有四个回路,只要有一个回路可用即可实现100%的设计功能,,一回路出现破口时向一回路注入浓度16g/kg的硼酸,淹没堆芯。
泵组供电等级,交流6kV,功率630kW。
4)中压安注系统中压安注系统设有四个回路,只要有一个回路可用即可实现50%的设计功能,在核反应堆中的冷却剂失水事故时当一回路压力低于5.88Mpa向一回路注入浓度16g/kg的硼酸,淹没堆芯,硼酸体积4*50共200m3,非能动设计,靠安注箱与一回路的压力差顶开止回阀即可。
5)应急注硼系统应急注硼系统设有四个回路,只要有一个回路可用即可实现50%的设计功能,在发生未能紧急停堆得预期瞬变时向一回路快速注入浓度40g/kg的硼酸,快速升高一回路硼酸浓度,将反应堆转入次临界,在发生蒸汽发生器传热管破裂事故,时向稳压器注入浓度40g/kg的硼酸溶液,快速降低一回路压力,减小一二回路压差,降低一回路向二回路的泄露。
泵组供电等级,交流0.4kV,功率160kW。
6)核岛设备冷却水系统核岛设备冷却水系统设有四个回路,只要有一个回路可用即可实现100%的设计功能,为所有安全系统的泵组、电机提供冷却水。
泵组供电等级,交流6kV,功率250kW。
7)核岛设备工艺水系统核岛设备工艺水系统设有四个回路,只要有一个回路可用即可实现100%的设计功能,将核岛设备冷却水系统的热量导出至最终热阱海水,在超设计地震并伴随重要厂房火灾时为自动喷淋消防水系统提供海水作消防喷淋用,系统取水来自前池,前池设计蓄水量可以保证4台机组停堆并冷却至冷态。