基于单片机控制的交流调速系统设计 (1)

合集下载

基于单片机的直流电机调速系统设计

基于单片机的直流电机调速系统设计

直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)

51单片机毕业设计题目

51单片机毕业设计题目

51单片机毕业设计题目篇一:21、基于51单片机温湿度检测的设计1、设计要求1、采用51单片机(STC89C52RC)+LCD12864+SHT10设计。

2、湿度范围:0-100%RH 温度:0-100摄氏度3、4个发光二级管实现报警:高温报警、低温报警、高湿度报警、低湿度报警共8种报警状态。

4、3个按键实现温湿度上下限报警值的调节。

5、电脑USB供电6、采用C语言编程。

2、基于51单片机温湿度检测+数字钟的设计设计要求1、采用51单片机(STC89C52RC)+LCD12864+SHT10设计。

2、湿度范围:0-100%RH 温度:0-100摄氏度3、4个发光二级管实现报警:高温报警、低温报警、高湿度报警、低湿度报警共8种报警状态。

4、3个按键实现温湿度上下限报警值和数字钟时分秒的调节。

5、时分秒显示6、电脑USB供电7、采用C语言编程。

3、基于51单片机温湿度检测+电子万年历的设计1、设计要求1、采用51单片机(STC89C52RC)+LCD12864+SHT10+DS1302设计。

2、湿度范围:0-100%RH 温度:0-100摄氏度3、4个发光二级管实现报警:高温报警、低温报警、高湿度报警、低湿度报警共8种报警状态。

4、3个按键实现温湿度上下限报警值和电子万年历时分秒星期年月日的调节。

5、年、月、日、时、分、秒、星期、温度、湿度显示6、电脑USB供电7、采用C语言编程。

4、基于51单片机温湿度检测+数字电压表的设计1、设计要求1、采用51单片机(STC89C52RC)+LCD12864+SHT10+ADC0832设计。

2、湿度范围:0-100%RH 温度:0-100摄氏度3、4个发光二级管实现报警:高温报警、低温报警、高湿度报警、低湿度报警共8种报警状态。

4、3个按键实现温湿度上下限报警值的调节。

5、电压、温度、湿度显示。

6、电压范围直流0-5伏。

(另有0-220伏)7、电脑USB供电8、采用C语言编程。

毕业论文-基于AT89C51单片机的空调控制系统设计 精品

毕业论文-基于AT89C51单片机的空调控制系统设计 精品

毕业论文-基于AT89C51单片机的空调控制系统设计精品1总体方案设计随着人们生活水平的提高,人们对空调的舒适性和空气品质的要求越来越高,分体式空调已不能满足人们的要求,户式中央空调得到了迅猛的发展。

就室内居住环境而言,恒温环境并非是卫生和舒适的。

因为除了温度外,还有湿度、空气流速、空气洁净度等诸多因素影响到舒适的程度。

而传统的中央空调靠设置机械温控开关来实现房间的恒温控制。

这种控制方法,一方面操作不方便;另一方面温度波动范围大,不但影响人的舒适感,而且会造成一定的能量损耗。

采用单片机温度控制系统控制的户式中央空调系统,可以根据室内的环境因素,调节风机的转速,为人们创造一个舒适的室内环境,同时又节省电。

随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么单片机技术的出现则是给现代工业控制测控领域带来了一次新的革命。

目前,单片机在工业控制系统诸多领域得到了极为广泛的应用。

特别是其中的C51系列的单片机[3]的出现,具有更好的稳定性,更快和更准确的运算精度,推动了工业生产,影响着人们的工作和学习。

而本次设计就是要通过以C51系列单片机为控制核心,实现空调机温度控制系统的设计。

1.1方案一选用AT89C51单片机为中央处理器,通过温度传感器DS18B20对空气进行温度采集,将采集到的温度信号传输给单片机,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温系统对空气进行处理,从而模拟实现空调温度控制单元的工作情况。

在整个设计中,涉及到温度检测电路、驱动控制电路、显示电路、键盘电路以及电源的设计等电路。

其中单片机的控制程序是起到各个电路之间的相互协调,控制各个电路正常工作的至关重要的作用。

其方框图如下:图1-1 方案一设计图框该图控制简单,思路清晰,各单元模块的相互衔接较简单,同时成本低廉,用的各种器件都是常用器件,更具有使用性。

单片机控制的电机交流调速系统设计

单片机控制的电机交流调速系统设计

单片机控制的电机交流调速系统设计摘要:本文将介绍一种基于单片机控制的电机交流调速系统设计方案。

该系统采用电机三相桥式整流电路作为电源,通过单片机对电机进行PWM调速控制,实现电机速度的调节。

使用单片机控制的电机交流调速系统具有速度调节范围广、动态响应快、控制精度高等优点,适用于各类电机的交流调速控制。

关键词:单片机;电机交流调速系统;PWM调速;桥式整流电路1.引言随着现代工业的发展,对电机调速的要求越来越高。

传统的电机调速系统通常采用电阻和变压器等非智能方式进行调节,而单片机是一种能够进行数字化控制的智能设备,具有调节范围广、响应快、控制精度高等优点。

2.系统组成2.1电机和电源电机是系统的核心部件,负责转换电能为机械能。

电源为电机提供所需的能量,这里使用直流电源。

2.2三相桥式整流电路三相桥式整流电路将直流电源转换为交流电源,供电给电机进行运行。

2.3单片机单片机是整个系统的控制中心,通过接收外部信号(如速度调节信号)和传感器反馈信号,对电机进行PWM控制,实现电机的调速控制。

2.4PWM模块PWM模块是单片机内置的一个功能模块,负责产生PWM信号。

PWM信号的频率和占空比可通过编程调节,从而实现对电机的调速控制。

2.5驱动电路驱动电路负责将PWM信号从单片机输出到电机,通过对PWM信号的放大和滤波处理,驱动电机进行调速。

3.系统工作原理系统工作原理如下:首先,单片机通过PWM模块产生PWM信号,调节PWM信号的频率和占空比。

然后,PWM信号通过驱动电路放大和滤波处理后,送至三相桥式整流电路的控制端,控制桥臂的导通和关断。

最后,交流输出经过滤波处理后,供给电机运行。

4.系统设计步骤4.1硬件设计根据系统组成的步骤,设计相应的硬件电路连接。

4.2软件设计编写控制程序,实现速度控制功能。

程序包括PWM信号的产生和控制逻辑的实现。

5.结果与分析通过实验测得,该系统能够实现对电机速度的调节,调节范围广、动态响应快、控制精度高。

基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

单片机控制的电机交流调速系统设计

单片机控制的电机交流调速系统设计

单片机控制的电机交流调速系统设计发布时间:2021-12-01T08:09:31.056Z 来源:《当代电力文化》2021年第19期作者:王哲[导读] 随着电力电子技术、微电子技术和自动控制理论的发展,交流调速技术也有了日新月异的变化。

王哲吉林华正农牧业开发股份有限公司摘要:随着电力电子技术、微电子技术和自动控制理论的发展,交流调速技术也有了日新月异的变化。

可调速的高性能交流电力拖动系统在工业上的应用也越来越广。

进入21世纪交流调速技术也进入了现代交流调速技术时代,现代交流调速技术也成为人类社会的重大技术进步之一。

其发展速度之快、应用覆盖范围之广都是前所未有的。

而且应用实践表明,采用现代交流调速技术极大的提高了传动系统的运行质量,同时,带来了巨大的经济和社会效益。

关键词:单片机;电机控制系统;设计引言在现代化工业发展过程中,电动机应用越来越广泛,对于更好的满足现代化工业需求,并提升工作效率,实现经济效益的提升起到了有效的促进作用,而在新的发展形势下,如何优化电机运动控制系统设计,为工业发展提供更多的动力支持是当前急需解决的重要问题。

通过对基于单片机的电机运动控制系统设计进行分析,以期进一步提升现代化工业发展水平。

近些年以来,随着单片机在性能方面的不间断提高,已经广泛的应用到了通信、网络、农业,以及大众日常生活的很多领域当中。

不仅能够在很多场合满足应用的需求,而且在特点方面具有:价格低、性能很可靠、使用比较方便、低功耗、小体积、速度快、功能强、可集成度较高等。

常用的单片机主要有MSP430单片机、PIC单片机、A VR单片机、51系列单片机。

因此针对单片机控制的电机系统,在应用方面进行分析是很有必要的。

一、单片机的特性目前,市场上主流的单片机包含计数器、中央处理器、只读存储器、串行端口等,能够对数据进行存储与处理等操作。

单片机的系统并不复杂,因此在操作上较为简便,并且在实现模块化管理上有突出成效。

单片机控制的交流调速系统设计

单片机控制的交流调速系统设计

目录摘要 (2)1引言 (3)1.1交流调速系统的现状 (3)1.2交流调速系统的特点 (4)1.3交流调速系统原理 (5)2交流调速系统的硬件设计 (6)2.1交流调速系统控制回路设计 (6)2.2交流调速系统参数设计 (7)2.3元器件的选用 (11)3交流调速系统软件设计 (23)3.1主程序设计及说明 (23)3.2子程序设计 (26)4结论 (28)5参考文献 (28)6致谢 (29)单片机控制的交流调速系统设计摘要交流变频调速具有调速范围宽,稳速精度高,动态响应快,运行可靠等技术性能,已逐步取代直流电动机调速系统。

然而目前的变频器大部分都是线路复杂,价格昂贵,常用于大、中功率的电动机。

本课题单片机控制的变频调速系统设计思想是用转差频率进行控制。

通过改变程序来达到控制转速的目的。

由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。

系统的总体结构主要由主回路,驱动电路,光电隔离电路,SA8282大规模集成电路,保护电路,AT89C51单片机, 8255可编程接口芯片,I/O接口芯片,测速发电机等组成。

可以满足各种不同场合的应用,以达到调速节能的效果。

关键词:AT89C51单片机;SA8282;转差频率;交流调速;三相异步电动机1引言1.1交流调速系统的现状电气传动从总体上分为调速和不调速两大类。

按照电动机的类型不同,电气传动又分为直流和化大生产的不断发展,生产技术越来越复杂,对生产工艺的要求也越来越高,这就要求生产交流两大类,直流电动机在19世纪先后诞生,但当时的电气传动系统是不调速系统,随着社会机械能够在工作速度,快速启动和制动,正反转等方面具有较好的运行性能。

从而推动了电动机的调速不断向前发展,自从1834年直流电动机出现以后,直流电动机作为调速电动机的代表,在工业中得到了广泛的应用。

它的优点主要在于调速范围广,静差小,稳定性能好以及具有良好的动态性能,晶闸管变流装置的应用使直流拖动发展到了一个很高的水平,在可逆,可调速与高精度的拖动技术领域中相当长时间内几乎都采用直流拖动系统。

plc控制变频器调速

plc控制变频器调速

基于PLC控制变频器调速实验报告电控学院电气实训目的:本次实验针对电气工程及其自动化专业。

通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。

要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。

在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。

学生实验应做到以下几点:1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。

2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。

3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。

4. 培养动手能力,增强对可编程控制器运用的能力。

5. 培养分析,查找故障的能力。

6. 增加对可编程控制器外围电路的认识。

实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机第一部分采样转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。

编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。

编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。

欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机转差频率控制的交流调速系统设计摘要单片机控制的变频调速系统设计思想是用转差频率进行控制。

通过改变程序来达到控制转速的目的。

由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。

系统的总体结构主要由主回路,驱动电路,光电隔离电路,SA8282大规模集成电路,保护电路,AT89C51单片机, 8255可编程接口芯片,I/O接口芯片,测速发电机等组成。

回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。

关键词:AT89C51单片机;SA8282;转差频率;交流调速;三相异步电动机目录前言 (1)第1章交流调速系统的概述 (4)1.1交流调速的基本原理 (4)1.2 交流调速的特点 (5)第2章交流调速系统的硬件设计 (7)2. 1 转差频率控制原理: (7)2. 2 系统设计的参数 (7)2.3 用单片机控制的电机交流调速系统设计 (7)2.3.1调速系统总体方案设计 (7)2.3.2 元器件的选用 (9)2.3.3 系统主回路的设计以及参数计算 (12)2.3.4 SPWM控制信号的产生 (15)2.3.5 光电隔离及驱动电路设计 (17)2.3.6 故障检测及保护电路设计 (18)2.3.7 模拟量输入通道的设计 (18)第3章系统软件的设计 (19)3.1 主程序的设计 (19)3.2 转速调节程序 (19)3.3 增量式PI运算子程序 (20)3.4故障处理程序 (21)3.5 部分子程序 (22)3.5.1 AD0809的编程 (22)3.5.2 8255的编程 (23)结论 (23)参考文献 (23)前言自上个世纪90年代以来,近代交流调速步入了以变频调速为主导的发展阶段。

其间,由于各种新型电力电子器件的支持,使变频调速在低压(380 V)、中小容量(200 kW以下)方面取得了较大的进展。

但是面对高压(6~10 kV)中大容量领域,由于电力电子器件自身规律的限制,变频调速在技术上遇到了很大困难,无论是“高-低”“、高-低-高”以及“多电平串联”等方案,都在实践中暴露出技术复杂、价格昂贵、效率降低、可靠性较差等缺点。

从理论上看,高压变频所面临的问题是违反电力电子器件客观规律的结果,因为目前几乎所有的电力电子器件,其材料、工艺机理都决定了其属性是低压大电流的。

尽管如此,高压变频的势头仍有增无减,除了客观市场需求的拉动以外(诸如高压中大容量的风机泵类节能),主要是“变频调速是唯一的最佳交流调速”理论导向的结果。

根据近代交流调速理论,交流调速被划分为变频、变极和变转差率三种方案,在缺乏科学分析的条件下,认定变转差率调速是低效率的,而变极调速又属于有级调速,因此惟有变频调速最佳。

而变频调速方法与变转差调速方法有本质不同,从高速到低速都可以保持有限的转差率,因而变频调速具有高效率、宽范围和高精度的调速性能。

可以认为,变频调速是交流电动机的一种比较合理和理想的调速方法。

”随着电力电子技术、微电子技术和自动控制理论的发展,交流调速技术也有了日新月异的变化。

可调速的高性能交流电力拖动系统在工业上的应用也越来越广。

进入21世纪交流调速技术也进入了现代交流调速技术时代,现代交流调速技术也成为人类社会的重大技术进步之一。

其发展速度之快、应用覆盖范围之广都是前所未有的。

而且应用实践表明,采用现代交流调速技术极大的提高了传动系统的运行质量,同时,带来了巨大的经济和社会效益。

第1章 交流调速系统的概述1.1 交流调速的基本原理本文以地毯背涂机为例叙述在地毯制造业上的应用。

图1-1三相异步电动机结构示意图1—机座;2—定子铁心;3—定子绕组;4—转子铁心;5—转子绕组;变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。

常用三相交流异步电动机的结构为图1所示。

定子由铁心及绕组构成,转子绕组做成笼型(见图1-2),俗称鼠笼型电动机。

当在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。

电机磁场的转速称为同步转速,用n1表示()m r pf n /601= (1-1) 式中:f ——三相交流电源频率,一般为50Hz 。

p ——磁极对数。

当p=1时,1n =3000r/min ;p=2时,1n =1500r/min 。

可见磁极对数p 越多,转速1n 越慢。

转子的实际转速n 比磁场的同步转速n1要慢一点,所以称为异步电机,这个差别用转差率s 表示:()0011100⨯-=n n n s (1-2)当加上电源转子尚未转动瞬间,n=0,这时s=1;起动后的极端情况n=1n ,则s=0,即s 在0~1之间变化。

一般异步电机在额定负载下的s=(1~6)%。

综合式(1-1)和式(1-2)可以得出()ps f n -=160 (1-3) 由式(1-3)可以看出,对于成品电机,其磁极对数p 已经确定,转差率s 变化不大,则电机的转速n 与电源频率f 成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。

1.2 交流调速的特点对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。

这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。

交流调速系统与直流调速系统相比较,具有如下特点:1. 容量大 这是电动机本身的容量所决定的。

直流电动机的单机容量能达到12—14MW ,而交流电动机的容量却远远的高与此数值。

2. 转速高,而且耐压 直流电动机受到换向器的限制,最高电压只能达到1000多伏,而交流电动机容量可达到6—10KV ,甚至更高。

一般直流电动机最高转速只能达到3000转/min 左右,而交流电动机则可以高达每分钟几万转。

这使得交流电动机的调速系统具有耐高压,转速高的特点。

3. 交流电动机本身的体积,重量,价格比同等容量的直流电动机要小,且交流电动机结构简单,坚固耐用,经济可靠,惯性小成了交流调速系统的一大优点。

4. 交流电动机的调速装置环境适应性广。

直流电动机由于结构复杂,换向器工作要求高,使用中受到很多限制,如工厂里的酸洗车间,由于腐蚀严重,使用直流电动机每周都要检查碳刷,维修起来比较困难,而交流电动机却可以用在十分恶劣的环境下不至于损坏。

5. 由于高性能,高精度,新型调速系统的出现和不断发展,交流拖动系统已达到同直流拖动系统一样的性能指标,越来越广泛的应用于 国民经济的各个生产领域。

6. 交流调速装置能显著的节能。

工业上大量使用的风机,水泵,压缩机类负载都是靠交流电动机拖动的,这类装置的用电量占工业用电量的50%,以往都不对电动机调速,而仅采用挡板,节流阀来控制风量或流量。

大量的电能被白白的浪费掉,如果采用交流电动机调速系统来改变风量或流量的话,效率就会大大的提高,从各方面来看,改造恒速交流电动机为交流调速电动机,有着可观的能源效益。

交流电动机因其结构简单,运行可靠,价格低廉,维修方便,故而应用面很广,几乎所有的调速传动都采用交流电动机。

尽管从1930年开始,人们就致力于交流调速系统的研究,然而主要局限于利用开关设备来切换主回路达到控制电动机启动,制动和有级调速的目的。

变极对调速,电抗或自藕降压启动以及绕线式异步电动机转子回路串电阻的有级调速都还处于开发的阶段。

交流调速缓慢的主要原因是决定电动机转速调节主要因素的交流电源频率的改变和电动机的转距控制都是非常困难的,使交流调速的稳定性,可靠性,经济性以及效率均不能满足生产要求。

后来发展起来的调压,调频控制只控制了电动机的气隙磁通,而不能调节转距。

转差频率控制在一定程度上能控制电动机的转距。

第2章 交流调速系统的硬件设计 2.1 转差频率控制原理:当稳态气隙磁通恒定时.异步电机的机械特性参数表达式为:()()()220222102222221211)(3⎪⎪⎭⎫ ⎝⎛∆+∆Φ=+=σσωωωx n n r r n n C sx r r s E P T n (2-1)当实际转差额定空载转速相比很小时(0n n <<∆),220r x n n <<∆σ ,可以从式中约去,这样式(2-1)可以简化为:()()2022222102n r C r r n n C T s m n m n 'Φ=∆Φ≈ωω 其中1602ωπωn n p s ∆=∆=(2-2) 从式(2-2)中可得,当转差频率s ω较小且磁通m Φ恒定时,电机的电磁转矩T 与s ω成正比。

这时只要控制转差频率s ω就能控制转矩T ,从而实现对转速的控制。

若要使转差频率s ω较小,只要有提供异步电动机的实际转速反馈即可实现。

若要保持m Φ为恒值,即保持励磁电流m I 恒定,而励磁电流m I 与定子电流1I 有如下关系,()()[]()222221221σσωωωL r L L r f s m m s '+''++'I ==I (2-3) 因此若,1I 按照上述规律变化,则m I 恒定,即m Φ恒定。

转差频率控制策略是:利用测速环节得到转速ωU 与转速给定*ωU 、比较,限制输出频率,使转差率S U ω (即S ω)不太大;控制定子电流1I ,使得励磁电流m I 保持恒定;这时控制s ω实现调速。

系统原理图如图2-l 所示。

图2-l 转差频率控制变频调速系统原理图从图2-1可知.系统由速度调节器、电流调节器、函数发生器、加法器,整流与逆变电路,PWM 控制电路,异步电动机及测量电路等组成,其中异步电动机由SPWM 控制逆变器供电。

转速调节器ASR 的输出是转差频率给定值ωU ,表转矩给定。

函数发生器输入转差频率产生*1i U 。

信号,并控制定子电流。

以保持m Φ为恒值;加法器对转差频率和转速信号求和得到变频器的输出频率。

从而实现三相异步电机变频调速。

2.2 系统设计的参数对一台三相异步电动机调速系统进行设计。

异步电动机的参数:KW n 2.2=P ,min /1440r n =N ,V U s 380=,∆接法,A =I N 8.4采用转差频率控制方法,由单片机组成核心。

调速范围(2.2—51HZ ),无级调速,静差率005≤S 。

根据对象参数,完成各功能单元的结构设计,参数计算。

2.3 用单片机控制的电机交流调速系统设计2.31 调速系统总体方案设计转速开环恒压频比的调速系统,虽然结构简单,异步电动机在不同频率小都能获得较硬的机械特性但不能保证必要的调速精度,而且在动态过程中由于不能保持所需的转速,动态性能也很差,它只能用于对调速系统的静,动态性能要求不高的场合。

相关文档
最新文档