数学必修二第一章空间几何体知识点与习题

合集下载

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

数学必修二第一章空间几何体知识点与习题

数学必修二第一章空间几何体知识点与习题

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”练习3.有一个几何体的三视图如下图所示,这个几何体应是一个A.棱台B. 棱锥C. 棱柱D..块木块堆成第一章空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:常见的旋转体有:(2)简单组合体的构成形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成练习1.下图是由哪个平面图形旋转得到的( )2、柱、锥、台、球的结构特征(1)棱柱:定义:分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDE A'B'C'D'E'或用对角线的端点字母,如五棱柱AD'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥:定义:分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。

(3 )棱台:定义:分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点练习2 •一个棱柱至少有 ___________ 个面,面数最少的一个棱锥有____________________ 个顶点,顶点最少的一个棱台有__________________条侧棱。

3. 空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

精品 高中数学 必修二 第01章 空间几何体 题典

精品 高中数学 必修二 第01章 空间几何体 题典

1 Sh ,其中 S 是锥体的底面积,h 是锥体的高. 3 1 ③ V台体 h( S SS S ) ,其中 S' ,S 分别是台体的上、下底面的面积,h 为台体的高. 3 4 3 ④ V球 πR ,其中 R 是球的半径. 3
② V锥体
第 2 页 共 60 页
高中数学 必修二
3 3 2 6
(3)解:过点 P 作 PO⊥平面 ABC 于点 O,则点 O 是正△ABC 的中心,∴ OD 1 AD 1 3a 3a , 在 Rt△POD 中, PO PD 2 OD 2 3 3b 2 a 2 ,
正棱锥

第 1 页 共 60 页
高中数学 必修二
3.简单几何体的三视图与直观图: (1)平行投影: ①概念:如图,已知图形 F,直线 l 与平面相交,过 F 上任意一点 M 作直线 MM1 平行于 l,交平 面于点 M1,则点 M1 叫做点 M 在平面内关于直线 l 的平行投影.如果图形 F 上的所有点在平面内 关于直线 l 的平行投影构成图形 F1,则 F1 叫图形 F 在内关于直线 l 的平行投影.平面叫投射面,直 线 l 叫投射线.
②平行投影的性质: 性质 1.直线或线段的平行投影仍是直线或线段; 性质 2.平行直线的平行投影是平行或重合的直线; 性质 3.平行于投射面的线段,它的投影与这条线段平行且等长; 性质 4.与投射面平行的平面图形,它的投影与这个图形全等; 性质 5.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比. (2)直观图:斜二侧画法画简单空间图形的直观图. (3)三视图: ①正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影. ②三视图:选取三个两两垂直的平面作为投射面.若投射面水平放置,叫做水平投射面,投射到这 个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图形叫做 主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视 图. 将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构 成的图形叫空间图形的三视图. ③画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽” . 4.简单几何体的表面积与体积: (1)柱体、锥体、台体和球的表面积: ①S 直棱柱侧面积=ch,其中 c 为底面多边形的周长,h 为直棱柱的高. ② S正棱锥形面积 ③ S正棱台侧面积

高中数学必修2(人教A版)第一章几何空间体1.3知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.3知识点总结含同步练习及答案
高中数学必修2(人教A版)知识点总结含同步练习题及答案
第一章 空间几何体 1.3 空间几何体的表面积与体积
一、学习任务 了解球、棱柱、棱锥、台的表面积和体积的计算公式.会求直棱柱、正棱锥、正棱台、圆柱、圆 锥、圆台和球的表面积和体积. 二、知识清单
表面积与体积 表面距离
三、知识讲解
1.表面积与体积 描述: 多面体的表面积 多面体的表面积等于各个面的面积之和,也就是展开图的面积. 表面积公式 直棱柱 S 侧 = ch ,S 全 = ch + 2S 底 (其中 c 为底面周长, h 为棱柱的高). 正棱锥
− 解:√− 10 将三棱柱沿着 AA 1 展开如图所示,则线段 AD 1 即为最短路线,即 − − − − − −− − − − − −. AD 1 = √AD 2 + DD 2 1 = √10
如图,在圆锥中,其母线长为 2 ,底面半径为
面爬行一周后又回到 A 点,则这只虫子爬行的最短路程是多少?
PA = PB = PC = 2 ,求三棱锥 P − ABC 的表面积 S 与体积 V .
P A 、P B 、P C 两两互相垂直,且 P A = P B = P C = 2,所以 AB = AC = BC = 2√2 ,可得 △ABC 的高为 √6 .所以
解:因为
S = S △PAC + S △PAB + S △PBC + S △ABC 1 1 = 3 × × 2 × 2 + × 2√2 × √6 2 2 = 6 + 2√3 ;
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 正方体的内切球与其外接球的体积之比为 (
)
A.1 : √3
答案: C

高中数学必修2第一章空间几何体知识点习题

高中数学必修2第一章空间几何体知识点习题

精品文档一、知识回顾(一)空间几何体的结构1. 多面体与旋转体:多面体棱顶点. 旋转体轴.2. 棱柱:直棱柱斜棱柱正棱柱棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

3. 棱锥:棱锥的底面或底顶点侧棱正棱柱斜高(1)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(2)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。

②正棱锥的高,斜高和斜高在底面上的射影组成一个直角三角形,正棱锥的高,侧棱,侧棱在底面内的射影也组成一个直角三角形。

③正棱锥的侧棱与底面所成的角都相等。

④正棱锥的侧面与底面所成的二面角都相等。

4. 圆柱与圆锥:圆柱的轴圆柱的底面圆柱的侧面圆柱侧面的母线5. 棱台与圆台:统称为台体(1)棱台的性质:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.(2)圆台的性质:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.6. 球:球体球的半径球的直径. 球心7. 简单组合体:由简单几何体(如柱、锥、台、球等)组合而成的几何体叫简单组合体.(二)空间几何体的三视图和直观图1.中心投影平行投影正投影2.三视图的画法:长对正、高平齐、宽相等。

3.直观图:斜二测画法,直观图中斜坐标系,两轴夹角为;平行于x轴长度不变,?45'ox''y平行于y轴长度减半。

(三)空间几何体的表面积和体积1.柱体、锥体、台体表面积求法:利用展开图2.柱体、锥体、台体表面积体积公式,球体的表面积体积公式:精品文档.精品文档侧直截面周长侧棱长棱锥S?S?S1hSV?侧底全底高3棱台S?S?S?S1侧下底上底全hS)?(S'?S'S?V3圆柱2??rh?S?22r2?hrV?全hr:高):底面半径,(圆锥2??rlr?S?12?hrV?全3lr(:母线长):底面半径,圆台22?)rl?r'S?l(r'??r122?h)?r'(r'?rr?V全3lr'r:母(:上底半径,:下底半径,线长)球体2?RS?443?RV?球面球3二、例题精讲给出如下四个命题:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有例1.④棱台的侧棱所在直线均相交于同一侧面都有一个共同的公共点;③多面体至少有四个面;数其.中正确的命题个有点)(个.4DC .3个 B A .1个.2个右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积2.例是( )π B.10π C.11π D.12πA.9AD、的F例3.一个多面体的直观图及三视图如图所示(其中E、分别是PB 中点). EF (Ⅰ)求证:⊥平面PBC;的体积。

高二数学必修二第一章知识点+习题+答案

高二数学必修二第一章知识点+习题+答案

第一章空间几何体1.1柱、锥、台、球的结构特征1.棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。

3.棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分几何特征:上下底面是相似的平行多边形;侧面是梯形;侧棱交于原棱锥的顶点4.圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。

5.圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。

6.圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。

7.球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。

1.2空间几何体的三视图和直观图 1.画三视图的原则:长对齐、高对齐、宽相等2.斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积1.棱柱、棱锥的表面积: 各个面的面积之和2. 圆柱的表面积3. 圆锥的表面积2r rl S ππ+=4.圆台的表面积22R Rl r rl S ππππ+++=5.球的表面积24R S π=(二)空间几何体的体积1.柱体的体积 h S V ⨯=底2.锥体的体积 h S V ⨯=底313.台体的体积 h S S S S V ⨯++=)31下下上上( 4.球体的体积334R V π=222r rl S ππ+=第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的( A )A B C D2.如图是一个物体的三视图,则此物体的直观图是( D ).3.有一个几何体的三视图如下图所示,这个几何体可能是一个( A ).主视图左视图俯视图A.棱台B.棱锥C.棱柱D.正八面体4.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由____4___块木块堆成图(1)5.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( A ).A .2+2B .221+ C .22+2 D .2+16.棱长都是1的三棱锥的表面积为( A ). A .3B .23C .33D .437.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( B ).A .25πB .50πC .125πD .都不对 8.正方体的棱长和外接球的半径之比为( C ). A .3∶1B .3∶2C .2∶3D .3∶39.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( D ).A .29π B .27π C .25π D .23π 10.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( D ).A .130B .140C .150D .160 11.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( D ).A .29 B .5 C .6 D .21512.下列关于用斜二测画法画直观图的说法中,错误..的是( B ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同 C .水平放置的矩形的直观图是平行四边形 D .水平放置的圆的直观图是椭圆二、填空题1.一个棱柱至少有___5___个面,面数最少的一个棱锥有____4____个顶点,顶点最少的一个棱台有___3_____条侧棱.2.若三个球的表面积之比是1∶2∶3,则它们的体积之比是___ _1∶22∶33___.3.正方体ABCD -A 1B 1C 1D 1 中,O 是上底面ABCD 的中心,若正方体的棱长为a ,则三棱锥O -AB 1D 1的体积为_________361a____.4.如图,E ,F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是_平行四边形或线段.5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是_____6______,它的体积为___6________.6.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为__12_______厘米.三、解答题1.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π.V =V 台-V 锥=31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.2.如图所示是一个四棱柱铁块,画出它的三视图.3.依所给实物图的形状,画出所给组合体的三视图.。

人教版高中数学必修2第一章空间几何体练习题及答案全

人教版高中数学必修2第一章空间几何体练习题及答案全

第一章空间几何体1.1 空间几何体的构造一、选择题1、以下各组几何体中是多面体的一组是〔〕A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、以下说法正确的选项是〔〕A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面相互平行,其余各面均为梯形的多面体是棱台C 有两个面相互平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面相互平行,侧面均为平行四边形3、下面多面体是五面体的是〔〕A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、以下说法错误的选项是〔〕A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是〔〕A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个〔〕A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

8、一个棱柱有10个顶点,全部侧棱长的和为60,那么每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、程度放置的正方体分别用“前面、后面、上面、下面、左面、右面〞表示。

图中是一个正方体的平面绽开图,假设图中的“似〞表示正方体的前面,“锦〞表示右面,“程〞表示下面。

那么“祝〞“你〞“前〞分别表示正方体的—————三、解答题:祝你前程似锦11、长方体—A 1B 1C 1D 1中,=3,=2,1=1,由A 到C 1在长方体外表上的最短间隔 为多少?12、说出以下几何体的主要构造特征 〔1〕 〔2〕 〔3〕 一、选择题1、两条相交直线的平行投影是〔 〕A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是〔 〕① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱A ②①③B ①②③C ③②④D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图侧视图 俯视图甲 乙 丙3、假如一个几何体的正视图和侧视图都是长方形,那么这个几何体可能是〔 〕A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥A A 1B 1BC C 1D 1 D4、以下说法正确的选项是〔 〕A 程度放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍旧是平行四边形D 相互垂直的两条直线的直观图仍旧相互垂直5、假设一个三角形,采纳斜二测画法作出其直观图,其直观图面积是原三角形面积的〔 〕 A 21倍 B 42倍 C 2倍 D 2倍6、如图〔1〕所示的一个几何体,,在图中是该几何体的俯视图的是〔 〕二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图及俯视图是两个全等的———————三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有: 常见的旋转体有:(2)简单组合体的构成形式: 一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成. 练习1.下图是由哪个平面图形旋转得到的( ) A B C D2、柱、锥、台、球的结构特征 (1)棱柱:定义:分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥:定义:分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。

(3)棱台:定义:分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 练习2.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。

3.空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 练习3.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对练习4.如图是一个物体的三视图,则此物体的直观图是( ).练习5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(1) 图(2)图(2)中的三视图表示的实物为_____________。

4、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 斜二测画法的基本步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 练习6.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆注:直观图与原图的面积之比为42:1,或者原图与直观图面积之比为1:22 练习7.1.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+B .221+ C . 222+ D . 21+ 7.2、若一个△ABC ,采用斜二测画法作出其直观图是面积等于1的△A 1B 1C 1,则原△ABC 的面积是( ) A . 12 B.2 C. 2 D.227.3、一个水平放置的三角形的斜二侧直观图是等腰直角三角形A ′B ′O ′,若O ′B ′=1,那么原△ABO 的面积是( ) A 、 12 B 、22C 、2D 、22 5、空间几何体的表面积与体积 ⑴圆柱侧面积、表面积: ⑵圆锥侧面积、表面积: ⑶圆台侧面积、表面积:练习8.棱长都是1的三棱锥的表面积为( )3 B. 23333说明: 正三棱锥是锥体中底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。

正三棱锥不等同于正四面体,正四面体必须每个面都是________________。

正三棱锥的性质: 6体积公式:练习9.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则12:V V =( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1练习10.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( ) A.92π B. 72π C. 52π D. 32π练习11.半径为R 的半圆卷成一个圆锥,则它的体积为( )A 3RB 3RC 3RD 3R 练习12.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7 B.6 C.5 D.3 7.球的表面积和体积.练习13.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。

练习14.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对练习15.正方体的内切球和外接球的半径之比为( )A B 2 C .2: D 3第一章 空间几何体测试题一、选择题1 棱长都是1的三棱锥的表面积为( )A B C D 2 正方体的内切球和外接球的半径之比为( )AB2 C 2 D33 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A 28cm π B 212cm π C 216cm π D 220cm π4 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A 7 B 6 C 5 D 35 在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A23 B 76 C 45D 566 如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A 8:27 B 2:3 C 4:9 D 2:97、正方体的全面积为18cm 2,则它的体积是( )A 、4cm 3;B 、8cm 3;C 、72112cm 3;D 、33cm 3。

二、填空题8 已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体的对角线长是______;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________9 Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________10 等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体11 若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________12 球的半径扩大为原来的2倍,它的体积扩大为原来的 ______ 倍13 一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米14 已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________三、解答题15 将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积16 有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?17 已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长18 如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积第一章空间几何体一、选择题1、下列说法中正确的是( )A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等2、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥3、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A. B. C.D.4、如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是( )5、长方体的高等于h,底面积等于S,过相对侧棱的截面面积为S′,则长方体的侧面积等于( )A. B. C. D.6、棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1、S2、S3,则( )A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S27、正四面体的内切球球心到一个面的距离等于这个正四面体高的( )A. B. C.D.8、若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是A.1∶16B.3∶27C.13∶129D.39∶129二、填空题1、下列有关棱柱的说法:①棱柱的所有的面都是平的;②棱柱的所有的棱长都相等;③棱柱的所有的侧面都是长方形或正方形;④棱柱的侧面的个数与底面的边数相等;⑤棱柱的上、下底面形状、大小相等.正确的有__________.2、一个横放的圆柱形水桶,桶内的水占底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为_________.3、一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为_________.4、一圆台上底半径为5 cm ,下底半径为10 cm ,母线AB 长为20 cm ,其中A 在上底面上,B 在下底面上,从AB 中点M ,拉一条绳子,绕圆台的侧面一周转到B 点,则这条绳子最短长为____________. 三、解答题1、圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成︒60角,则圆台的侧面积为?2、在底半径为2,母线长为43的圆柱,求圆柱的表面积参考答案1 A 3 B 11 A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面2134123V ππ=⨯⨯= (1)4 (2)圆锥1 A 因为四个面是全等的正三角形,则3443S S ===表面积底面积长方体的对角线是球的直径,2 D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a 323232a a a r r a r r r r =====内切球内切球外接球外接球内切球外接球,,:: 3 B 正方体的顶点都在球面上,则球为正方体的外接球,则232R =,23,412R S R ππ===4 A (3)84,7S r r l r ππ=+==侧面积5 D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥6 D 121:():()3:13V V Sh Sh ==7 C 121212:8:27,:2:3,:4:9V V r r S S ===86设2,3,6,ab bc ac ===则6,3,2,1abc c a c ====3216l =++= 15 设3,5,15ab bc ac ===则2()225,15abc V abc ===9 16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥, 2211431633V r h πππ==⨯⨯=10 < 设333343,,34V V R a a V R ππ==== 333322222266216,436216S a V V S R V V ππ=====<正球11233aππ设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =,而22S r r r a ππ=+⋅=圆锥表,即233,3a a r a r πππ===,即直径为233a ππ12 8 21212,8r r V V ==13 12 2334,6427123V Sh r h R R ππ====⨯= 14 28 ''11()(441616)32833V S SS S h =++=⨯+⨯+⨯=15 解:设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则21203,3360l l ππ==;232,13r r ππ⨯==;24,S S S rl r πππ=+=+=侧面表面积底面 2112212233V Sh ππ==⨯⨯⨯= 16.解:''''1(),3V S SS S h h S SS S=++=++ 319000075360024001600h ⨯==++17 解:2229(25)(25),7l l ππ+=+=18.解:S S S S =++表面圆台底面圆台侧面圆锥侧面25(25)32222πππ=⨯+⨯+⨯+⨯⨯25(21)π=+V V V =-圆台圆锥 222112211()331483r r r r h r hπππ=++-=1B2D3解析:设球半径为R ,截面半径为r.+r 2=R 2,∴r 2=.∴.4A 5解析:设长方体的底面边长分别为a 、b ,过相对侧棱的截面面积S′=①,S=ab②,由①②得:(a+b)2= +2S,∴a+b=,S侧=2(a+b)h=2h . 答案:C 6由截面性质可知,设底面积为S.;;可知:S 1<S 2<S 3故选A.7.把正四面体分成四个高为r 的三棱锥,所以4× S·r=·S·h,r= h (其中S 为正四面体一个面的面积,h 为正四面体的高)答案:C8.由题意设上、下底面半径分别为r ,4r ,截面半径为x ,圆台的高为2h ,则有,∴x=.∴.答案:D1①④⑤2横放时水桶底面在水内的面积为.V水=,直立时V 水=πR 2x,∴x:h=(π-2):4π 答案:(π-2):4π3由三视图知正三棱柱的高为2 cm,由侧视图知正三棱柱的底面三边形的高为 cm.设底面边长为a ,则,∴a=4.∴正三棱柱的表面积S=S 侧+2S 底 =3×4×2+2××4×=8(3+)(cm)答案:8(3+)(cm). 4扉形圆心角90° 答案:50cm1 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面2圆锥的高224223h =-=,圆柱的底面半径1r =,223(23)S S S πππ=+=+=+侧面表面底面 1。

相关文档
最新文档