物理中的微积分思想

合集下载

高中物理微积分应用(完美)

高中物理微积分应用(完美)

高中物理中微积分思想伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。

微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。

微积分是建立在实数、函数和极限的基础上的。

微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。

微积分学是微分学和积分学的总称。

它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。

无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。

微积分堪称是人类智慧最伟大的成就之一。

在高中物理中,微积分思想多次发挥了作用。

1、解决变速直线运动位移问题匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢?例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里?【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。

但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。

在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。

现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即2021at t v x +=。

【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s ,所以汽车由刹车到停车行驶的位移kmt t t a t v dt at v dt t v x 025.0)10()2()()(50252050050=-=+=+==⎰⎰小结:此题是一个简单的匀变速直线运动求位移问题。

微积分与物理学的关联

微积分与物理学的关联

微积分与物理学的关联引言微积分是数学的一个分支,它研究的是极限、导数、积分等概念和方法。

而物理学则是研究自然界的规律和现象的科学。

尽管微积分和物理学看似是两个完全不同的学科,但它们之间有着密切的关联。

本文将探讨微积分在物理学中的应用,以及微积分与物理学之间的相互影响。

微积分在物理学中的应用1. 运动学运动学是物理学的一个分支,研究物体的运动规律。

微积分在运动学中有着广泛的应用。

例如,通过对物体的位移-时间图像进行微积分,可以得到物体的速度-时间图像,进而求得物体的加速度。

微积分还可以用来解决复杂的运动问题,如抛体运动、圆周运动等。

2. 动力学动力学是研究物体运动的原因和规律的学科。

微积分在动力学中也有着重要的应用。

通过对物体受力的分析,可以建立物体的运动方程。

而微积分则可以用来求解这些运动方程,得到物体的位置、速度和加速度随时间的变化规律。

这为我们理解物体的运动提供了重要的工具。

3. 电磁学电磁学是研究电荷和电流之间相互作用的学科。

微积分在电磁学中的应用主要体现在电场和磁场的计算上。

通过对电荷分布的积分,可以求得电场的分布情况。

而对电流分布的积分,则可以得到磁场的分布情况。

这些积分运算需要借助微积分的方法和技巧。

4. 热力学热力学是研究热现象和能量转化的学科。

微积分在热力学中的应用主要涉及到对能量的积分。

例如,通过对压强和体积的积分,可以得到系统的功;通过对温度和熵的积分,可以得到系统的热量。

微积分为热力学的定量描述提供了基础。

微积分对物理学的影响1. 理论建立微积分的发展推动了物理学理论的建立和发展。

例如,牛顿的经典力学理论就是建立在微积分的基础上。

微积分的概念和方法为物理学家提供了解决复杂问题的工具,推动了物理学的发展。

2. 精确计算微积分的方法可以用来进行精确的数值计算。

在物理学中,我们经常需要对物理量进行精确的计算,如精确的速度、加速度、力等。

微积分提供了一种精确计算的手段,使得我们能够更准确地描述和预测物理现象。

浅谈微积分的认识在物理教学中的应用

浅谈微积分的认识在物理教学中的应用

浅谈微积分的认识在物理教学中的应用
微积分是数学中的一个重要分支,也是物理学中不可或缺的工具。

在物理教学中,微积分的认识十分必要,以下是一些例子:
1. 运动学分析:微积分中的导数和积分可以应用到运动学分析中,以求得速度、加速度、位置等关键信息。

通过微积分的分析,可以帮助学生深入理解物体的运动规律,并进行更加精确的运动预测和控制。

2. 力学分析:运用微积分的概念,可以对物理学中的力学问题进行分析,如牛顿定律,重力,弹性力等。

通过微积分的工具和方法,可以更加深入地理解和应用物理学中的法则和理论。

3. 光学问题:微积分中的几何和微积分学概念可以应用到光学问题中,如光的传播原理,反射和折射现象等。

通过微积分的知识和工具,可以帮助学生深入理解光学的基础原理,并进行更加精确的预测和分析。

4. 热力学分析:热力学分析中的微积分概念,如微分和积分可以应用到物理学中的热力学分析中,如热容,温度,热传导等。

通过微积分的分析,可以更加深入地了解热力学的基本规律和特性。

总之,微积分的认识在物理教学中是不可或缺的,它可以帮助学生更好地理解和应用物理学中的基础概念和理论,以便更加轻松地掌握物理学的知识和应用。

微积分在物理的应用

微积分在物理的应用

微积分在物理的应用
微积分在物理学中有广泛的应用,主要体现在以下几个方面:
1. 速度和加速度的计算:微积分可以用于计算物体的速度和加
速度。

通过对物体的位置函数进行微分,可以得到物体的速度函数;再对速度函数进行微分,可以得到物体的加速度函数。

2. 曲线及面积的计算:微积分可以用于计算曲线和面积。

通过
对曲线进行积分,可以得到曲线下的面积;再通过对面积进行微分,可以得到曲线的长度。

同样地,对于曲面,可以通过对曲面进行积分,得到曲面下的体积。

3. 力学问题的求解:微积分可以用于求解力学问题,例如弹性
势能、动能和势能等。

通过对力学方程进行微分和积分,可以得到物体的运动状态和能量变化情况。

4. 电磁学问题的求解:微积分也可以用于求解电磁学问题。

例如,通过对带电粒子在电场中的运动轨迹进行微分和积分,可以得到带电粒子的加速度和速度等信息。

总之,微积分是物理学中非常重要的工具,可以帮助我们理解物理学中的许多现象和问题,同时也为我们提供了解决这些问题的方法。

- 1 -。

高中物理中微积分思想的应用

高中物理中微积分思想的应用

首先,导数和积分的最直观的表现:位置,速度,加速度三个物理量之间的关系。

以时间为自变量,则速度是位置和时间关系函数的导函数,也就是表示任意一点位置和时间关系图像的切线斜率的函数,加速度是速度时间函数关系的导函数。

同理,我们知道加速度时间图像中面积表示的是速度的变化量,也就是对加速度和时间的函数求积分可以得到速度时间关系;类似的速度时间图像中的面积表示位移,也就是对速度时间函数求积分得到位置时间关系。

其次,导数等于零时,则函数则有极值。

这个在物理中应用明显。

物理题目中经常出现有关于极值情况的描述,比如,“平衡”,“距离最大”或者“距离最小”,“能量最大”,“能量最小”,“速度最大”,“速度最小”等等情况。

这些都表示可以用某个函数的导数为零的方法来求。

例如我们最常见到的平衡问题,其实都是能量和位置的函数关系中的导数为零。

能量和位置关系的导数的相反数,就是这个能量对应的力的大小。

再次,用积分方法,可以求体积,面积,重心等等问题,这些问题在高考中涉及较少,但是通过这些问题的计算可以帮助同学们对于微积分,微元法,对于重心等物理概念有更深入的了解。

用类似的方法,可以求球体的表面积,球体体积等等。

除此之外,在高中所学知识中,可以用微积分帮助理解的内容还有很多。

通过这些内容的学习,既可以加强学生对物理概念的认识,也可以加深学生对微积分的领会。

毕竟微积分当时发明的目的就是为了解决物理问题。

高中物理微积分应用(完美)

高中物理微积分应用(完美)

我们解决物理问题。
导数
㈠ 物理量的变化率
我们经常对物理量函数关系的图像处理,比如v-t图像,求其斜率可
以得出加速度a,求其面积可以得出位移s,而斜率和面积是几何意义上
的微积分。我们知道,过v-t图像中某个点作出切线,其斜率即a=.
t
v
下面我们从代数上考察物理量的变化率:
【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t2,
式:
⑴ 导数的四则运算
①=±
③=
②=·v + u·
⑵ 常见函数的导数
①=0(C为常数); ④=-sint;
②=ntn-1 (n为实数); ⑤=et;
③=cost;
⑶ 复合函数的导数
在数学上,把u=u(v(t))称为复合函数,即以函数v(t)为u(x)的自
变量。

复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以
L(弧长)=α(弧度)x r(半径) (弧度制)
又因为车在A、B两点以速率v作圆周运动,所以:
综合以上各式得: F= 圆周运动向心力公式 故摩擦力对车所做的功: 【微积分解】物体在轨道上受到的摩擦力,从最低点运动到最高点摩擦 力所做的功为 小结:这题是一个复杂的变力做功问题,利用公式直接求功是难以办到
小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直 线运动,只要结合物理知识求速度关于时间的函数,画出v-t图像, 找“面积”就可以。或者,利用定积分就可解决.
2、解决变力做功问题
v 恒力做功,我们可以利用公式直接求出;但对于变力做功,我们如
何求解呢? 例2:如图所示,质量为m的物体以恒定速率v沿半径为R的竖直圆轨道 运动,已知物体与竖直圆轨道间的摩擦因数为,求物体从轨道最低点运 动到最高点的过程中,摩擦力做了多少功。

微积分在物理学中的应用

微积分在物理学中的应用

微积分在物理学中的应用微积分是数学的一个重要分支,它研究的是变化、运动以及量的变化。

它的基本思想在物理学中具有广泛的应用,涵盖了从简单的运动到复杂的力学系统、热力学、电磁学甚至量子力学等多个领域。

本文将探讨微积分在物理学中的一些关键应用,阐明其理论基础和实际重要性。

一、微积分的基本概念在讨论微积分在物理学中的应用之前,有必要简要理解微积分的基本概念。

微积分主要由两部分组成:微分和积分。

微分主要用于研究函数在某一特定点的变化率,而积分则用于计算函数在一个区间内的累积量。

这两者通过微积分基本定理紧密相连,前者为后者提供了定义和理论基础。

二、运动学中的应用运动学是物理学的一个分支,专注于物体的运动描述。

在运动学中,微积分被用于处理位置、速度和加速度之间的关系。

位置与速度假设一个物体在直线上的位置可以用时间t的函数x(t)来表示。

通过对位置函数进行微分,可以得到物体的瞬时速度,即:反之,如果已知物体的速度v(t),我们可以对其进行积分以求得位置x(t):[ x(t) = v(t) dt ]加速度与速度类似地,加速度是速度随时间变化的速率。

其表达为:[ a(t) = ]同样,若已知加速度a(t),则可以通过积分求得速度:[ v(t) = a(t) dt ]这些公式使得我们能够通过已知的条件推导出另一个量,极大地方便了运动分析。

三、力学中的应用力学是研究物质及其运动规律的一门科学,其中涉及到很多与微积分密切相关的概念。

牛顿第二定律牛顿第二定律指出,一个物体所受的总外力等于其质量与加速度的乘积。

数学表达为:[ F = m a ]考虑到加速度a可以表示为速度对时间的导数,我们有:因此,力F也可以被视为对动量p = mv(即质量与速度的乘积)时间变化率的描述:[ F = ]这表明,在系统分析中,通过微分我们能理解物体动量变化与受力之间深刻而又紧密的关系。

动能定理此外,微积分也被广泛应用于动能定理中。

动能是与物体运动状态相关的一种能量形式,其表达式为:[ KE = mv^2 ]当受力做功W时,系统的动能改变可以表示为:[ W = KE_f - KE_i = _{x_i}^{x_f} F dx ]此处,功W是通过移位过程中的力F与位移x之间关系而得出的,这展示了微积分在分析能量转化过程中的重要性。

物理中的微积分思想

物理中的微积分思想

高中物理中微积分思想浙江省湖州中学物理组 潘建峰 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。

微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。

微积分是建立在实数、函数和极限的基础上的。

微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。

微积分学是微分学和积分学的总称。

它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。

无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。

微积分堪称是人类智慧最伟大的成就之一。

在高中物理中,微积分思想多次发挥了作用。

1、解决变速直线运动位移问题匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢?例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里?【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。

但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。

在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。

现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即2021at t v x +=。

【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(502502050050=-=+=+==⎰⎰ 小结:此题是一个简单的匀变速直线运动求位移问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理中微积分思想
浙江省湖州中学物理组 潘建峰 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。

微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。

微积分是建立在实数、函数和极限的基础上的。

微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。

微积分学是微分学和积分学的总称。

它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。

无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。

微积分堪称是人类智慧最伟大的成就之一。

在高中物理中,微积分思想多次发挥了作用。

1、解决变速直线运动位移问题
匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢?
例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里?
【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。

但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。

在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。

现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即202
1at t v x +=。

【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(5025
02050050=-=+=+==⎰⎰ 小结:此题是一个简单的匀变速直线运动求位移问题。

对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v -t 图像,找“面积”就可以。

或者,利用定积分就可解决.
2、解决变力做功问题
恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我
们如何求解呢?
例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运
动,已知物体与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到
最高点的过程中,摩擦力做了多少功。

【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在不同位置与圆环间的正压力不同,故而摩擦力为一変力,本题不能简单的用s F W ⋅=来求。

可由圆轨道的对称性,在圆轨道水平直径上、下各取两对称位置A 和B ,设OA 、OB 与水平直径的夹角为θ。

在θ∆=∆R S 的足够短圆弧上,△S 可看作直线,且摩擦力可视为恒力,则在A 、B 两点附近的△S 内,摩擦力所做的功之和可表示为:
)(θμθμ∆-+∆-=∆R N R N W B A f
又因为车在A 、B 两点以速率v 作圆周运动,所以: 综合以上各式得:θμ∆-=∆22mv W f
故摩擦力对车所做的功:2
2222mv mv mv W W f f πμθμθμ-=∆∑-=∆-∑=∆∑=
【微积分解】物体在轨道上受到的摩擦力N F f μ=,从最低点运动到最高点摩擦力所做的功为
220
22)(mv d mv d R N R N W B A f πμθμθμμπ-=-=--=⎰⎰ 小结:这题是一个复杂的变力做功问题,利用公式直接求功是难以办到的。

利用微积分思想,把物体的运动无限细分,在每一份位移微元内,力的变化量很小,可以忽略这种微小变化,认为物体在恒力作用下的运动;接下来把所有位移内的功相加,即“无限求和”,则总的功就可以知道。

在高中物理中还有很多例子,比如我们讲过的瞬时速度,瞬时加速度、感应电动势、引力势能等都用到了微积分思想,所有这些例子都有它的共性。

作为大学知识在高中的应用,虽然微积分高中不要求,但他的思想无不贯穿整个高中物理。

“微积分思想”丰富了我们处理问题的手段,拓展了我们的思维。

我们在学习的时候,要学会这种研究问题的思想方法,只有这样,在紧张的学习中,我们才能做到事半功倍。

R
mv mg N R
mv mg N B A 2
2
sin sin =+=-θθ。

相关文档
最新文档