数据分析笔试题

合集下载

Python数据分析笔试题及答案

Python数据分析笔试题及答案

Python数据分析笔试题及答案(答案见尾页)一、选择题1.Python数据分析中,以下哪个库经常被使用?A.NumPyB.pandasC.SciPyD.scikit-learn2.在进行Python数据分析时,以下哪个操作可以用来处理缺失值?A.dropna()B.fillna()C.mean()D.median()3.Python中,以下哪个函数可以用来计算数据的方差?A.var()B.variance()C.std()D.stdev()4.列表和字典是Python中常用的两种数据结构,它们之间有什么区别?A.列表是有序的元素集合,字典是无序的键值对集合B.列表是有序的元素集合,字典是有序的元素集合C.列表是无序的元素集合,字典是无序的键值对集合D.列表是无序的元素集合,字典是有序的键值对集合5.在Python中,如何使用Pandas库读取CSV文件?A.read_csv()B.read_table()C.loadtxt()D.read_sql()6.以下哪个统计量通常用来描述数据的离散程度?A.均值B.中位数C.标准差D.四分位数间距7.在进行Python数据分析时,使用Pandas库的好处是什么?A.语法简洁B.功能强大C.易于上手D.扩展性强8.以下哪个Python库可以用来可视化数据?A.MatplotlibB.SeabornC.PlotlyD.Bokeh9.在Python中,如何对数据进行分组和聚合?A.使用groupby()函数B.使用sort_values()函数C.使用pivot_table()函数D.使用apply()函数10.以下哪个Python库提供了大量的机器学习算法?A.TensorFlowB.Scikit-learnC.KerasD.PyTorch11.Python数据分析中,以下哪个库经常被使用?A.NumPyB.pandasC.matplotlibD.scikit-learn12.在进行Python数据分析时,以下哪个操作可以用来处理缺失值?A.dropna()B.fillna()C.mean()D.median()13.以下哪个统计量常用于描述数据的离散程度?A.mean()B.median()C.variance()D.standard deviation()14.在数据可视化中,使用哪种图形来展示分布情况最合适?A.条形图B.折线图C.散点图D.带有核密度估计的折线图15.在进行时间序列分析时,以下哪个库最适合处理时间序列数据?A.NumPyB.pandasC.statsmodelsD.scikit-learn16.以下哪个函数可以用来计算数据的偏度?A.skew()B.kurtosis()C.median()D.mode()17.在进行多元数据分析时,以下哪个方法可以用来评估模型?A.R平方(R^2)B.混淆矩阵C.套索图D.贝叶斯信息准则(BIC)18.以下哪个库提供了大量的机器学习算法?A.TensorFlowB.scikit-learnC.KerasD.PyTorch19.在进行文本数据分析时,以下哪个库最适合处理文本数据?A.NLTKB.pandasC.matplotlibD.scikit-learn20.以下哪个操作可以用来排序数据?A.sort()B.sort_values()C.max()D.min()21.Python数据分析中,以下哪个库经常被使用?A.NumPyB.pandasC.SciPyD.scikit-learn22.在进行Python数据分析时,以下哪个操作可以用来清洗数据?A.使用正则表达式匹配文本数据B.使用Pandas库的`replace()`方法C.使用SQL查询语句D.使用NumPy的`where()`函数23.以下哪个统计量常用于描述数据的分布情况?A.均值B.中位数C.标准差D.方差24.在Python中,可以使用哪种数据结构来存储时间序列数据?A.列表B.元组C.字典D.数据帧(DataFrame)25.以下哪个函数可以用来计算两个DataFrame的差值?A.`inner_join()`B.`outer_join()`C.`subtract()`(DataFrame)D.`merge()`(DataFrame)26.在进行Python数据分析时,使用Pandas库的优势是什么?A.语法简洁B.功能丰富C.易于上手D.扩展性强27.以下哪个Python库提供了大量的机器学习算法?A.TensorFlowB.KerasC.Scikit-learnD.PyTorch28.在Python中,如何对数据进行分组分析?A.使用Pandas的`groupby()`方法B.使用SQL的`GROUP BY`子句C.使用NumPy的`groupby()`函数D.使用Pandas的`apply()`方法29.如果你需要对一个大型的CSV文件进行分析,以下哪种方法更合适?A.使用Pandas的`read_csv()`函数直接读取文件B.使用`numpy.fromfile()`函数直接读取文件C.使用Dask库的`dask.read_csv()`函数逐块读取文件D.使用`spark.read.csv()`函数从Spark中读取文件30.在Python中,如何对数据进行实时分析?A.使用Flask框架搭建Web服务B.使用Twisted框架搭建异步Web服务C.使用pandas库的`eval()`函数动态计算数据D.使用实时数据处理库如Apache Kafka31.Python数据分析中,以下哪个库经常被使用?A.NumPyB.pandasC.SciPyD.scikit-learn32.在进行Python数据分析时,以下哪个操作可以用来处理缺失值?A.dropna()B.fillna()C.mean()D.median()33.Python中,以下哪个函数可以用来计算数据的方差?A.var()B.std()C.mean()D.median()34.列表和字典在Python数据分析和操作中的主要区别是什么?A.列表是有序的元素集合,字典是无序的键值对集合B.列表用方括号表示,字典用花括号表示C.列表是不可变的,字典是可变的D.列表和字典都可以通过索引访问元素35.在Python中,使用Pandas库读取CSV文件时,以下哪个参数可以用来指定分隔符?A.sepB.headerC.index_cols36.以下哪个Python数据结构最适合存储具有层次结构的数据?A.列表B.元组C.字典D.数据帧(DataFrame)37.在进行Python数据分析时,以下哪个操作可以用来排序数据?A.sort()B.sort_values()C.max()D.min()38.使用Python进行数据分析时,以下哪个库提供了大量的统计函数?A.NumPyB.pandasC.SciPyD.scikit-learn39.在Python中,以下哪个函数可以用来计算数据的偏度?A.var()B.std()C.skew()D.median()40.列表推导式和字典推导式在Python中都是非常有用的操作,以下关于它们的描述哪个是不正确的?A.列表推导式的语法是[expr for item in list if condition]B.字典推导式的语法是{key:expr for item in list if condition}C.列表推导式返回的是列表,而字典推导式返回的是字典D.列表推导式和字典推导式都可以用于大数据处理二、问答题1.请简述Python中Pandas库的主要功能。

数据分析经理招聘笔试题及解答

数据分析经理招聘笔试题及解答

招聘数据分析经理笔试题及解答(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、数据分析经理在进行数据分析时,以下哪个工具最常用于数据清洗和预处理?A、Python的Pandas库B、ExcelC、R语言的dplyr包D、SQL2、在进行客户细分分析时,以下哪个指标通常用于衡量客户之间的相似度?A、客户价值(Customer Value)B、客户生命周期价值(Customer Lifetime Value)C、客户忠诚度(Customer Loyalty)D、相似度系数(Similarity Coefficient)3、题干:在进行数据分析时,以下哪种数据类型最适合用于描述用户年龄?A. 字符串B. 整数C. 浮点数D. 日期时间4、题干:在数据分析中,以下哪种统计方法可以用来评估两个分类变量之间的关联性?A. 均值比较B. 卡方检验C. 相关系数D. 标准差5、假设你正在分析一个电子商务网站的日访问量数据。

为了评估网站流量的稳定性,你会使用以下哪种统计量?A. 平均数B. 中位数C. 方差D. 最大值6、在处理缺失数据时,以下哪种方法通常不适合用于填补数值型变量的缺失值?A. 使用均值填充B. 使用中位数填充C. 使用随机值填充D. 使用预测模型估计值填充7、以下哪种统计方法是用来衡量一组数据集中趋势的指标?A、方差B、标准差C、中位数D、众数8、在进行数据分析时,以下哪个步骤通常不是数据分析流程的一部分?A、数据清洗B、数据探索C、模型预测D、数据展示9、以下哪种分析方法最适合用于识别客户消费行为模式?A. 时间序列分析B. 聚类分析C. 主成分分析D. 相关性分析二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些工具或软件常用于数据分析和处理?()A、PythonB、RC、SQLD、TableauE、Excel2、以下哪些方法是数据分析中常用的数据预处理步骤?()A、数据清洗B、数据集成C、数据变换D、数据归一化E、数据抽样3、以下哪些工具或软件常用于数据分析和处理?()B. PythonC. R语言D. TableauE. SQL4、以下哪些数据清洗步骤是数据分析过程中必不可少的?()A. 数据缺失处理B. 异常值处理C. 数据标准化D. 数据脱敏E. 数据重复处理5、关于数据分析师的职责,以下哪些选项是正确的?()A、收集并整理相关数据B、进行数据清洗和预处理C、设计数据模型和算法D、撰写数据分析报告E、直接参与业务决策6、以下哪些是常用的数据分析方法?()A、描述性统计分析B、假设检验C、时间序列分析D、聚类分析7、以下哪些是数据分析经理在数据分析过程中需要具备的关键技能?A. 熟悉数据挖掘和统计分析方法B. 能够编写SQL查询语句进行数据提取C. 精通Python或R等数据分析编程语言D. 具备良好的沟通和报告撰写能力E. 拥有丰富的行业经验8、以下哪些工具或平台通常用于数据分析经理的日常工作中?A. TableauB. Power BIC. ExcelD. HadoopE. Salesforce9、关于数据分析经理需要掌握的数据分析技能,以下哪些是必须的?()A、SQL数据库操作B、Python编程C、数据可视化D、机器学习算法E、统计学知识三、判断题(本大题有10小题,每小题2分,共20分)1、数据分析经理的主要职责是进行数据的收集、整理和分析,但不需要具备编程能力。

数据分析笔试题目及答案解析

数据分析笔试题目及答案解析

数据分析笔试题目及答案解析数据分析笔试题目及答案解析——第1题——1. 从含有N个元素的总体中抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中,这样的抽样方式称为?A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案:A——第2题——2. 一组数据,均值中位数众数,则这组数据A. 左偏B. 右偏C. 钟形D. 对称答案:B「题目解析」分布形状由众数决定,均值大于众数的化,说明峰值在左边,尾巴在右边,所以右偏。

偏态是看尾巴在哪边。

——第3题——3. 对一个特定情形的估计来说,置信水平越低,所对应的置信区间?A. 越小B. 越大C. 不变D. 无法判断答案:A「题目解析」根据公式,Z减小,置信区间减小。

——第4题——4.关于logistic回归算法,以下说法不正确的是?A. logistic回归是当前业界比较常用的算法,用于估计某种事物的可能性B. logistic回归的目标变量可以是离散变量也可以是连续变量C. logistic回归的结果并非数学定义中的概率值D. logistic回归的自变量可以是离散变量也可以是连续变量答案:B「题目解析」逻辑回归是二分类的分类模型,故目标变量是离散变量,B错;logisitc回归的结果为“可能性”,并非数学定义中的概率值,不可以直接当做概率值来用,C对。

——第5题——5.下列关于正态分布,不正确的是?A. 正态分布具有集中性和对称性B. 期望是正态分布的位置参数,描述正态分布的集中趋势位置C. 正态分布是期望为0,标准差为1的分布D. 正态分布的期望、中位数、众数相同答案:C「题目解析」N(0,1)是标准正态分布。

——第6题——6. 以下关于关系的叙述中,正确的是?A. 表中某一列的数据类型可以同时是字符串,也可以是数字B. 关系是一个由行与列组成的、能够表达数据及数据之间联系的二维表C. 表中某一列的值可以取空值null,所谓空值是指安全可靠或零D. 表中必须有一列作为主关键字,用来惟一标识一行E. 以上答案都不对答案:B「题目解析」B. 关系是一张二维表,表的每一行对应一个元组,每一列对应一个域,由于域可以相同,所以必须对每列起一个名字,来加以区分,这个名字称为属性。

数据分析笔试题及答案

数据分析笔试题及答案

数据分析笔试题及答案一、选择题(每题2分,共10分)1. 数据分析中,以下哪个指标不是描述性统计指标?A. 平均数B. 中位数C. 标准差D. 相关系数答案:D2. 在进行数据清洗时,以下哪项操作不是必要的?A. 处理缺失值B. 去除异常值C. 转换数据类型D. 增加数据量答案:D3. 以下哪个工具不是数据分析常用的软件?A. ExcelB. RC. PythonD. Photoshop答案:D4. 假设检验中,P值小于显著性水平α,我们通常认为:A. 拒绝原假设B. 接受原假设C. 无法判断D. 结果不可靠答案:A5. 以下哪个不是时间序列分析的特点?A. 趋势性B. 季节性C. 随机性D. 稳定性答案:D二、简答题(每题5分,共15分)1. 请简述数据可视化的重要性。

答案:数据可视化是数据分析中的重要环节,它能够帮助分析者直观地理解数据的分布、趋势和模式。

通过图表、图形等形式,可以更清晰地展示数据之间的关系,便于发现数据中的规律和异常点,从而为决策提供支持。

2. 描述数据挖掘中的“关联规则”是什么,并给出一个例子。

答案:关联规则是数据挖掘中用来发现变量之间有趣关系的一种方法,特别是变量之间的频繁模式、关联、相关性。

例如,在超市购物篮分析中,关联规则可能揭示“购买了牛奶的顾客中有80%也购买了面包”。

3. 解释什么是“数据的维度”以及它在数据分析中的作用。

答案:数据的维度指的是数据集中可以独立变化的属性或特征。

在数据分析中,维度可以帮助我们从不同角度观察和理解数据,进行多维度的分析和比较,从而获得更全面的数据洞察。

三、计算题(每题10分,共20分)1. 给定一组数据:2, 3, 4, 5, 6, 7, 8, 9, 10,请计算这组数据的平均数和标准差。

答案:平均数 = (2+3+4+5+6+7+8+9+10) / 9 = 5.5标准差 = sqrt(((2-5.5)^2 + (3-5.5)^2 + ... + (10-5.5)^2) / 9) ≈ 2.87232. 如果一家公司在过去5年的年销售额分别为100万、150万、200万、250万和300万,请计算该公司年销售额的复合年增长率(CAGR)。

大数据分析师招聘笔试题与参考答案

大数据分析师招聘笔试题与参考答案

招聘大数据分析师笔试题与参考答案(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据分析师在进行数据分析时,以下哪个工具通常用于数据清洗和预处理?A、SQLB、TableauC、PythonD、Hadoop2、在大数据分析中,以下哪个算法通常用于聚类分析?A、决策树B、K-meansC、支持向量机D、神经网络3、在数据分析中,当我们需要从数据集中随机选取一部分样本进行分析时,这通常被称为:A. 数据清洗B. 数据采样C. 数据建模D. 数据可视化4、假设你正在使用Python的pandas库来处理一个DataFrame对象df,其中包含一列名为’Age’。

如果想要筛选出年龄大于等于18且小于60的所有记录,以下哪段代码是正确的?A. df[(df['Age'] > 18) and (df['Age'] < 60)]B. df[df['Age'] >= 18 & df['Age'] < 60]C. df[(df['Age'] >= 18) & (df['Age'] < 60)]D. df[df['Age'].between(18, 60)]5、题干:在数据挖掘中,以下哪个算法通常用于分类任务?A. K-means聚类B. Apriori算法C. 决策树D. KNN算法6、题干:以下哪个指标通常用于衡量数据集的分布均匀性?A. 偏度B. 方差C. 标准差D. 熵7、在数据分析中,当我们提到数据的“离群值”(Outliers)时,它指的是什么?A. 数据集中的最大值和最小值B. 与大多数数据有显著差异的数据点C. 丢失或缺失的数据D. 不符合预期模式的数据8、在大数据项目实施过程中,哪一项活动通常不属于数据分析师的核心职责?A. 清洗和预处理原始数据B. 设计数据库结构C. 应用统计模型进行预测D. 解释模型输出以指导业务决策9、以下哪项不是大数据分析中常用的数据存储技术?A. Hadoop HDFSB. NoSQL数据库C. 关系型数据库D. 关键字存储 10、在数据分析中,以下哪个术语通常用来描述数据集的规模大小?A. 数据量B. 数据质量C. 数据维度D. 数据粒度二、多项选择题(本大题有10小题,每小题4分,共40分)1、下列哪些技能对于大数据分析师来说至关重要?A. 数据挖掘技术B. SQL数据库查询语言C. 数据可视化工具使用(如Tableau)D. 熟悉数据隐私保护法E. 了解硬件工程原理2、在处理大数据时,以下哪些方法可以用来减少计算资源的消耗?A. 数据压缩B. 数据采样C. 增加冗余字段D. 使用分布式计算框架E. 提高数据的维度3、以下哪些工具或技术是大数据分析中常用的数据处理和分析工具?()A. HadoopB. PythonC. SQLD. R语言E. Excel4、在大数据分析中,以下哪些是常用的数据可视化工具?()A. TableauB. Power BIC. MatplotlibD. D3.jsE. Google Charts5、在处理大数据时,以下哪些技术可以用来解决数据存储和计算中的挑战?A. Hadoop MapReduceB. SQL数据库C. NoSQL数据库D. SparkE. Excel6、下列哪些是数据预处理步骤的一部分?A. 数据清洗B. 数据集成C. 数据转换D. 数据挖掘E. 数据可视化7、以下哪些技术或工具是大数据分析师在数据预处理阶段常用的?()A. ETL工具(如Apache Nifi、Talend)B. 数据清洗和转换工具(如Pandas、OpenRefine)C. 数据库管理系统(如MySQL、Oracle)D. 数据可视化工具(如Tableau、Power BI)8、以下哪些方法可以帮助大数据分析师提高数据挖掘的准确性和效率?()A. 特征选择和工程B. 使用先进的机器学习算法C. 数据降维D. 交叉验证9、以下哪些工具或技术是大数据分析师在工作中常用的?()A. HadoopB. SparkC. SQLD. PythonE. Tableau 10、以下关于数据清洗的说法,正确的是?()A. 数据清洗是数据分析的重要步骤之一。

数据分析经理招聘笔试题及解答(某大型集团公司)

数据分析经理招聘笔试题及解答(某大型集团公司)

招聘数据分析经理笔试题及解答(某大型集团公司)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在数据分析过程中,为了评估新推出的市场策略是否有效,最适合使用以下哪种统计方法?A、描述性统计分析B、相关性分析C、因果推断分析D、聚类分析2、假设我们正在分析客户满意度调查数据,并希望找出哪些因素最显著地影响了客户对产品的整体满意度评分。

此时应该采用哪种统计模型?A、逻辑回归模型B、线性回归模型C、决策树模型D、主成分分析模型3、某公司2019年的销售额为5000万元,2020年销售额同比增长了10%,2021年销售额同比增长了15%,那么2021年该公司的销售额是多少?选项:A. 6250万元B. 5750万元C. 5375万元D. 6000万元4、在数据分析中,以下哪个指标用于衡量数据的准确性和可靠性?选项:A. 假设检验B. 相关性系数C. 标准差D. 指数平滑5、在进行数据预处理时,对于数据集中缺失值的处理方法不包括以下哪一项?A. 删除含有缺失值的数据行或列B. 使用统计方法填补缺失值,如均值、中位数等C. 利用机器学习算法预测缺失值D. 忽略缺失值的存在继续分析6、假设你需要评估两个模型的性能,模型A的准确率为90%,模型B的准确率为95%。

在选择更好的模型时,仅凭准确率这一指标是否足够?为什么?A. 足够,因为准确率越高,模型越好B. 不足,因为还需要考虑其他性能指标如精确率、召回率等C. 足够,因为不需要考虑其他因素D. 不足,因为需要了解数据集的类别分布情况7、某公司近三年的销售额分别为:2019年1000万元,2020年1200万元,2021年1500万元。

若要计算三年的平均增长率,以下哪个公式是正确的?A. (1500 - 1000) / 1000B. (1500 / 1000) ^ (1/3) - 1C. (1500 / 1200) / (1200 / 1000)D. 1500 / (1000 * 3)8、某电商平台的用户活跃度数据如下:男性用户占比40%,女性用户占比60%,其中男性用户中活跃用户占比80%,女性用户中活跃用户占比70%。

大数据分析师招聘笔试题及解答(某大型集团公司)2025年

大数据分析师招聘笔试题及解答(某大型集团公司)2025年

2025年招聘大数据分析师笔试题及解答(某大型集团公司)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在大数据处理中,Hadoop生态系统中负责分布式存储的核心组件是?A. HiveB. HBaseC. HDFSD. Spark2、以下哪种数据结构在大数据处理中常用于表示稀疏矩阵?A. 二叉树B. 链表C. 压缩稀疏行(CSR)D. 堆3、某大型集团公司计划在三个月内完成一项大数据分析项目,项目需要处理的数据量预计为100TB。

以下哪个选项是评估项目进度和资源分配最合适的指标?A、每天处理的数据量(GB)B、每周完成的数据分析报告数量C、项目完成所需的总工作量(人时)D、数据处理的准确率4、在数据挖掘过程中,以下哪项技术通常用于发现数据中的关联规则?A、决策树B、K-means聚类C、关联规则挖掘D、时间序列分析5、在大数据分析中,以下哪种数据可视化工具常用于生成交互式图表和仪表板,支持大量数据的实时分析?A)ExcelB)SQL ServerC)TableauD)Python6、在大数据分析中,对于缺失值处理,以下哪种方法属于填充策略?A)删除包含缺失值的行或列B)使用均值、中位数或众数填充C)对缺失值进行插值D)忽略缺失值的存在7、以下哪种算法最适合用来预测连续值?A、决策树B、逻辑回归C、线性回归D、K均值聚类8、在处理大数据集时,以下哪个步骤不是数据预处理的一部分?A、缺失值填充B、异常值检测C、特征选择D、模型训练9、某大型集团公司计划通过大数据分析来预测未来的销售趋势。

以下关于时间序列分析的描述中,哪项是错误的?A、时间序列分析是用于分析随时间变化的数据的方法。

B、时间序列分析通常考虑季节性、趋势和周期性因素。

C、时间序列分析不需要考虑数据的平稳性。

D、时间序列分析可以通过自回归模型(AR)和移动平均模型(MA)来建模。

10、在分析用户行为数据时,以下哪种统计方法可以用来评估两个变量之间的相关性?A、方差分析(ANOVA)B、卡方检验C、相关系数D、聚类分析二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些工具和技术通常用于大数据分析?()A、HadoopB、SparkC、SQLD、PythonE、RF、Tableau2、以下关于数据仓库和数据湖的描述,正确的是?()A、数据仓库是面向主题的、集成的、稳定的、时变的数据库集合。

数据分析企业招聘笔试题目

数据分析企业招聘笔试题目

数据分析企业招聘笔试题目一、统计分析题目1. 进行基本统计分析,计算以下指标:a) 平均值b) 中位数c) 众数d) 标准差e) 相关系数2. 对给定的数据集进行数据清洗和预处理,包括但不限于以下步骤:a) 缺失值处理b) 异常值检测和处理c) 数据类型转换3. 选择合适的统计分析方法,解决以下问题:a) 假设检验b) 方差分析c) 回归分析d) 聚类分析e) 时间序列分析二、数据挖掘题目1. 进行数据挖掘,使用适当的算法解决以下问题:a) 分类预测b) 聚类分析c) 关联规则挖掘d) 基于推荐系统的个性化推荐2. 利用机器学习算法建立模型,预测以下问题:a) 用户购买行为预测b) 股票涨跌预测c) 文本情感分析d) 图像识别三、数据可视化题目1. 探索给定数据集的可视化方法,选择合适的图表展现以下信息:a) 数据分布b) 趋势分析c) 相关性分析d) 地理信息可视化2. 使用数据可视化工具,呈现以下信息:a) 交互式数据图表b) 仪表盘c) 热力图d) 雷达图四、数据库管理题目1. 根据需求设计关系型数据库,包括以下步骤:a) 实体-关系模型的设计b) 数据表的创建和规范化c) 主键和外键的定义d) 数据表之间的关联2. 编写SQL查询语句,实现以下功能:a) 数据的增加、删除、修改b) 复杂查询操作,包括连接查询、子查询等c) 索引的创建和使用五、数据解读与报告题目1. 根据给定的数据集,编写数据解读报告,要求包括以下内容:a) 数据概况和特征分析b) 数据可视化分析和解读c) 模型建立和预测结果分析d) 结果的实际应用和建议2. 分析现有数据报告的问题和不足之处,并提出改进的方案。

六、编程题目1. 使用Python或R语言,编写代码解决以下问题:a) 数据爬取与清洗b) 统计分析与可视化c) 机器学习模型建立和评估2. 在给定的数据集上,使用编程解决以下问题:a) 特征工程b) 模型选择和调优c) 结果预测和评估以上为数据分析企业招聘笔试题目的要求,根据具体需求进行答题,展示你的数据分析能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从互联网巨头数据挖掘类招聘笔试题目看我们还差多少知识1 从阿里数据分析师笔试看职业要求以下试题是来自阿里巴巴招募实习生的一次笔试题,从笔试题的几个要求我们一起来看看数据分析的职业要求。

一、异常值是指什么?请列举1种识别连续型变量异常值的方法?异常值(Outlier)是指样本中的个别值,其数值明显偏离所属样本的其余观测值。

在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。

Grubbs’test(是以Frank E. Grubbs命名的),又叫maximum normed residual test,是一种用于单变量数据集异常值识别的统计检测,它假定数据集来自正态分布的总体。

未知总体标准差σ,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。

点评:考察的内容是统计学基础功底。

二、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。

聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。

聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)。

聚类与分类的不同在于,聚类所要求划分的类是未知的。

聚类分析计算方法主要有:层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。

其中,前两种算法是利用统计学定义的距离进行度量。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。

一般都采用均方差(标准差)作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

其流程如下:(1)从n个数据对象任意选择k 个对象作为初始聚类中心;(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;(3)重新计算每个(有变化)聚类的均值(中心对象);(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。

优点:本算法确定的K 个划分到达平方误差最小。

当聚类是密集的,且类与类之间区别明显时,效果较好。

对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。

一般来说,K<<N,t<<N 。

缺点:1. K 是事先给定的,但非常难以选定;2. 初始聚类中心的选择对聚类结果有较大的影响。

点评:考察的内容是常用数据分析方法,做数据分析一定要理解数据分析算法、应用场景、使用过程、以及优缺点。

三、根据要求写出SQL表A结构如下:Member_ID(用户的ID,字符型)Log_time(用户访问页面时间,日期型(只有一天的数据))URL(访问的页面地址,字符型)要求:提取出每个用户访问的第一个URL(按时间最早),形成一个新表(新表名为B,表结构和表A一致)createtable B asselectMember_ID, min(Log_time), URL from Agroup byMember_ID ;点评:SQL语句,简单的数据获取能力,包括表查询、关联、汇总、函数等。

四、销售数据分析以下是一家B2C电子商务网站的一周销售数据,该网站主要用户群是办公室女性,销售额主要集中在5种产品上,如果你是这家公司的分析师,a) 从数据中,你看到了什么问题?你觉得背后的原因是什么?b) 如果你的老板要求你提出一个运营改进计划,你会怎么做?表如下:一组每天某网站的销售数据a) 从这一周的数据可以看出,周末的销售额明显偏低。

这其中的原因,可以从两个角度来看:站在消费者的角度,周末可能不用上班,因而也没有购买该产品的欲望;站在产品的角度来看,该产品不能在周末的时候引起消费者足够的注意力。

b) 针对该问题背后的两方面原因,我的运营改进计划也分两方面:一是,针对消费者周末没有购买欲望的心理,进行引导提醒消费者周末就应该准备好该产品;二是,通过该产品的一些类似于打折促销等活动来提升该产品在周末的人气和购买力。

点评:数据解读能力,获取数据是基本功,仅仅有数据获取能力是不够的,其次是对数据的解读能力。

五、用户调研某公司针对A、B、C三类客户,提出了一种统一的改进计划,用于提升客户的周消费次数,需要你来制定一个事前试验方案,来支持决策,请你思考下列问题:a) 试验需要为决策提供什么样的信息?c) 按照上述目的,请写出你的数据抽样方法、需要采集的数据指标项,以及你选择的统计方法。

a) 试验要能证明该改进计划能显著提升A、B、C三类客户的周消费次数。

b) 根据三类客户的数量,采用分层比例抽样;需要采集的数据指标项有:客户类别,改进计划前周消费次数,改进计划后周消费次数;选用统计方法为:分别针对A、B、C三类客户,进行改进前和后的周消费次数的,两独立样本T-检验(two-sample t-test)。

点评:业务理解能力和数据分析思路,这是数据分析的核心竞争力。

综上所述:一个合格的数据分析应该具备统计学基础知识、数据分析方法、数据获取、数据解读和业务理解、数据分析思想几个方面能力,即将成为数据分析师的亲们,你们准备好了吗?2 从腾讯(数据挖掘方向)笔试题目看技术储备笔试内容:1. 历:已知中序遍历顺序以及前序遍历顺序,求后序遍历顺序2.SQL语句:找出QQset中最小的QQ号码3.encodeURI&URL传播的转义结果4.36辆车,6条跑道,无计时器,最少几次比赛可以选出前三5.Windows/Linux下判断远程地址为某主机监听的某端口是都开放的命令是?6.html 网站cookie7.cookie功能8.哈希冲突9.哪些http方法对于服务端和用户是安全的10.二维数组内存地址计算11.附加题:推导线性最小二乘法过程12.附加题:概率计算(这个相当简单啦)13.模型过拟合与哪些因素有关,写出理由3 从百度(数据挖掘工程师)笔试题目看技术储备一. 简答题1. new 和malloc 的区别。

2. hash冲突是指什么?怎么解决?给两种方法,写出过程和优缺点。

3. 命中的概率是0.25,若要至少命中一次的概率不小于0.75,则至少需要几次?二. 算法设计题1. 用C/C++写一个归并排序。

数据结构为struct Node{int v; Node *next};接口为Node * merge_sort(Node *);2. 设计S型层次遍历树的算法,比如根节点是第一层,第二层从左至右遍历,第三层从右至左遍历,第四层再从左至右遍历,以此类推。

举例:应依次输出1 2 3 6 5 4 7 8 9。

3. 一个url文件,每行是一个url地址,可能有重复。

(1)统计每个url的频次,设计函数实现实现。

(2)设有10亿url,平均长度是20,现在机器有8G内存,怎么处理,写出思路。

三. 系统设计题自然语言处理中的中文分词问题,前向最大匹配算法(FMM)。

注:题目举例说明了FMM的基本思想。

(1)设计字典的数据结构struct dictnote。

(2)用C/C++实现FMM,可选接口为int FMM(vectoriLetters, dictnode *iRoot, vector*oResults);其中iLetters 为待分词的句子,比如{“小”,“明”,“今”,“天”,“买”,“了”,“i”,“p”,“o”,“n”,“e”,“6”},iRoot 是字典,oResults 保存输出结果,即分词的位置。

也可以自己设计接口。

(3)收集了一些手机品牌的字典,如{iphone, 诺基亚}。

现在要求查找包含这些手机品牌的网页,比如包含iphone6, 诺基亚9973 等。

怎么修改FMM实现这个功能,可以写伪代码。

4 从搜狐(数据挖掘算法工程师)笔试题目看技术储备笔试1,类的继承2,资源互斥下的死锁3,一维数组,元素为指针,指针指向一个参数为Int,返回值为int的函数4,进程间的通信方式5,Const标志符常量一定要?6,String的普通构造函数,拷贝构造函数,赋值函数,析构函数7,Strcpy函数8,N个不同数的全排列,打印所有全排列9,Sizeof(char name[]=”hello”)10,继承的转换(子类可以转换成基类,基类不能转换成子类,多继承下同一子类的基类间不能相互转换)5 从网易(数据挖掘研究员)笔试题目看技术储备笔试1,字符串匹配的算法复杂度(主串N,字串M)N+M2,排序算法的稳定性(快速排序为非稳定)3,平衡二叉树的插入4,20个亿整数的两个集合a与b,求a与b的交集,内存为4Gb5,在N个无序数中找K个最小值6,页面文件的逻辑地址位(8个1024字放内32帧内存里)7,计算机网络各层应用连接8,哪一种模式不关心算法Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。

(使用得非常频繁。

)Adapter:将一个类的接口转换成客户希望的另外一个接口。

A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。

Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。

Builder:将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。

Chain of Responsibility:为解除请求的发送者和接收者之间耦合,而使多个对象都有机会处理这个请求。

将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它。

Command:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可取消的操作。

Composite:将对象组合成树形结构以表示“部分-整体”的层次结构。

它使得客户对单个对象和复合对象的使用具有一致性。

Decorator:动态地给一个对象添加一些额外的职责。

就扩展功能而言,它比生成子类方式更为灵活。

Facade:为子系统中的一组接口提供一个一致的界面,F a c a d e模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。

相关文档
最新文档