汽车试验学-车道曲率检测与识别试验

合集下载

汽车试验学概论

汽车试验学概论
由若干个成员国共同参与制定并共同遵守,最典型的如欧洲经济委 员会ECE和欧洲经济共同体EEC。
③ 国家标准
各国依据自己的国情而制定的适用于本国的标准。我国国家标准简 称GB;美国国家标准简写为ANSI;日本国家标准简写为JIS。
1.2.2 汽车试验标准的分类
1. 按试验标准适用范围分类
④ 行业标准
1.3.3 试验总结阶段
试验总结包括对试验中发现的问题、观察到的现象进行定 性的分析研究,对测取的数据利用试验统计理论、误差分 析方法进行处理,以确定实测所得的性能指标和各参数间 的关系。对强度、疲劳磨损试验则在试验完毕后,对被试 车辆进行分解、检查与测量,获取试验后的数据。
复习思考题
1. 何为汽车试验?简述汽车试验的必要性。 2. 简述汽车试验的发展趋势。 3. 简述汽车试验的类型。 4. 简述汽车试验标准的分类和特点。 5. 汽车试验一般分为哪几个阶段进行?
没有国家标准又需要在全国某个行业范围内统一技术要求所制定的 标准。我国汽车行业标准简写QC,交通行业为JT。
⑤ 地方标准
对没有国家标准和行业标准又需要在省、自治区、直辖市范围统一 的工业产品的安全、卫生要求,可制定地方标准。
⑥ 企业标准
企业标准是指各汽车生产企业、汽车试验场根据本身特点,参考相 应国际、国家标准而制定的,它仅限于企业内使用。
第二阶段,从第一条“汽车流水生产线”建成至20世纪40 年代。这时产品的可靠性、寿命和性能方面的问题较为突 出,要求通过试验研究加以解决,从而形成了汽车试验研 究体系。此期,汽车试验除借助于其他行业较成熟的技术 和方法外,制定了专业试验方法。道路试验在此阶段得到 了足够的重视。有实力的汽车公司开始建设汽车试验场。
1.1.1 汽车试验的发展历程

汽车试验学知识点总结

汽车试验学知识点总结

汽车试验学知识点总结一、试验学的基本概念在汽车工程中,试验学是一个非常重要的学科,它是汽车工程技术的核心内容之一。

试验学是指通过科学、系统的方法,对汽车零部件、系统和整车进行检测、验证和评估的学科。

它是汽车研发、制造和应用的重要工具,也是汽车设计、制造、改进和维护过程中的必要手段。

试验学的基本任务是研究和实践汽车零部件、系统和整车的性能、可靠性和安全性,并通过试验手段对其进行验证和评估,以便有效的促进汽车技术的发展与进步。

二、试验学的基本原理1.试验学的基本原理试验学的基本原理可以归纳为:科学性、系统性和客观性。

试验学是一门科学,它必须遵循科学的方法和原则进行研究和实践。

试验学是一个系统工程,它需要将汽车零部件、系统和整车的性能、可靠性和安全性等多个方面进行综合考虑和评价。

试验学是一门客观的学科,它需要通过科学的手段和方法对汽车零部件、系统和整车进行严谨的检测、验证和评估。

2.试验学的基本方法试验学的基本方法包括:定性分析、定量分析、模拟试验和实车试验。

定性分析是通过对汽车零部件、系统和整车进行形态、结构、材料等方面的观察和分析,从而初步了解其性能、可靠性和安全性等特点。

定量分析则是通过现代科学、技术手段和方法对汽车零部件、系统和整车的性能、可靠性和安全性等方面进行量化分析和评价。

模拟试验是通过模拟仿真技术对汽车零部件、系统和整车进行虚拟试验和验证,从而提前发现问题和进行改进。

实车试验则是通过对实际汽车零部件、系统和整车的试验验证,从而最终确定其性能、可靠性和安全性等特点。

三、试验学的应用范围1.试验学在汽车工程中的应用试验学在汽车工程中有着非常广泛的应用,它主要包括:性能试验、可靠性试验、安全试验和环保试验等方面。

性能试验是通过试验手段对汽车零部件、系统和整车的动力、操纵、制动、悬挂、传动等方面的性能进行检测、验证和评价。

可靠性试验是通过试验手段对汽车零部件、系统和整车的故障、寿命、免检等方面的可靠性进行检测、验证和评价。

汽车试验学-车道曲率检测与识别试验

汽车试验学-车道曲率检测与识别试验

汽车试验学作业车道曲率检测与识别试验二〇一三年十月目录一实验目的 (3)二研究现状 (3)三实验条件 (4)(1)实验设备 (4)(2)实验道路 (6)四试验方法 (6)五数据处理 (7)1.曲率计算过程 (7)2.数据滤波 (8)六实验验证 (9)1.路段1曲率半径验证结果。

(10)2.路段2曲率半径验证结果 (11)3.结果分析 (12)一实验目的换道是驾驶过程中常见的驾驶行为之一,也是一种对驾驶人的决策判断能力和车辆操控能力有较高要求的过程。

换道过程中,车辆之间的位置关系体现在纵向和横向两个方面。

换道预警系统首先需要分析车辆在横向方向的位移差,用于确定车辆之间的相对车道关系。

此外,车辆换道时与周围其他车辆均可能发生冲突,考虑换道行为的特点,换道预警系统重点关注换道过程目标车道后方车辆的运动趋势,判断换道过程中自车与目标车道后方车辆是否发生交通冲突,根据判断结果对驾驶人进行预警。

在此之前,换道预警系统首先需要解决以下两个问题:1.后方是否存在车辆。

后方是否存在车辆由微波雷达和激光雷达所监测,如果后方存在车辆,微波雷达和激光雷达会测量输出自车与后车的相对距离、相对角度以及相对速度。

2.后方车辆是否处于自车换道的目标车道。

如果后方存在车辆,在多车道条件下,需要根据后方车辆与自车的相对角度、相对距离来判断后方车辆是否处于自车换道的目标车道。

直道路段情况下,根据相对角度、相对距离数据即可计算出后车与自车在横向方向上的位移差,从而可以根据位移差来辨识该车是否处于换道目标车道。

弯道路段情况下,车辆间的车道关系受到道路曲率影响。

若已知道路曲率,则可以计算自车和后方车辆在横向方向上的位移差,以此实现对车的识别。

由此可知,道路曲率是影响到换道预警系统工作有效性的重要参数,本实验的目的在于通过车载数据采集设备采集相关车辆运动和道路参数,利用采集参数建立道路曲率估计模型,以提高换道预警系统在弯道下使用的准确性。

汽车试验学课程教学大纲

汽车试验学课程教学大纲

汽车试验学课程教学大纲(总学时数:48,学分数:3,实验学时:6)一、课程的性质、目的和任务《汽车试验学》是车辆工程专业理论性较强的专业选修课。

本课程的目的是,使学生初步学会汽车试验方法和技术的基础理论、试验仪器与设备,重点介绍了汽车总成与零部件试验和汽车基本性能试验等。

本课程是理论和实践相结合的课程,通过本课程的学习,培养学生分析问题、解决问题的能力,并且具有一定的实验能力,使学生掌握基本理论和基本试验方法,为今后应用基本知识从事本专业工作奠定基础。

二、课程的基本内容和要求(一)汽车试验概论通过本章的学习,了解汽车试验的作用与分类,汽车试验标准,试验的计算与组织,试验误差,掌握试验数据处理。

(二)汽车试验仪器与设备通过本章的学习,了解车速测试仪、油耗仪、陀螺仪、汽车平顺性测量仪器、五气体分析仪、底盘测功机的基本组成和作用,掌握它们的操作原理。

(三)汽车总成与零部件试验通过本章的学习,了解汽车的总成及其零部件,掌握发动机性能试验、传动系试验、车轮试验、前照灯检测试验、车速表检测试验方法。

(四)汽车基本性能试验通过本章的学习,了解汽车基本性能试验的仪器使用,掌握汽车动力性试验、汽车燃油经济性试验、汽车制动性试验、汽车操纵稳定性试验、汽车平顺性试验、汽车通过性试验方法和步骤。

(五)汽车环保试验通过本章的学习,了解汽车环保试验的仪器使用,掌握汽油车和柴油车排放试验、汽车噪声试验的测量方法和步骤。

(六)汽车被动安全性试验通过本章的学习,了解实车碰撞试验、汽车安全部件试验、汽车碰撞试验仿真技术的相关原理知识。

(七)汽车可靠性试验通过本章的学习,了解快速可靠性试验、汽车安全部件试验的相关原理知识。

(八)汽车空气动力学特性试验通过本章的学习,了解汽车风洞的特性和类型;了解汽车风洞常规试验。

四、有关说明(一)教学建议:本课程以讲授与实践相结合,辅助自学、讨论、习题课、提问等形式,在阐明理论的基础上,以试验的行式让学生掌握理论。

车辆测试技术

车辆测试技术

车辆测试技术第一章概述一、基本概念所谓“汽车测试”,简单地说,就是通过实际测试的手段确定汽车的某个(些)参数。

这里的“参数”,一般是指物理量的定量数值;个别情况下也可能是定性评价。

一般来说,汽车试验所采用的仪器设备、试验场所、试验环境和试验工况等,都应该遵循国家或者相关部门、行业或企业发布的正规标准文件。

标准可以确保试验操作规范、安全,数据结果准确、可信、具有典型性、代表性和可比性。

而有些探索性、创新性试验,也可以由研究人员自行制定试验标准和操作规范,这也是对汽车基础理论、设计制造技术和汽车试验方法的有力推动。

二、试验与理论的关系、试验的必要性理论分析不能完全取代实际测试,尤其是对于现代汽车行业来说,汽车试验的必要性主要体现在以下几方面。

1.作为一种室外交通工具,汽车的使用条件复杂,整车、各系统、机构和零部件会遇到各种难以预料的载荷、工作条件和行驶环境。

2.汽车是一种高度普及的社会化的民用商品(军用和专业比赛车辆不在此列),研究、制造单位之间的竞争异常激烈。

厂商为了争夺市场,势必要在产品的性能、质量和成本之间做出平衡,“不惜血本”的模式是走不通的,过分的“精益求精”也是不符合商业规律的。

一个研发任务,要在有限的人力、物力和时间条件下,寻求在法规允许和市场满意框架下的利益最大化,势必要通过科学、合理的试验手段,定量、可靠地确定产品的设计参数,达成研发和制造效费比的最优化。

而在深层次的理论分析和机理解释方面,暂时有所欠缺是可以接受的。

3.汽车研究和设计的许多问题,已经有了理论模型,但是这些模型并非普遍适用,或者模型中的某些参数不易确定。

4.由上述几点可以看出,理论不能代替试验,归根结底,在于现有理论的不准确性或者局限性。

因此,进行汽车试验,以及对汽车试验的方法进行研究,对于优化汽车产品的设计、推动汽车工业的发展、完善汽车基础理论研究以及刺激和带动相关技术理论(如,传感技术、信号分析理论和技术、电子设备制造技术等等)的发展,都具有重要意义。

汽车试验学-教学课件-ppt-作者-徐晓美-第5章-汽车基本性能试验可编辑全文

汽车试验学-教学课件-ppt-作者-徐晓美-第5章-汽车基本性能试验可编辑全文

1.牵引性能试验
试验往返各进行1次,取算术平均值作为试验结果。 绘制各挡牵引力性能曲线:
2.最大拖钩牵引力试验
试验所需仪器及试验道路与汽车牵引性能试验相同。 试验时由试验车拖动负荷拖车运动,试验车动力传动 系均处于最大传动比状态,自锁差速器应锁住。 如果用钢丝绳牵引,两车之间的钢丝绳不得短于15m。
(2)定初速度测定法 分别测量从高速v1滑行至(v1-5)的滑行时间t1和 从低速v2滑行至(v2-5)的滑行时间t2 根据测量数据估算滑行阻力系数和空气阻力系数
2.滑行阻力系数测定
(3)负荷拖车测定法
试验时,负荷拖车牵引试验车,取出试验车半轴,
以去除发动机及传动系摩擦阻力。
测量时,负荷拖车以较低的速度等速牵引试验车
修正后的汽车最高车速为 vmax Va k
k为根据相应规程确定的修正因数,1.00≤ k ≤1.05。
2.最低稳定车速试验
最低稳定车速是指最低的能稳定行驶的车速,该 车速能保证汽车在急速踩下油门踏板时,发动机 不应熄火,传动系不应抖动,汽车能够平稳不停 地加速,且对应的发动机转速不得下降。 最低稳定车速试验按GB/T 12547-2009《汽车最低 稳定车速试验方法》进行。
2.最低稳定车速试验
试验应往、返进行,至少各1次。试验过程中,不 允许为保持汽车稳定行驶而切断离合器或使离合 器打滑,并且不得换挡。 取实测车速的算术平均值为该汽车该挡位的最低 稳定车速。
5.1.3 加速性能试验
加速性能是指汽车从较低车速加速到较高车速时 获得最短时间的能力,它主要用加速时间来衡量。 试验方法按国家标准GB/T 12543-2009《汽车加速 性能试验方法》进行,该标准适用于M类和N类 车辆。
2.最大拖钩牵引力试验

汽车试验学 第十一章 汽车NVH试验技术

汽车试验学 第十一章 汽车NVH试验技术

五、声学风洞
风洞是能人工产生和控制气流、模拟汽车周围气体流动、可 量度气流对物体的作用的一种气流管道,是进行空气动力学和气 动声学研究的最有效工具。风洞试验的依据是运动的相对性原理。
汽车风动有模型风洞、全尺寸风洞、全天候风洞、声学风洞、 空气动力学风洞等多种不同的类型。模型风洞主要用于缩小模型 的试验,其特点是成本和试验成本都低,但试验精度较差。全尺 寸风洞主要用于研究汽车的空气动力学问题,因此又将其称为空 气动力学风洞。全天候风洞(或气候风洞)可改变气流温度、湿 度、阳光强弱和其他气候条件(雨、雪等),可以更全面地研究 汽车的空气动力学和气动动噪声问题。声学风洞采用了多种降噪 措施,背景噪声极低,可以分离并测量汽车行驶时的气动噪声。 全天候风洞和声学风洞统称为特种风洞,又称为多用途风洞。
四、模态实验室
模态实验室主要用于进行汽车总成及部件的模态试验。实验 室内部设计需要进行吸声处理,使之达到一定的混响时间要求, 并可通过特殊声学设计,以满足诸如声学空腔模态试验等的需 求,为产品研发提供 全面的基础数据。模 态实验室四周及顶常 采用W100吸声构造, 内部仍然采用完全无 污染的非玻纤材料。
第十一章 汽车NVH试验技术
NVH 是 Noise ( 噪 声 ) 、 Vibration ( 振 动 ) 和 Harshness (声振粗糙度)三个英文单词的缩写。由于以上三者在汽车的 振动中同时出现且密不可分,因此常把它们放在一起研究。声振 粗糙度是指噪声和振动的品质,是描述人体对振动和噪声的主 观感觉,不能直接用客观测量方法来度量。由于声振粗糙描述 的是振动和噪声使人不舒适的感觉,因此有人称Harshness为不 平顺性。又因为声振粗糙度经常用来描述冲击激励产生的使人 极不舒适的瞬态响应,因此也有人称Harshness为冲击特性。

汽车道路试验课件

汽车道路试验课件

环保设施
具备相应的环保设施,如废水处理设 备、废气处理装置等,确保试验过程 中的环保要求。
06
汽车道路试验发展趋势与挑战
新技术应用与设备更新
总结词:持续创新
详细描述:随着科学技术的不断发展,新技术在汽车道路试验中得到广泛应用,如物联网、大数据、人工智能等。这些新技 术的应用使得汽车道路试验更加高效、精确和可靠。同时,试验设备的更新也日新月异,高性能计算机、高精度传感器、高 效能执行器等设备的引入,使得汽车道路试验的精度和效率得到进一步提升。
3. 验证法规符合性:验证车辆是否符合 国家及地方政府的法规及标准。
2. 检测质量问题:发现车辆在生产或设 计中的问题,例如零部件的耐用性、可 靠性等。
目的
1. 评估车辆性能:通过实际行驶测试, 评估车辆的动力性、经济性、制动性、 NVH性能等。
试验分类与项目
02
01
03
试验分类
1. 定型试验:在新车开发或改型设计完成后进行,以 全面考核车辆的性能指标。
包括制动效能、制动稳定性等测试。
4. NVH性能试验
包括噪音、振动、平顺性等测试。
试验标准与规范
国家标准
GB(国家强制标准)和GB/T(国家推荐标准)等。
行业标准
如JT(交通行业标准)、QC(汽车行业标准)等。
企业标准
汽车企业的自定标准,用于指导生产和试验。
02
汽车道路试验设备与工具
试验场地与设施
试验后数据处理
数据处理规范
制定数据处理流程和规范,确保数据处理结果的 准确性和可靠性。
结果评估与优化
根据数据处理结果,对试验结果进行评估,提出 优化方案和建议。
数据整理与分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车试验学作业车道曲率检测与识别试验二〇一三年十月目录一实验目的 (3)二研究现状 (3)三实验条件 (4)(1)实验设备 (4)(2)实验道路 (6)四试验方法 (6)五数据处理 (7)1.曲率计算过程 (7)2.数据滤波 (8)六实验验证 (9)1.路段1曲率半径验证结果。

(10)2.路段2曲率半径验证结果 (11)3.结果分析 (12)一实验目的换道是驾驶过程中常见的驾驶行为之一,也是一种对驾驶人的决策判断能力和车辆操控能力有较高要求的过程。

换道过程中,车辆之间的位置关系体现在纵向和横向两个方面。

换道预警系统首先需要分析车辆在横向方向的位移差,用于确定车辆之间的相对车道关系。

此外,车辆换道时与周围其他车辆均可能发生冲突,考虑换道行为的特点,换道预警系统重点关注换道过程目标车道后方车辆的运动趋势,判断换道过程中自车与目标车道后方车辆是否发生交通冲突,根据判断结果对驾驶人进行预警。

在此之前,换道预警系统首先需要解决以下两个问题:1.后方是否存在车辆。

后方是否存在车辆由微波雷达和激光雷达所监测,如果后方存在车辆,微波雷达和激光雷达会测量输出自车与后车的相对距离、相对角度以及相对速度。

2.后方车辆是否处于自车换道的目标车道。

如果后方存在车辆,在多车道条件下,需要根据后方车辆与自车的相对角度、相对距离来判断后方车辆是否处于自车换道的目标车道。

直道路段情况下,根据相对角度、相对距离数据即可计算出后车与自车在横向方向上的位移差,从而可以根据位移差来辨识该车是否处于换道目标车道。

弯道路段情况下,车辆间的车道关系受到道路曲率影响。

若已知道路曲率,则可以计算自车和后方车辆在横向方向上的位移差,以此实现对车的识别。

由此可知,道路曲率是影响到换道预警系统工作有效性的重要参数,本实验的目的在于通过车载数据采集设备采集相关车辆运动和道路参数,利用采集参数建立道路曲率估计模型,以提高换道预警系统在弯道下使用的准确性。

二研究现状国内外研究人员通过使用不同传感器、不同算法对道路曲率进行测量,主要的技术手段如下:1.机器视觉。

机器视觉技术近年来在车辆主动安全领域取得了广泛的应用,通过对道路图像中的车道标线进行识别,并对识别得到的标线进行曲线拟合,计算得到道路曲率。

基于机器视觉的方法受到摄像机和微处理器性能限制,曲率测量精度有限、测量距离较近,同时受天气、光线影响强烈。

2.GPS系统与电子地图。

电子地图可以记录道路的形状,利用GPS的定位功能与电子地图相结合可以实现对道路曲率的测量。

尽管基于GPS和电子地图能够得到道路曲率值,但由于GPS定位精度通常在十米的数量级上,系统无法准确判断自车的行驶车道,从而影响到车道关系辨识模型的效果。

3.采用轮速传感器测量不同车轮的转速差。

车辆在弯道上行驶时,不同车轮的转动速度存在差异,从而使得可以根据车轮转速差对车辆行驶轨迹的曲率进行估算。

基于轮速差的曲率估算方法受到车辆动态运动的影响,计算过程中需要考虑到车辆动态运动规律,计算过程较复杂。

4.基于车速和横摆角速度进行曲率求解。

车辆在弯道上行驶时,安装于车辆上的陀螺仪实时测量车身横摆角速度,而横摆角速度由车辆速度和道路曲率直接决定,因此基于车速和横摆角速度对曲率的计算过程较简单。

但国外研究人员的结果表明,横摆角速度的测量误差较大、波动性强,导致对道路曲率的测量存在较大误差。

5.其他辅助测量方法。

针对机器视觉或基于轮速、横摆角速度的测量方法存在的不足,研究人员提出了一些模型优化方法。

例如通过雷达传感器对前方车辆的运动趋势进行识别,根据前车的运动状态来提高对道路曲率的估算。

另外雷达传感器还可以对道路两侧的构造物如护栏进行探测,通过对道路两侧构造物的形状进行分析可以提高道路曲率的估算精度。

三实验条件试验过程中采用陀螺仪测量车辆的加速度、横摆角速度等信息。

采用微波雷达、激光雷达和超声波传感器监测自车后方和侧方的其他车辆。

此外,同步采集车速、车辆与车道线距离数据。

(1)实验设备1.IMU02陀螺仪。

IMU02陀螺仪与VOBX 3i GPS主机配套使用,实时测量试验过程中车辆的加速度和角速度信息,采用CAN 2.0B(兼容2.0A)方式输出测量数据。

横摆角速度范围:± 150°/s横摆角速度分辨率:0.1°/s加速度范围:±1.7g加速度分辨率:1 mg输出频率:最大100Hz2.微波雷达。

试验车辆的前保险杆和后保险杠中央各安装一套微波雷达,用于实时追踪周围的其他车辆。

微波雷达的技术参数如下:距离范围:0.5 - 200 m水平测量角度:± 45°角度分辨率:0.5°输出频率:20Hz图1 VBOX3I型GPS 图2 IMU02陀螺仪3.激光雷达。

激光雷达安装于车辆后保险杠左侧,具有扫描范围大,追踪能力强的特点。

相关的技术参数如下:水平视角:240° FOV距离范围:0.3 m – 200 m分辨率:4 cm,角度为0.1° - 1°图3 微波雷达与激光雷达(2)实验道路实验路段包括直线和弯道两部分,选取两个路段分别为路段1和路段2,路段1用于测量建立识别模型,路段2用于对建立的模型进行验证。

其中路段1为双向6车道、设计行车速度80km/h ,中央绿化带隔离,路段全长1528m 。

路段2为双向4车道高速公路,设计行车速度110km/h ,中央绿化带隔离。

路段1和路段2的卫星照片如图4、5所示。

四 试验方法针对道路曲率测量方法,基于陀螺仪所测量得到的车辆横摆角速度,利用车速信号对道路曲率进行计算,计算公式如下:1rC v Rω== (1.1) 式中,C 为道路曲率,单位为°/m ;ωr 为横摆角速度,单位为rad/s ;v 为车速,单位为m/s ;R 为道路曲率半径,单位为m 。

式1.1的来源可以用车辆在圆周上的绕圈运动来解释,如图4所示: ω图4 曲率计算示意图图4中,车辆从图中位置以速度v 匀速运动,绕圆周运动一圈后返回原点所需要的时间为:2r t πω= (1.2)式1.2的计算依据是车辆绕圆周运动一周后车身所旋转的角度为2π,同时横摆角速度乘以运动时间也等于2π。

绕圆周运动一周的时间为t ,则此时间段内车辆的运动距离为:s v t =⨯ (1.3)式中,s 为车辆绕圆周运动一周所经过的距离,根据弧长计算公式有:2s R π= (1.4)由式1.2、1.3及1.4即可求解得到式1.1。

五 数据处理1.曲率计算过程采用IMU02陀螺仪测量车辆的横摆角速度,IMU02传感器安装于车身,实时采集车辆的横摆角速度以及其他加速度信息。

车辆运行速度v 来源于车身CAN 总线数据。

通过监控视频选择一段包含直线、弯道的路段,记为路段1,截取车辆在通过此路段时的原始数据,结果如图5所示。

图5表明,横摆角速度值测量值包含噪声较大,主要原因在于车身振动以及传感器本身的误差。

路段1的实际形状如图6所示。

所截取的路段1为双向6车道、设计行车速度80km/h ,中央绿化带隔离,路段全长1528m 。

对比图5和图6,车辆在直道路段行驶时横摆角速度总体分布在零值附近,但噪声较大。

随着道路由直道进入弯道时,所测量得到的横摆角速度出现了明显的下降趋势,经过弯道后横摆角速度值重新返回到零点附近。

利用式1.1计算路段1的曲率,结果如图7所示:图6 路段1实际形状 -0.004-0.003-0.002-0.0010.0000.00102004006008001000120014001600距离(m)曲率(°/m )路段1曲率C图7 路段1曲率2.数据滤波图7表明,利用式1.1所计算得到曲率虽然能反映出道路的线形变化,但由于道路实际曲率未知,因此无法对计算得到的曲率值进行验证。

另一方面,计算得到的曲率值包含噪声较大,从而使得根据曲率对车辆之间车道关系进行辨识的误差较大。

为降低数据误差给后续分析带来的影响,本文采用数据滤波方法降低测量数据的误差。

由于误差的原始来源主要是横摆角速度测量噪声,因此通过对横摆角速度进行滤波可以降低噪声对曲率测量带来的干扰。

相比于其他方法,移动平均滤波的原理较简单,对于第n 次采样,使用从n-m+1次到n 次采样的平均值作为第n 次采样的测量值,从而降低随机误差对横摆角速度带来的干扰,平滑效果主要由平滑窗口区间长度m 决定。

移动平均滤波方法较简单,计算速度快,通过对滤波时间窗口长度进行调整可以提高滤波效果,在对横摆角速度的滤波应用中得到了广泛的应用,本文采用移动平均滤波方式对IMU02测量得到的横摆角速度进行滤波,结果如下:图8 m = 30移动平均滤波效果使用平均移动滤波得到的横摆角速度数据,使用式1.1计算道路曲率,结果如下:图9 滤波后路段1曲率六实验验证道路的曲率与曲率半径值互为倒数,在建立车辆-道路之间的动态模型中通常采用曲率半径值进行分析。

相比于曲率值,曲率半径的实际意义更容易利用图形的方式来表达,对于换道过程中F d车辆的识别问题也需要采用道路曲率半径值进行求解。

另一方面,道路的曲率值不容易获取,无法进行验证试验,而道路曲率值则能采用其他方法间接获取,从而能够对基于横摆角速度和车速对曲率半径进行估算的效果进行验证。

R1R2R3R4R5OR1R2R3R4R5O图10 路段1卫星实景照片图11 路段2卫星实景照片本文除路段1之外,另外挑选一条路段进行分析,以路段2表示,路段2为双向4车道高速公路,设计行车速度110km/h,中央绿化带隔离。

本文通过Google Earth软件对特定路段的曲率半径值进行估测,该软件是谷歌公司基于实景卫星照片所开发的三维地理软件。

路段1、2在Google Earth软件中的截图如上图。

1.路段1曲率半径验证结果。

在路段1卫星实景照片中,通过圆弧切线交叉定位方法对圆弧中心O进行定位,利用多条从O点出发到实际行车道中央的半径R来验证所定位圆心的准确程度,通过多次定位寻找效果较好的结果,如图10所示。

图10中,R1、R2、R3、R4、R5在Google Earth软件中的长度分别为408m、403m、404m、403m、408m,5次测量的平均值R=405.2m,最大值与最小值之间差值为5m。

通过GPS所采集的经纬度数据和图10位置进行地点匹配,利用基于横摆角速度和车速的道路曲率模型求解道路曲率半径值,以R1半径末端为起点,R5末端为终点,计算此路段的曲率半径值,结果如图12所示:图12 路段1计算得到的曲率半径图12表明,基于车辆横摆角速度和车速所计算得到道路曲率半径值基本保持在400m附近,所有计算得到的数据中,曲率半径R max=418.7m,R min=363.6m,平均值R a=394.8m,标准偏差为12.7m。

相关文档
最新文档