中科大工程热力学概述

合集下载

工程热力学概念

工程热力学概念

能源:是指提供各种有效能量的物质资源
热力学是一门研究物质的能量、能量传递和转换以及能量与物质性质之间普遍关系的科学。

工程热力学的研究对象主要是能量转换, 特别是热能转化成机械能的规律和方法, 以及提高转化效率的途径, 以提高能源利用的经济性。

热力系统热力学中常把分析的对象从周围物体中分割出来, 研究它与周围物体之间的能量和物质的传递。

这种被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。

闭口系统一个热力系统如果和外界只有能量交换而无物质交换。

闭口系统内的质量保持恒定不变, 所以闭口系统又叫做控制质量。

开口系统:热力系统和外界不仅有能量交换而且有物质交换。

开口系统又叫做控制容积, 或控制体。

绝热系统:热力系统和外界间无热量交换
孤立系统:热力系统和外界既无能量交换又无物质交换时
简单可压缩系:热力系若与外界可逆的功交换只有体积变化功( 膨胀功或压缩功)一种形式
热力学状态,简称状态:工质在热力变化过程中的某一瞬间所呈现的宏观物理状况
状态参数:用来描述工质所处状态的宏观物理量
基本状态参数:压力、温度及体积可直接用仪器测量,使用最多
强度量:压力和温度这两个参数与系统质量的多少无关
经验温标:由选定的任意一种测量物质的某种物理性质,采用任意一种温度标定规则所得到的温标
比体积:单位质量物质所占的体积
平衡状态:一个热力系统,如果在不受外界影响的条件下,系统的状态能够始终保持不变。

工程热力学概念总结

工程热力学概念总结

工程热力学概念总结1.热力学系统:热力学系统是指被研究的物体或物质的一部分,可以是任何大小,包括军舰、蒸汽锅炉、汽车引擎、空调系统等。

系统可以是开放系统、封闭系统或孤立系统。

开放系统可与环境进行能量和物质的交换,封闭系统只能与环境进行能量交换,而孤立系统既不能与环境进行能量交换也不能与环境进行物质交换。

2.状态和状态参量:一个热力学系统具有一组描述其状态的特性,这些特性称为状态参量,包括压力、温度、体积、密度等。

系统的状态是由这些状态参量所决定的。

3.热力学过程:热力学过程是指系统从一个状态变化到另一个状态的过程。

常见的热力学过程有等容过程、等压过程、等温过程、绝热过程等。

4.热力学第一定律:热力学第一定律是能量守恒原理在热力学中的表达。

按照热力学第一定律,系统的能量增量等于系统所吸收的热量减去所做的功。

即ΔU=Q-W,其中ΔU为系统内能的变化,Q为系统所吸收的热量,W为系统所做的功。

5.热力学第二定律:热力学第二定律是热力学中关于能量转化的不可逆性的原理。

它可以通过熵的概念来表达,即熵在任何一个孤立系统中总是增加的。

热力学第二定律也可以用来描述热量只能从高温物体流向低温物体的原因,即热能无法完全转化为功,总会有一部分热能转化为了无用的热能。

6.热机和热泵:热机是根据热能转化为机械功的原理工作的设备,它们可以根据工作物质的不同分为蒸汽机、汽轮机、内燃机等。

而热泵则是根据逆向热力学原理,利用外部能量将低温的热量转移到高温区域的设备。

7.热力学循环:热力学循环是指系统经历一系列热力学过程后又恢复到初始状态的过程。

常见的热力学循环有卡诺循环、斯特林循环、布雷顿循环等。

8.物质和能量平衡:在热力学中,物质和能量都必须满足平衡条件。

物质平衡是指系统中各组分的质量守恒,而能量平衡是指系统中各能量流动的输入和输出必须平衡。

这两个平衡条件是热力学研究中非常重要的基础。

综上所述,工程热力学是研究能量转化和能量流动的科学,包括热力学系统、状态和状态参量、热力学过程、热力学定律、热机和热泵等概念。

工程热力学基础

工程热力学基础

工程热力学基础工程热力学基础是研究热与能量转化以及热力学循环的学科。

它是工程学中重要的基础学科之一,涉及到能量的转化、储存和传递等方面的问题。

在这里,我将以人类的视角,以生动的语言描述工程热力学基础的相关内容。

让我们来了解一下什么是热力学。

热力学是研究热与能量转化过程的一门学科,它描述了物质和能量之间的关系。

在工程中,我们经常需要考虑能量的转化问题,比如热能转化为机械能、电能或化学能等。

在工程热力学中,我们经常使用一些基本概念来描述能量转化的过程。

其中最重要的概念之一就是热力学循环。

热力学循环是一个能量转化的过程,它包括一系列的状态变化,最终回到起始状态。

比如蒸汽机、内燃机等都是基于热力学循环原理工作的。

在热力学循环中,热能的转化是一个重要的过程。

热能可以通过传导、传热、辐射等方式传递。

在工程中,我们经常需要考虑热能的传递问题,比如热交换器的设计、燃烧过程中的热能转化等。

热力学还包括熵的概念。

熵是描述系统无序程度的物理量,它与能量转化的效率有关。

在工程中,我们经常需要考虑如何提高能量转化的效率,减少能量的损失。

在工程热力学中,还有一些其他的重要概念,比如焓、熵增、热力学势等。

这些概念在描述和分析能量转化的过程中起到了重要的作用。

工程热力学基础是研究能量转化和热力学循环的学科。

它涉及到能量的转化、传递和储存等方面的问题。

通过研究工程热力学基础,我们可以更好地理解能量转化的原理,并应用于工程实践中。

希望本文能够以人类的视角,以生动的语言描述工程热力学基础的相关内容,使读者能够更好地理解和应用这门学科。

工程热力学童钧耕第六版

工程热力学童钧耕第六版

工程热力学童钧耕第六版摘要:一、工程热力学概述二、热力学第一定律三、热力学第二定律四、热力学第三定律五、热力学势和熵六、热力学循环和热机七、传热和热传导八、热力学应用领域正文:工程热力学是一门研究热量传递、能量转换以及热力学系统性质的学科。

在本篇文章中,我们将介绍工程热力学的概述以及相关的基本概念和应用。

一、工程热力学概述工程热力学作为一门学科,主要研究热力学原理在工程中的应用。

它旨在解决热量传递、能量转换及热力学系统稳定性等问题。

工程热力学在我国得到了广泛的应用,尤其在能源、化工、冶金等行业。

二、热力学第一定律热力学第一定律,又称能量守恒定律。

它表明在封闭系统中,能量的总量是恒定的,仅能从一种形式转化为另一种形式。

在工程热力学中,这一定律为我们提供了分析和计算能量转换的依据。

三、热力学第二定律热力学第二定律阐述了热力学过程的方向性,即自然界的过程总是向着熵增加的方向进行。

这一定律在工程热力学中的应用主要体现在热力学循环的优化、节能减排等方面。

四、热力学第三定律热力学第三定律,又称熵定律。

它表明在恒定温度和压力下,封闭系统的熵趋于增加。

这一定律在工程热力学中的应用有助于我们理解和预测熵变,从而优化热力学过程。

五、热力学势和熵热力学势是描述热力学系统在恒定温度和压力下的状态的物理量。

熵则是描述热力学系统混乱程度的物理量。

在工程热力学中,了解热力学势和熵的变化规律有助于分析和优化热力学过程。

六、热力学循环和热机热力学循环是热力学系统中能量转换的过程。

常见的热力学循环有奥托循环、布雷顿循环等。

热机是将热能转换为机械能的设备。

了解热力学循环和热机的原理,有助于提高能源利用效率和优化热力学系统设计。

七、传热和热传导传热是指热量从高温物体传递到低温物体的过程。

热传导是传热的一种方式,主要发生在固体中。

在工程热力学中,研究传热和热传导的规律有助于我们设计和优化热交换设备、保温材料等。

八、热力学应用领域工程热力学在多个领域具有广泛的应用,如能源工程、化学工程、航空航天、环境保护等。

工程热力学知识总结

工程热力学知识总结

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学基础知识

工程热力学基础知识

工程热力学基础知识制冷与空调技术理论基础第二部分工程热力学基础知识一、热力学的基本概念(一)、热力系统与工质1.热力系统1.热力系统在热力学研究中,研究者所指定的具体研究对象称为热力系统,简称系统系统。

和系统发生相互作用(热力系统,简称系统。

和系统发生相互作用(能量交换或质量交换)的周围环境称为外界质量交换)的周围环境称为外界,或称为环境。

系统与环外界,或称为环境环境。

系统与环境的分界面称为边界境的分界面称为边界。

边界。

闭口系:与外界没有质量交换的系统,称为闭口系统。

闭口系:开口系:开口系:与外界有质量交换的系统,称为开口系统。

绝热系:绝热系:与外界没有热量交换的系统,称为绝热系统。

完全绝热的系统实际上是不存在的,工程上将与外界换热量相对很小的系统近似为绝热系统。

2.工质 2.工质在制冷与空调工程及其他热力设备中,热能与机械能的转换或热能的转移,都要借助于某种携带热能的工作物转换或热能的转移,都要借助于某种携带热能的工作物质的状态变化来实现,这类工作物质称为工质。

质的状态变化来实现,这类工作物质称为工质。

制冷系统中使用的工质称为制冷剂制冷系统中使用的工质称为制冷剂,也叫冷媒制冷剂,也叫冷媒(二)系统的热力状态及其基本参数1.热力状态1.热力状态某时刻,系统中工质表现在热力现象方面某时刻,系统中工质表现在热力现象方面的总的状况称为系统的热力状态的总的状况称为系统的热力状态,简称状热力状态,简称状态。

描述系统状态的物理量称为状态参数描述系统状态的物理量称为状态参数状态参数的取值完全由状态确定。

如果工质的状态参数可以在一段时间内保持稳定的数值,不随时间变化而变化,则称为热力平衡态称为热力平衡态,简称平衡态。

热力平衡态,简称平衡态平衡态。

2.基本状态参数 2.基本状态参数如果系统的状态发生了变化,那么将表现为状态参数的变化,换而言之,我们可以通过观测系统状态参数的变化来了解系统的变化。

表示系统状态变化的参数有六个,分别为: 表示系统状态变化的参数有六个,分别为: 压力、温度、比体积(或密度)、内能、)、内能压力、温度、比体积(或密度)、内能、焓、熵,其中温度、压力、比体积可以直接或者间接的用一起测出,称为基本状态接或者间接的用一起测出,称为基本状态参数。

工程热力学概念总结

工程热力学概念总结

工程热力学总结第一章基本概念1.基本概念热力系统:这种被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统(简称系统,体系)。

边界:系统与外界之间的分界面,称为边界。

外界:与系统发生质能交换的物体称为外界。

闭口系统:一个热力系统如果和外界只有能量交换而无物质交换的系统称为闭口系统,因闭口系统内的质量保持恒定不变,所以闭口系统也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(u)或密度(p)、内能(u)、焓(h)、熵*)、自由能(£)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

工程热力学基本概念与重要公式

工程热力学基本概念与重要公式

工程热力学基本概念与重要公式工程热力学是研究能量转化与能量传递的科学,它是指热力学原理在工程领域的应用。

热力学是研究物质和能量转化过程的一门学科,它研究能量的守恒性、能量的转化和能量的传递规律。

热力学是一门理论和实践相结合的学科,它与能源转化、工程设计等密切相关。

能量是物质存在时所具有的性质,它包括内能、动能和势能等形式。

热量是能量的一种传递方式,是由于温度差异而引起的能量传递。

功是物体由于受力而做的功,是一种能量转化的方式。

温度是物体的一种物理量,是衡量物体热平衡状态的指标。

热平衡是指物体之间没有温度差异,处在热平衡状态下的物体之间不发生热量传递。

在工程热力学中,还有一些重要的公式用于描述能量转化和能量传递过程。

其中,最重要的一条是能量守恒定律,它认为能量不会凭空消失或产生,只会转化为其他形式。

按照能量守恒定律,一个物体接受的热量和功等于物体输出的热量和功,即Q-W=ΔE,其中Q是系统的吸热量,W是系统所做的功,ΔE是系统的内能变化量。

另一个重要的公式是卡诺循环效率的计算公式,其中卡诺循环是一种理想循环,不可逆系统的效率与卡诺循环效率之差称为失效。

卡诺循环效率的计算公式可以表示为η=1-Tc/Th,其中η是卡诺循环效率,Tc是冷源的温度,Th是热源的温度。

工程热力学还涉及到热传导、热辐射和热对流等热传递过程的分析。

热传导是指热量通过物质的传递方式,根据傅里叶热传导定律,热的传导速率与温度梯度成正比。

热辐射是指物体表面由于温度而产生的热辐射,它的强度与物体的温度的四次方成正比。

热对流是指流体由于温度差异而引起的传热现象,它的传热速率与流体的性质、温度差和流速等因素相关。

总之,工程热力学是一门重要的工程科学,它涉及能量转化和能量传递的基本规律。

在工程热力学中,有许多重要的概念和公式,能够用于描述和分析能量转化和能量传递过程。

这些概念和公式为工程热力学的应用提供了理论基础,对于工程设计和能源利用具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程热力学1绝热热力系:若热力系与外界之间无热量交换,则该热力系称为绝热热力系.平衡状态:若热力系在不受外界的作用下,宏观性质不随时间变化而变化。

准静态过程:在热力过程中,热力系的宏观状态始终维持或接近平衡状态。

可逆过程:一个热力过程进行完了以后,如能使热力系沿相同的路径逆行而回复至原态,且相互作用中所涉及到的外界也回复到原态,而不留下任何痕迹。

稳定流动过程:在流动过程中,热力系内部及热力系界面上每一点的所有特性参数都不随时间而变化。

状态参数:用以描述热利系状态的某些宏观物理量称为热力系状态参数。

强度参数:与热利系的质量无关,且不可相加的状态参数。

热量:通过热力系以外的一切物质,统称外界。

压力:单位面积上所受到的指向受力面的垂直作用力。

内能:内能是热力系处于宏观静止状态时系统内所有微观粒子所具有的能量总和。

单位质量工质所具有的内能称为比内能。

熵:是表征系统微观粒子无序程度的一个宏观状态参数。

热力学第一定律:热可以转变为功,功也可以变为热。

一定量的热消失时,必产生与之数量相当的功;消耗一定量的功时,也必出现相当数量的热。

容积功:在热力过程,由于系统容积改变,使系统与外界交换的功。

推动功:为使某部分工质进出热利系,外界或系统对这部分工质做功,这部分功称为推动功或流动功。

即推动功是维持工质流动所必需的最小的功。

技术功:工程上将技术上可以利用的功称为技术功,对开口系统来讲其包括轴功、进出口的宏观动能差和宏观位能差。

热力学第二定律:开尔文说法,只冷却一个热源而连续不断做工的循环发动机是造不成的。

克劳修斯说法,热不可能自发的、不负代价的从低温物体传到高温物体。

孤立系统熵增原理:若孤立系所有部分的内部以及彼此间的作用都经历可逆变化,则孤立西的总熵保持不变;若在任一部分内发生不可逆过程或各部分间的相互作用中伴有不可逆性,则其熵必增加。

理想热机:热机内发生的一切热力过程都是可逆过程。

卡诺循环:在两个恒温热源间,有两个可逆过程组成的循环。

卡诺定理:在两个不同温度的恒温热源间的所有热机,以可逆机的效率最高。

第二类永动机:从单一热源取得热量并使之完全变为机械能而又不引起其他变化的循环发动机。

理想气体:其分子式一些弹性的、不占有体积的质点,且分子间没有相互作用力。

比热:单位质量的物体,当其温度变化一度时,物体和外界交换的热量。

定压质量比热:在定压过程中,单位质量的物体,当温度变化一度时,物体和外界交换的热量。

同定容质量比热定压容积比热定容质量比热定压摩尔比热定容摩尔比热饱和温度:在一定压力下,当气体两相达到平衡时,液体所具有的温度。

饱和压力:当气液两相达到平衡时,蒸汽所具有的压力.饱和液体:两相平衡时的液体.干饱和蒸汽:在一定的压力下,饱和液体完全汽化为蒸汽,蒸汽温度仍为该压力下的饱和温度. 湿饱和蒸汽:两相平衡时饱和液体和饱和蒸汽的混合物.过热蒸汽:在一定压力下,蒸汽所具有的温度高于该压力对应的饱和温度.汽化潜热:一定温度下,1千克饱和液体汽化为同温度下的干饱和蒸汽所吸收的热量. 临界点:在状态参数坐标图上,饱和液体线与干饱和蒸汽线相交的点.过热蒸汽的过热度:在某一压力下,过热蒸汽的温度与该压力下饱和温度的差值. 三相点:物质气,液,固三相共存的状态点. 混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值.混合气体的容积成分混合气体的摩尔成分混合气体的分压力:混合气体中各组元气体在混合气体温度下单独占有整个容积时,作用于容器壁上的压力.混合气体的分容积:混合气体各组元气体处于混合气体的压力和温度时所单独占的容工程热力学2积.道尔顿分压定律:混合气体的总压力等于各组元气体分压力之和.分容积定律:混合气体的总容积等于各组元气体分容积之和.湿空气;含有水蒸气的空气.未饱和湿空气:由空气和过热水蒸汽组成的湿空气.饱和湿空气:由空气和饱和水蒸气组成的湿空气.绝对湿度(湿空气):单位容积的湿空气中所含水蒸汽的质量.相对湿度(湿空气):湿空气的绝对湿度与同温度下饱和湿空气的绝对湿度之比(湿空气中实际所含的水蒸气量和同温度下饱和湿空气中所能包含的最大水蒸气量之比). 湿空气含湿量(比湿度):一定容积的湿空气中水蒸气的质量与干空气质量之比.过热蒸汽:在一定压力下,温度高于该压力对应的饱和温度之蒸汽.过冷蒸汽:在一定压力下,温度低于该压力对应的饱和温度之蒸汽.对比参数:工质的状态与其相应的临界参数之比,如工质压力与其临界压力之比,工质温度与其临界温度之比为对比温度.液体热:将一公斤未饱和水定压加热为饱和水,所需的热量.湿蒸汽干度:一定质量的湿蒸汽中所含干饱和蒸汽的质量与湿蒸汽总质量之比.定温过程:在状态变化时,定量工质温度保持不变的过程.绝热过程:工质和外界没有热交换的过程. 定熵过程:在状态变化时,工质熵保持不变的过程(可逆绝热过程).定熵流动:若工质在流动时既与外界无热量交换又无摩擦和扰动,则流动为可逆绝热流动.音速:微弱扰动在连续介质中所产生的纵波的传播速度.当地音速:指当地流动所处状态下的音速. 马赫数:工质在流动过程中,某一点的流动与当地音速之比.喷管:使气流压力降低,流速增大的管道. 扩压管:使气流流速降低,压力增大的管道. 绝热节流:工质在管内绝热流动时,由于通道截面突然缩小,使工质压力降低.绝热滞止:工质在绝热流动中,因遇到障碍物或某种原因而受阻,使速度降低直至为零.活塞式缩机的余隙:为了安置进,排气阀以及避免活塞与汽缸端盖的碰撞,在汽缸端顶与活塞行程终点间留有一定的空隙,称为余隙容积.活塞式压缩机的容积效率:活塞式压气机的有效容积和活塞排量之比。

最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比。

压气机的效率:在相同的初态及增压比条件下,可逆压缩机过程中压气机所消耗功与实际不可逆压缩过程中压气机所耗功的功之比。

亚音速流动:工质的流动速度小于当地音速。

超音速流动:工质再喷管中流动时,在喷管的最小截面处,若工质的流动速度等于当地音速,则此时工质所处的状态。

临界压力比:临界状态时工质压力与滞止压力之比。

压气机的增压比:压气机的出口压力与进口压力之比。

平均加热温度:用加热工程中系统与外界交换的热量除以交换该热量时系统熵的改变量所得到的温度。

平均放热温度:用放热过程中系统与外界交换的热量除以交换该热量时系统熵的改变量所得到的温度。

循环热效率:工质完成一个循环时,对外所作的净功与吸热量之比。

汽耗率:蒸汽动力循环装置每输出1千瓦小时功量时所消耗的蒸汽量。

相对热效率:某循环的热效率与相同温度范围内卡诺循环热效率之比,称为该循环的相对热效率或充满系数。

制冷系数:制冷循环中,制冷量与循环净功之比。

供热系数:供热循环中,供热量与循环净功之比。

制冷量:在每一次制冷循环中,一公斤工质从冷藏室吸收的热量。

供热量:在每一次供热循环中,一公斤工质放给暖室的热量。

循环净热量:一次循环中系统和外界交换的总热量。

循环净功:一次循环中系统和外界交换的总工程热力学3功量。

循环加热量:一次循环中系统从外界吸收的总热量。

循环放热量:一次循环中系统放给外界的总热量。

热力循环:工质从某一状态经过一连串的状态变化过程,又回复到原来的状态,这些热力过程的组合就称为热力循环。

热机循环:若循环的结果是工质将外界的热能在一定的条件下连续不断的转变为机械能。

制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温。

制冷机:从低温冷藏室吸取热量排向大气所用的机械。

热泵:将热量由大气传送至高温暖室所用的机械装置。

1、通用气体常数是一个与气体性质和状态均无关的常数,而气体常数是一个和气体性质有关,但与气体所处的状态无关常数,且某种气体的气体常数就等于通用气体常数除以该气体的分子量.2、第一类永动机是指从单一热源取热量并使之完全转变为机械功的循环发动机;而第二类永动机是指不消耗任何能量而连续不断做工的循环发动机.3、冬季供暖时,随着室内空气温度的不断提高,室内空气的相对湿度逐渐降低,空气变得干燥,使人感到不舒服.4、当热力系与外界无能量交换时,热力系内状态是否发生变化将取决于热力系本身的状态.若热力系是平衡热力系,则热力系的状态不发生变化;若热力系是非平衡热力系,则热力系的状态将随时间发生变化.5、焓是状态参数,其大小取决于系统的状态,与系统是否封闭无关.无论何种系统,只要起状态一定,则用来描述状态的宏观物理量就一定存在.6、Q=W+△U不仅适用于封闭热力系,也适用于其他热力系.因为该式揭示了在能量转换过程中内能,容积工和加热量之间的普遍关系.7、容积变化工表达式只适用于可逆过程. 技术工使用于任何工质的可逆过程.8、理想气体绝热自由膨胀过程是典型的不可逆过程,过程中比内能会发生变化,但膨胀前后总内能相等.9、熵是状态参数,某一过程中的变化量仅取决于过程的处态和终态,与过程本身无关. 10、仅仅已知温度和压力只可确定非饱和区域内水蒸汽的状态,而不确定饱和区域内水蒸汽的状态,因为在饱和区域内温度和压力是互为函数.11、饱和湿空气是干空气于饱和水蒸气的混合物,故干球温度与湿球温度相等,露点是湿空气中水蒸气分压力所对应的饱和温度,由于饱和湿空气中水蒸气是饱和的故水蒸气的分压力为饱和压力.12、比湿度相同的两种湿空气,温度高者,其相对湿度小,吸湿能力强.沸腾状态的水即饱和水,饱和水的温度取决于水的压力,较低的压力对应于较低的饱和温度.13、干饱和蒸汽的比容随饱和温度的升高而降低.湿空气在不增加和减少水蒸气含量的情况下定压冷却,其水蒸气的分压力也不变。

湿空气中水蒸气分压力的大小取决于湿空气中水蒸气含量的多少。

若水蒸气含量不变,则水蒸气分压力也将不变。

14、对密闭容器内的汽、水混合物不断的加热时,所有的水必将全部转化为水蒸气。

该加热过程为湿蒸汽的定容加热过程。

随着加热过程的进行,蒸汽的温度和压力将同时增加。

若蒸汽温度超过水的临界温度,则所有的水讲全部转化为蒸汽。

15、理想气体进行N=1.3的可逆膨胀过程时,一定会从外界吸收热量。

若理想气体是三原子气体,则绝热指数为1.3这是N=1.3的逆膨胀过程的可逆绝热过程,此时气体与外界无热量交换。

空气的绝热指数K=1.4,所以当空气进行N=1.3的可逆膨胀时,一定会从外界吸收热量。

16、水从饱和液体定压汽化为干饱和蒸汽,因为汽化过程中温度未变,则该过程中内能的改变量△U=CV△T=0温度不变只说明水蒸气的内动能不变,而水蒸气的内能包括内动能和内位能。

内位能是压力和比容的函数。

汽化过程中比容将发生变化,内位能也发生变化,所以内能也发生变化。

17、对湿空气进行冷却一定可以去湿。

对湿空气进行冷却,会提高湿空气的相对湿18、度。

能否去湿,关键在于冷却后的空气温度是否低于湿空气中水蒸气的露点温度。

相关文档
最新文档