2018朝阳区高三一模数学理科答案

合集下载

2018-2019朝阳区一模数学理科试题与答案(K12教育文档)

2018-2019朝阳区一模数学理科试题与答案(K12教育文档)

2018-2019朝阳区一模数学理科试题与答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019朝阳区一模数学理科试题与答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019朝阳区一模数学理科试题与答案(word版可编辑修改)的全部内容。

北京市朝阳区高三年级第一次综合练习数学 (理)2019.3本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答 无效.考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,集合2{|4}B x x =<,则A B =A .{|2}x x >-B .{|12}x x <<C .{|12}x x ≤<D .R 2.在复平面内,复数12iiz +=对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.41()x x-的展开式中的常数项为A .12-B .6-C .6D . 12 4.若函数22,1,()log ,1x x f x x x ⎧<=⎨-≥⎩,则函数()f x 的值域是A .(,2)-∞B .(,2]-∞C .[0,)+∞D .(,0)(0,2)-∞5.如图,函数()f x 的图象是由正弦曲线或余弦曲线经过变换得到的,则()f x 的解析式可以是A .()sin(2)3f x x π=+B .()sin(4)6f x x π=+C .()cos(2)3f x x π=+D .()cos(4)6f x x π=+12π1-1O 3π xy712π6.记不等式组0,3,yy xy kx≥⎧⎪≤+⎨⎪≤⎩所表示的平面区域为D.“点(1,1)D-∈”是“1k≤-"的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为A.4B.2C.83D.438.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是A.5 B.6 C.7 D.8第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线2214xy-=的右焦点到其一条渐近线的距离是.10.执行如图所示的程序框图,则输出的x 正(主)视图俯视图侧(左)视图11.在极坐标系中,直线cos1ρθ=与圆4cosρθ=相交于,A B 两点,则AB=___.12.能说明“函数()f x的图象在区间[]0,2上是一条连续不断的曲线.若(0)(2)0f f⋅>,则()f x在(0,2)内无零点”为假命题的一个函数是.13.天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是.14.在平面内,点A是定点,动点CB,满足||||1AB AC==,0AB AC⋅=,则集合{=+,12}|P AP AB ACλλ≤≤所表示的区域的面积是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)在ABC△中,21a=,120A∠=︒,ABC△的面积等于3,且b c<.(Ⅰ)求b的值;(Ⅱ)求cos2B的值.图1 图216.(本小题满分13分)某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),,[35,40]分组,制成频率分布直方图:时间(分钟)乙站甲站时间(分钟)假设乘客乘车等待时间相互独立.(Ⅰ)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A;从乙站的乘客中随机抽取1人,记为B.用频率估计概率,求“乘客A,B乘车等待时间都小于20分钟”的概率;(Ⅱ)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,X表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X的分布列与数学期望.17.(本小题满分14分)如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD.四边形ADEF为正方形,四边形ABCD为梯形,且//AD BC,90BAD∠=︒,1AB AD==,3BC=.(Ⅰ)求证:AF CD⊥;(Ⅱ)求直线BF与平面CDE所成角的正弦值;(Ⅲ)线段BD上是否存在点M,使得直线//CE平面AFM?若存在,求BMBD的值;若不存在,请说明理由.18.(本小题满分13分)EDC BAF已知函数ln()()ax f x x= (R a ∈且0)a ≠.(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当1a =-时,求证:()1f x x ≥+; (Ⅲ)讨论函数()f x 的极值.19.(本小题满分14分)已知点00(,)M x y 为椭圆22:12x C y +=上任意一点,直线00:22l x x y y +=与圆22(1)6x y -+=交于,A B 两点,点F 为椭圆C 的左焦点. (Ⅰ)求椭圆C 的离心率及左焦点F 的坐标; (Ⅱ)求证:直线l 与椭圆C 相切;(Ⅲ)判断AFB ∠是否为定值,并说明理由.20.(本小题满分13分)在无穷数列{}n a 中,12,a a 是给定的正整数,21n n n a a a ++=-,N n ∈*.(Ⅰ)若123,1a a ==,写出910100,,a a a 的值; (Ⅱ)证明:数列{}n a 中存在值为0的项;(Ⅲ)证明:若12,a a 互质,则数列{}n a 中必有无穷多项为1.北京市朝阳区高三年级第一次综合练习数学(理)答案2019.3一、选择题:(本题满分40分)二、填空题:(本题满分30分)三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由已知得2221=sin 2=2cos120.S bc A b c bc ⎧⎪⎨⎪+-︒⎩整理得22=4,=17.bc b c ⎧⎨+⎩解得=1,=4b c ⎧⎨⎩,或=4,=1.b c ⎧⎨⎩因为b c <,所以1b =.………………………………………………….8分(Ⅱ)由正弦定理sin sin a bA B=,即sin 14B =.所以2213cos 2=12sin 114B B -=-= ……………………………….13分16.(本小题满分13分)解:(Ⅰ)设M 表示事件“乘客A 乘车等待时间小于20分钟”,N 表示事件“乘客B 乘车等待时间小于20分钟”,C 表示事件“乘客A,B 乘车等待时间都小于20分钟”.由题意知,乘客A 乘车等待时间小于20分钟的频率为0.0120.0400.048)50.5(++⨯=,故()P M 的估计值为0.5.乘客B 乘车等待时间小于20分钟的频率为0.0160.0280.036)50.4(++⨯=,故()P N 的估计值为0.4.又121()()()()255P C P MN P M P N ==⋅=⨯=.故事件C 的概率为15. (6)(Ⅱ)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为0.4,所以乙站乘客乘车等待时间小于20分钟的概率为25。

北京市朝阳区2018届高三3月综合练习(一模)数学(理)试题(解析版)

北京市朝阳区2018届高三3月综合练习(一模)数学(理)试题(解析版)

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集为实数集,集合,,则A. B. C. D.【答案】C【解析】【详解】根据题中条件可求得,所以,故选C.2.复数满足,则在复平面内复数所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】由得,在复平面内对应的点为,在第一象限,故选.3.直线的参数方程为(为参数),则直线的倾斜角大小为()A. B. C. D.【答案】C【解析】将直线的参数方程化成普通方程可得,所以直线的斜率,从而得到其倾斜角为,故选C.4.已知,为非零向量,则“”是“与夹角为锐角”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】根据向量数量积的定义式可知,若,则与夹角为锐角或零角,若与夹角为锐角,则一定有,所以“”是“与夹角为锐角”的必要不充分条件,故选B.5.某单位安排甲、乙、丙、丁名工作人员从周一到周五值班,每天有且只有人值班每人至少安排一天且甲连续两天值班,则不同的安排方法种数为( )A. B. C. D.【答案】B【解析】甲连续天上班,共有(周一,周二),(周二,周三),(周三,周四),(周四,周五)四种情况,剩下三个人进行全排列,有种排法因此共有种排法,故选.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A. B. C. D.【答案】D【解析】在长方体中抠点,1.由正视图可知:上没有点;2.由侧视图可知:上没有点;3.由俯视图可知:上没有点;4.由正(俯)视图可知:处有点,由虚线可知处有点,点排除.由上述可还原出四棱锥,如右图所示,,,故选.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )A. 甲B. 乙C. 丙D. 丁【答案】A【解析】由四人的预测可得下表:1.若甲中奖,仅有甲预测正确,符合题意;2.若乙中奖,甲、丙、丁预测正确,不符合题意;3.若丙中奖,丙、丁预测正确,不符合题意;4.若丁中奖,乙、丁预测正确,不符合题意;故只有当甲中奖时,仅有甲一人预测正确,选.8.在平面直角坐标系中,已知点,,动点满足,其中,则所有点构成的图形面积为( )A. B. C. D.【答案】C【解析】设,则,,,所有点构成图形如图所示(阴影部分),,故选.【方法点睛】本题主要考查平面向量基本定理以及线性规划的应用及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,把向量问题转化为线性规划问题解答是解题的关键.第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.执行如图所示的程序框图,若输入,则输出的值为________.【答案】【解析】第四次时,,所以输出.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为__________.【答案】【解析】由于双曲线关于原点对称,故在双曲线上,代入方程解得,又因为,所以渐近线方程为.11.函数()的部分图象如图所示,则__________;函数在区间上的零点为_________.【答案】(1). 2(2).【解析】从图中可以发现,相邻的两个最高点和最低点的横坐标分别为,从而求得函数的周期为,根据可求得,在结合题中的条件可以求得函数的解析式为,令,解得,结合所给的区间,整理得出.方法点睛:该题属于利用所给的函数图像,抓住其中的关键点,确定出函数的解析式,利用最高点和最低点的纵坐标求得A,利用相邻的两个最高点和最低点的横坐标的差求得其周期,从而求得的值,再利用最高点求得,最后确定出函数的解析式,最后利用函数的性质,求得其满足条件的零点.12.已知点若点是圆上的动点,则面积的最小值为__________.【答案】【解析】将圆化简成标准方程,圆心,半径,因为,所以,要求面积最小值,即要使圆上的动点到直线的距离最小,而圆心到直线的距离为,所以的最小值为,故答案为 . 13.等比数列满足如下条件:①②数列的前项和.试写出满足上述所有条件的一个数列的通项公式__________.【答案】【解析】例如,则,故答案为.14.已知,函数当时,函数的最大值是_____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是______.【答案】(1). (2).【解析】当时,,因为,所以,所以,当且仅当,即时取等号,而当时,,此时,分母取最小值,分子取最大值,从而得到该式子取得最大值,故最大值为;函数的图像上有且仅有两对点关于轴对称,等价于作轴左边的图像关于轴的对称图形,与轴右侧的图像有两个不同的交点,即方程有两个正根,即函数有两个零点,利用导数研究函数图像的走向,从而确定出所求的参数的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,已知,,(Ⅰ)若ac=5,求的面积;(Ⅱ)若为锐角,求的值.【答案】(Ⅰ)2;(Ⅱ).【解析】试题分析:第一问该题是有关解三角形问题,第一问根据题中的条件,结合同角正余弦平方和等于,从而求得,利用正弦定理,结合题中的条件,求得,利用三角形的面积公式求得结果;第二问由第一问中的结果,结合题中的条件为锐角,利用同角正余弦平方和等于,可得,最后根据三角形内角和为,利用诱导公式转化,利用和角公式求得结果.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.(Ⅱ)因为,且为锐角,所以.所以.方法点睛:该题考查的是有关解三角形问题,在解题的过程中,一定要抓住题的条件,死咬同角的正余弦平方和等于1,以及灵活应用正弦定理,熟练应用诱导公式以及正弦和角公式,从而能够正确得出结果. 16.如图,在矩形中,,为的中点,为的中点.将沿折起到,使得平面平面(如图).图1 图2(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】试题分析:(Ⅰ)根据等腰三角形的性质可得,由平面平面可得平面,从而可得;(Ⅱ)取中点为,连结,由矩形性质,,可知,由(Ⅰ)可知,,以为原点,为轴,为轴,为轴建立坐标系,求出平面的一个法向量及直线的方向向量,利用空间向量夹角余弦公式可得结果;(Ⅲ)假设在线段上存在点,满足平面,设,利用直线与平面的法向量垂直,数量积为零,列方程求解即可..试题解析:(Ⅰ)如图,在矩形中, ,为中点,,为的中点,由题意可知,, 平面平面图1 图2平面平面,平面,平面,平面,,(Ⅱ)取中点为,连结,由矩形性质,,可知,由(Ⅰ)可知,,以为原点,为轴,为轴,为轴建立坐标系,在中,由,则,所以,,设平面的一个法向量为,则,令,则,所以,设直线与平面所成角为,,所以直线与平面所成角的正弦值为. (Ⅲ)假设在线段上存在点,满足平面设,由,,所以,,,若平面,则,所以,解得,所以.【方法点晴】本题主要考查面面垂直的性质以及利用空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 17.某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.【答案】(Ⅰ)140人.(Ⅱ).(Ⅲ)见解析.【解析】试题分析:第一问根据题中所给的统计表,可以得出选考方案确定的有18人,这18人中,选考生物的有10人,所占比例是,在这30人中,选考方案确定的人所占比例是,该校高一年级共420人,所以可以得出学校高一年级选考方案确定的学生中选考生物的学生有人;第二问从表中可以得出所选男生选考方案含有历史学科的概率为,所选女生选考方案含有历史学科的概率为,根据相互独立事件同时发生的概率公式求得结果;第三问根据统计表写出所选的两名男生所选的科目,找出对应的的取值为,分析取每个值时对应的概率,从而得出分布列,利用离散型随机变量的分布列的期望公式求得结果. (Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为所以.18.已知函数.(Ⅰ)当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间;(Ⅱ)若,求证:.【答案】(Ⅰ)(i),(ii)递增区间是,递减区间是;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)(i)求出,求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(ii)分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(Ⅱ)先利用导数证明,则,再利用二次函数的性质证明,则,从而可得结论.试题解析:(Ⅰ)当时,,定义域为(i)所以切点坐标为,切线斜率为所以切线方程为(ii)令,所以在上单调递减,且所以当时,即所以当时,即综上所述,的单调递增区间是,单调递减区间是. (Ⅱ)方法一:,即设设所以在小于零恒成立即在上单调递减因为所以,所以在上必存在一个使得即所以当时,,单调递增当时,,单调递减所以因为所以令得因为,所以,因为,所以恒成立即恒成立综上所述,当时,方法二:定义域为了证明,即只需证明,即令则令,得令,得所以在上单调递增,在上单调递减所以即,则令因为,所以所以恒成立即所以综上所述,即当时,.【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性与极值,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.19.已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与的大小关系并加以证明.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)根据椭圆的离心率为,且过点,结合性质,列出关于、、的方程组,求出、、,即可得椭圆的方程;(Ⅱ)与的大小关系只需看两直线斜率之间的关系,设设,联立,消去得,利用斜率公式以及韦达定理,化简可得,直线的倾斜角互补,可得.试题解析:(Ⅰ)由题可得,解得.所以椭圆的方程为.(Ⅱ)结论:,理由如下:由题知直线斜率存在,设.联立,消去得,由题易知恒成立,由韦达定理得,因为与斜率相反且过原点,设,,联立消去得,由题易知恒成立,由韦达定理得,因为两点不与重合,所以直线存在斜率,则所以直线的倾斜角互补,所以.20.已知集合是集合的一个含有个元素的子集. (Ⅰ)当时,设(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值.(Ⅱ)证明:对任意一个,存在正整数使得方程至少有三组不同的解.【答案】(Ⅰ)(),();(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)()利用列举法可得方程的解有:;()列出集合的从小到大个数中相邻两数的差,中间隔一数的两数差,中间相隔二数的两数差,…中间隔一数的两数差,可发现只有出现次,出现次,其余都不超过次,从而可得结果;(Ⅱ)不妨设记,,共个差数,假设不存在满足条件的,根据的取值范围可推出矛盾,假设不成立,从而可得结论.假设不存在满足条件的,则这个数中至多两个、两个、两个、两个、两个、两个,.试题解析:(Ⅰ)()方程的解有:()以下规定两数的差均为正,则:列出集合的从小到大个数中相邻两数的差:;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:;中间相隔三数的两数差:;中间相隔四数的两数差:;中间相隔五数的两数差:;中间隔一数的两数差:.这个差数中,只有出现次,出现次,其余都不超过次,所以的可能取值有.(Ⅱ)证明:不妨设记,,共个差数.假设不存在满足条件的,则这个数中至多两个、两个、两个、两个、两个、两个,从而又这与矛盾,所以结论成立.。

2018-2019朝阳区一模数学理科答案

2018-2019朝阳区一模数学理科答案

北京市朝阳区高三年级第一次综合练习数学(理)答案2019.3二、填空题:(本题满分30分)三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由已知得2221=sin 2=2cos120.S bc A b c bc ⎧⎪⎨⎪+-︒⎩整理得22=4,=17.bc b c ⎧⎨+⎩解得=1,=4b c ⎧⎨⎩,或=4,=1.b c ⎧⎨⎩ 因为b c <,所以1b =.………………………………………………….8分(Ⅱ)由正弦定理sin sin a bA B=, 即sin 14B =.所以2213cos 2=12sin 114B B -=-= ……………………………….13分16.(本小题满分13分)解:(Ⅰ)设M 表示事件“乘客A 乘车等待时间小于20分钟”,N 表示事件“乘客B 乘车等待时间小于20分钟”,C 表示事件“乘客A,B 乘车等待时间都小于20分钟”.由题意知,乘客A 乘车等待时间小于20分钟的频率为0.0120.0400.048)50.5(++⨯=,故()P M 的估计值为0.5.乘客B 乘车等待时间小于20分钟的频率为0.0160.0280.036)50.4(++⨯=,故()P N 的估计值为0.4.又121()()()()255P C P MN P M P N ==⋅=⨯=. 故事件C 的概率为15.………………………………………………………….6分 (Ⅱ)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为0.4,所以乙站乘客乘车等待时间小于20分钟的概率为25. 显然,X 的可能取值为0,1,2,3且2(3,)5~X B .所以033327(0)()5125P X C ===;1232354(1)()55125P X C ==⋅=; 2232336(2)()55125P X C ==⋅=;33328(3)()5125P X C ===.故随机变量X 的分布列为2355EX =⨯= .……………….13分 17.(本小题满分14分)解:(Ⅰ)证明:因为ADEF 为正方形,所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD ,且平面ADEF I 平面ABCD AD =, 所以AF ⊥平面ABCD . 所以AF CD ⊥.………………4分(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以(0,0,0),(1,0,0),(1,3,0),(0,1,0),(0,1,1),(0,0,1)A B C D E F ,所以(1,0,1),(1,2,0),(0,0,1)BF DC DE =-==u u u r u u u r u u u r.设平面CDE 的一个法向量为(,,x y =n 则0,0.DC DE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 即20,0. x y z +=⎧⎨=⎩ 令2x =,则1y =-, 所以(2,1,0)=-n .设直线BF 与平面CDE 所成角为θ,则sin |cos ,|5BF θ=〈〉==u u u r n .……………….9分 (Ⅲ)设( (01])BMBDλλ=∈,, 设()111,,M x y z ,则()1111,,(1,1,0)x y z λ-=-, 所以1111,,0x y z λλ=-==,所以()1,,0M λλ-,所以()1,,0AM λλ=-u u u u r.设平面AFM 的一个法向量为000(,,)x y z =m ,则0,0.AM AF ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rm m 因为()0,0,1AF =u u u r ,所以000(1)0,0.x y z λλ-+=⎧⎨=⎩令0x λ=,则01y λ=-,所以(,1,0)λλ=-m .在线段BD 上存在点M ,使得//CE 平面AFM 等价于存在[0,1]λ∈,使得0CE ⋅=u u u rm . 因为()1,2,1CE =--u u u r,由0CE ⋅=u u u r m ,所以2(1)0λλ---=, 解得2[0,1]3λ=∈, 所以线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =.……………….14分18. (本小题满分13分) 解:(Ⅰ)当1a =时,ln ()x f x x =.所以21ln ()xf x x-'=. 因为(1)1,(1)0f f '==,所以曲线()y f x =在(1,(1))f 处的切线方程为1y x =-.……………….3分(Ⅱ)当1a =-时,ln()()x f x x-=. 函数()f x 的定义域为(,0)-∞. 不等式()1f x x ≥+成立⇔ln()1x x x-≥+成立⇔2ln()0x x x ---≤成立. 设2()ln()g x x x x =---((,0))x ∈-∞,则2121(21)(1)()21x x x x g x x x x x--+-++'=--==.当x 变化时,()g x ',()g x 变化情况如下表:所以()(1)g x g ≤-.因为(1)0g -=,所以()0g x ≤,所以ln()1x x x-≥+.………………………………………………………………….8分 (Ⅲ)求导得21ln()()ax f x x -'=. 令()0f x '=,因为0a ≠可得ex a=. 当0a >时,()f x 的定义域为()0,+∞.当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极大值e ()eaf a =,无极小值. 当0a <时,()f x 的定义域为(),0-∞,当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极小值e ()ef a =,无极大值.……………………………………………….13分19. (本小题满分14分)解:(Ⅰ)由题意a =1b =,1c =所以离心率c e a ==,左焦点(1,0)F -.………………………………………….4分(Ⅱ)当00y =时直线l 方程为x =x =l 与椭圆C 相切.当00y ≠时,由22001,222x y x x y y ⎧+=⎪⎨⎪+=⎩得2222000(2)4440y x x x x y +-+-=, 由题知,220012x y +=,即220022x y +=, 所以 22220000(4)4(2)(44)x y x y ∆=-+- 220016[2(1)]x y =-- =22016(22)0x y +-=. 故直线l 与椭圆C 相切.………………………………………………………….8分(Ⅲ)设11(,)A x y ,22(,)B x y ,当00y =时,12x x =,12y y =-,1x =2211(1)FA FB x y ⋅=+-u u u r u u u r 2211(1)6(1)x x =+-+-21240x =-=,所以FA FB ⊥u u u r u u u r,即90AFB ∠=o .当00y ≠时,由2200(1)6,22x y x x y y ⎧-+=⎪⎨+=⎪⎩ 得2222000(1)2(2)2100y x y x x y +-++-=, 则20012202(2)1y x x x y ++=+,21222101y x x y -=+, 2001212122220001()42x x y y x x x x y y y =-++200254422x x y --+=+. 因为1122(1,)(1,)FA FB x y x y ⋅=+⋅+u u u r u u u r1212121x x x x y y =++++2222000000220042084225442222y y x y x x y y -++++--+=+++ 220025(2)10022x y y -++==+. 所以FA FB ⊥u u u r u u u r,即90AFB ∠=o .故AFB ∠为定值90o . ………………………………………………………….14分20. (本小题满分13分)解:(I)9101000,1,1a a a ===..………………………………………………………….3分 (II)反证法:假设i ∀,0.i a ≠由于21n n n a a a ++=-, 记1,2max{}M a a =.则12,a M a M ≤≤.则32101a a a M <=-≤-,43201a a a M <=-≤-,54302a a a M <=-≤-,65402a a a M <=-≤-,L ,依次递推,有76503a a a M <=-≤-,87603a a a M <=-≤-…,则由数学归纳法易得21,.k a M k k *+≤-∈N当k M >时,210,k a +<与210k a +>矛盾. 故存在i ,使=0.i a所以,数列{}n a 必在有限项后出现值为0的项.………………………………………….8分 (III)首先证明:数列{}n a 中必有“1”项.用反证法,假设数列{}n a 中没有“1”项,由(II)知,数列{}n a 中必有“0”项,设第一个“0”项是m a (3)m ≥,令1m a p -=,1,p p >∈N *,则必有2m a p -=,于是,由1233||||m m m m p a a a p a ----==-=-,则32m a p -=,因此p 是3m a -的因数, 由2344|||2|m m m m p a a a p a ----==-=-,则4m a p -=或3p ,因此p 是4m a -的因数. 依次递推,可得p 是12,a a 的因数,因为1p >,所以这与12,a a 互质矛盾.所以,数列{}n a 中必有“1”项.其次证明数列{}n a 中必有无穷多项为“1”.假设数列{}n a 中的第一个“1”项是k a ,令1k a q -=,1,q q >∈N *, 则111k k k a a a q +-=-=-,若1k a +=11q -=,则数列中的项从k a 开始,依次为“1,1,0”的无限循环, 故有无穷多项为1;若111k a q +=->,则213212,1k k k k k k a a a q a a a +++++=-=-=-=, 若221k a q +=-=,则进入“1,1,0”的无限循环,有无穷多项为1;若221k a q +=->,则从k a 开始的项依次为1,1,2,1,3,4,1q q q q ----,……, 必出现连续两个“1”项,从而进入“1,1,0”的无限循环,故必有无穷多项为1.……13分。

2018年高三北京市朝阳区2018届高三(一模)数学

2018年高三北京市朝阳区2018届高三(一模)数学

理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。

)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.B.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.B.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。

)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:.……2分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。

高考最新-朝阳区第一次统一考试(理) 精品

高考最新-朝阳区第一次统一考试(理) 精品

朝阳区2018年高三第一次统一考试卷数学(理工农医类)2018.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3到8页.共150分,考试时间120分钟.第Ⅰ卷 (选择题,共40分)参考公式:三角函数的和差化积公式 正棱台、圆台的侧面积公式2cos2sin2sin sin β-αβ+α=β+α ()l c 'c 21S +=台侧 2sin2sin 2sin sin β-αβ+α=β-α 其中、c 'c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式2cos2cos2cos sin β-αβ+α=β+α ()h S S 'S 'S 31V ++=台球 2sin2cos 2cos cos β-αβ+α-=β-α 其中S 'S 、分别表示上、下底面面积,h 表示高一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有项是符合题目要求的.(1)设()2x x f =,集合A ={x}f(x)=x,x ∈R},B ={x}f[f(x)]=x,x ∈R,则A 与B 的关系是A .A ∩B =A B .A ∩B =φC .A ∪B =RD .A ∪B ={-1,0,1}(2)已知图中曲线4321C C C C 、、、是函数x log y a =的图象,则曲线4321C C C C 、、、对应a 的值依次为A .3、2、2131、 B .2、3、2131、 C .2、3、3121、 D .3、2、3121、(3)函数y =sinx +sin|x|的值域是A .[-1,1]B .[-2,2]C .[0,2]D [0,1](4)与双曲线116y 9x 22=-有共同的渐近线,且经过点()32,3-的双曲线方程为 A .19y 44x 22=- B .19x 44y 22=- D .14x 9y 422=- D .14y 9x 422=- (5)山坡水平面成30 角,坡面上有一条与山底坡脚的水平线成30 角的直线小路,某人沿小路上坡走了一段路后升高了100米,则此人行走的路程为A .300米B .400米C .200米D .3200米 (6)函数y =arccosx(-1≤x ≤1)的图象关于y 轴对称的图象记为1C ,而1C 关于直线y =x 对称的图象记为2C ,则2C 的解析式是A .y =cosx(0≤x ≤π)B .y =arcsinx(-1≤x ≤1)C .y =-cosx(0≤x ≤π)D .y =π-arccosx(-1≤x ≤1)(7)若三棱锥S —ABC 的项点S 在底面上的射影H 在△ABC 的内部,且是在△ABC 的垂心,则A .三条侧棱长相等B .三个侧面与底面所成的角相等C .H 到△ABC 三边的距离相等D .点A 在平面SBC 上的射影是△SBC 的垂心(8)抛物线()0p px 2y 2>=与直线⎪⎩⎪⎨⎧θ=θ+=sin t y cos t 2p x (t 为参数)相交的弦的中点对应的参数t 的值等于A .θθ2sin cos P 2 B .θ2sin p 2 C .θθ2sin cos p D .θ2sin p第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6分小题,每小题5分,共30分.把答案填在题中横线上.(9)已知()3x log x f 21+=的反函数为)x (f 1-,则使()2x x f 1-<-成立的x 的取值范围是_________.(10)某市电话号码从7位升至8位,这一改变可增加______________个拨号.(11)已知21、F F 是椭圆15y 9x 22=+的左、右焦点,P 为椭圆上一个点,且2:1 |PF |:|PF |21=.则21PF F ∠=_________,2PF 的倾斜角为________.(12)过棱长为2的正方体1AC 的棱AD 、CD 、11B A 的中点E 、F 、G 作一截面,则△EFG的面积为________,点B 到平面EFG 的距离为_______.(13)已知数列{}n a 中,,1a a ,a a a a a a ,2a ,1a 2n 1n 2n 1n n 2n 1n n 21≠++===++++++则6543a ,a ,a ,a 的值依次是_________,100a =________.(14)已知,21cos cos ,21sin sin =αβ-α-=β-α且βα、均为锐角,则cos(α-β)=__________,ctg(α-β)=___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)(Ⅰ)解关于x 的不等式();02x lg x lg 2>--(Ⅱ)若不等式()()01m x lg m 2x lg 2>-++-对于|m|≤1恒成立,求x 的取值范围.(16)(本小题满分13分)设21z ,z 是两个非零复数,且|z z ||z z |2121-=+;设复数21z z z +=,在复平面内与复数z 、21、z z 对应的向量分别为→---→---→---21OZ 、OZ 、OZ .(Ⅰ)在复平面内画出向量→---→---→---21OZ 、OZ 、OZ ,并说出以O 、1Z 、Z 、2Z 为顶点的四边形的名称;(Ⅱ)求证:221zz ⎪⎪⎭⎫ ⎝⎛是负实数.(17)(本小题满分13分)在矩形ABCD 中,AB =4,BC =3,E 为DC 的中点,沿AE 将△AED 折起,使二面角D -AE -B 为60 .(Ⅰ)求DE 与平面AC 所成角的大小; (Ⅱ)求二面角D -EC -B 的大小.(18)(本小题满分13分)已知函数f(x)是定义域为R 的奇函数,且它的图象关于直线x =1对称. (Ⅰ)求f(0)的值;(Ⅱ)证明函数f(x)是周期函数;(Ⅲ)若f(x)=x(0<x ≤1),求x ∈R 时,函数f(x)的解析式,并画出满足条件的函数f(x)至少一个周期的图象.(19)(本小题满分14分)如图,已知椭圆1by a x :C 2222=+(a>b>0),梯形ABCD(AB ∥CD ∥y 轴,|AB|>|CD|)内接于椭圆C ,E 为对角线AC 与BD 的交点,设|AB|=m ,|CD|=n ,|OE|=d ,dnm -是否存在最大值,若存在,求出最大值并说明存在时的情况;若不存在,请说明理由.(20)(本小题满分14分)一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n ≥3,n ∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(Ⅰ)如图1,圆环分成的3等份为321a a ,a 有多少不同的种植方法?如图2,圆环分成的4等份为4321a ,a ,a ,a ,有多少不同的种植方法?(Ⅱ)如图3,圆环分成的n 等份为n 321a ,,a a ,a ,有多少不同的种植方法?参考答案及评分标准15.(Ⅰ)解:∵,02x lg )x (lg 2>-- ∴(lgx +1)(lgx -2)>0. ∴lgx<-1或lgx>2. ∴0<x<101或210x >……………………………………………………………………6分 (Ⅱ)解:设y =lgx,则(),01m y m 2y 2>-++- ∴01m my y 2y 2>-+-- ∴.0)1y 2y (m )y 1(2>--+- 当y =1时,不等式不成立.设),1y 2y (m )y 1()m (f 2--+-=则f(m)是m 的一次函数,且一次函数为单调函数.当-1≤m ≤1时,若要⇔⎪⎩⎪⎨⎧>-+-->-+--⇔⎩⎨⎧>->⇔>.01y 1y 2y ,0y 11y 2y .0)1(f ,0)1(f 0)m (f 22 ⎩⎨⎧>-<><⇔⎪⎩⎪⎨⎧>-->-.2y 1y ,3y 0y .02y y ,0y 3y 22或或则y<-1或y>3.∴lgx<-1或lgx>3. ∴310x 101x 0><<或. ∴x 的取值范围是),10(101,03+∞⎪⎭⎫⎝⎛ .…………………………………………13分(16)(Ⅰ)图形略,所画图形是矩形.…………………………………………6分 (Ⅱ)证明:由212121、z z |,z z ||z z | -=+不等于零,得,1z z1z z 2121-=+ 它表示复数21z z 在复平面上对应的点到点(-1,0),(1,0)的距离相等, ∴21z z 对应的点是复平面虚轴上的点. ∴21z z 是纯虚数. ∴221)z z (是负实数.………………………………………………………………13分 17.如图1,过点D 作DM ⊥AE 于M ,延长DM 与BC 交于N ,在翻折过程中DM ⊥AE ,MN ⊥AE 保持不变,翻折后,如图2,∠DMN 为二面角D -AE -B 的平面角,∠DMN =60 ,AE ⊥平面DMN ,又因为AE ⊂平面AC ,则AC ⊥平面DMN .…………………………………………4分(Ⅰ)在平面DMN 内,作DO ⊥MN 于O , ∵平面AC ⊥平面DMN , ∴DO ⊥平面AC .连结OE ,DO ⊥OE ,∠DEO 为DE 与平面AC 所成的角. 如图1,在直角三角形ADE 中,AD =3,DE =2,,1323DE AD AE 2222=+=+=.134AE DE ME ,136AE DE AD DM 2===⋅=如图2,在直角三角形DOM 中,,133360sin DM DO =︒⋅=在直角三角形DOE 中,13233DE DO DEO sin ==∠,则.26393arcsin DEO =∠ ∴DE 与平面AC 所成的角为.26393arcsin……………………………………9分 (Ⅱ)如图2,在平面AC 内,作OF ⊥EC 于F ,连结DF ,∵DO ⊥平面AC ,∴DF ⊥EC ,∴∠DFO 为二面角D -EC -B 的平面角.如图1,作OF ⊥DC 于F ,则Rt △EMD ∽Rt △OFD ,,DEEMDO OF =∴.DEEMDO OF ⋅=如图2,在Rt △DOM 中,OM =DMcos ∠DMO =DM ·cos60 =133.如图1,.1318OF ,139MO DM DO ==+= 在Rt △DFO 中,,213OF DO DFO tg ==∠ ∴二面角D -EC -B 的大小为213arctg .…………………………………………13分18.(Ⅰ)解:∵函数f(x)是奇数,∴f(x)=-f(-x). 令x =0,f(0)=-f(0),2f(0)=0∴f(0)=0.…………………………………………………………………………3分(Ⅱ)证:∵函数f(x)是奇函数,∴f(x)=-f(-x)………………………………(1) 又f(x)关于直线x =1对称,∴f(1+x)=f(1-x) 在(1)中的x 换成x +1,即f(1+x)=-f(1-x),即f(1-x)=-f(-1-x) (2)在(2)中,将1-x 换成x ,即f(x)=-f(-2+x) (3)在(3)中,将x 换成2+x ,即f(2+x)=-f(x) (4)由(3)、(4)得:f(-2+x)=f(2+x). 再将x -2换成x,得:f(x)=f(x +4).∴f(x)是以4为周期的周期函数.………………………………………………8分(Ⅲ)解:⎩⎨⎧<<+-≤≤-=.3x 12x ,1x 1x)x (f)Z k (.3k 4x 1k 4k42x 1k 4x 1k 4k 4x )x (f ∈⎩⎨⎧+<<+++-+≤≤--=19.解:根据对称性,点E 在x 轴上,设点E 的坐标为(d,0)设BD 的方程为 (x -d)=k ·y ,1k -为直线BD 的斜率.……………………………………………3分由⎪⎩⎪⎨⎧=+=-.1b y ax ,ky d x 2222消去x 得0b a d b dkb 2y )k b a (222222222=-+++………………………………………(※) 设为B 、D 的坐标分别为)y ,x (、)y ,x (2211, 则21、y y 为方程(※)的根,且,y 0y 21<<由韦达定理:.kb a dkb 2y y 222221+-=+…………………………6分 ∵m>0,n>0,∴.k b a dkb 4)y y (2y 2y 2n m 22222121+=+-=--=-………………………………10分 ∴.a b2ab 2b 4k b kab 4k b a kb 4d n m 22222222=≤+=+=- 当且仅当,k b k a 22=即b ak =时,d n m -取最大值,ab 2 即:a bk BD =时,d n m -取最大值.ab 2∴dn m -存在最大值.……………………………………………………14分20.解:(Ⅰ)如图1,先对1a 部分种值,有3种不同的种法,再对32、a a 种值, 因为32、a a 与1a 不同颜色,32、a a 也不同.所以S (3)=3×2=6(种).……4分 如图2,S (4)=3×2×2×2-S (3)=18(种).…………………………………8分(Ⅱ)如图3,圆环分为n 等份,对1a 有3种不同的种法,对n32、a、、a a 都有两种不同的种法,但这样的种法只能保证1a 与)1、n 、3、2i (a i -= 不同颜色,但不能保证1a 与n a 不同颜色.于是一类是n a 与1a 不同色的种法,这是符合要求的种法,记为S(n)(n ≥3)种.另一类是n a 与1a 同色的种法,这时可以把n a 与1a 看成一部分,这样的种法相当于对n -1部分符合要求的种法,记为S(n -1).共有1n 23-⨯种种法.这样就有.23)1n (S )n (S 1n -⨯=-+即]2)1n (S [2)n (S 1n n ----=-,则数列)3n }(2)n (S {n ≥-是首项为32)3(S -公比为-1的等比数列.则).3n ()1](2)3(S [2)n (S 3n 3n ≥---=-- 由(1)知:S(3)=6, ∴.)1)(86(2)n (S 3n n ---=- ∴.)1(22)n (S 3n n --⋅-=答:符合要求的不同种法有3n n )1(22--⋅-(n ≥3) ………………………14分。

2018年北京各区一模理科数学分类汇编---数列(含答案)

2018年北京各区一模理科数学分类汇编---数列(含答案)

2018届北京各区一模理科数学分类汇编----数列(含答案) 1.(朝阳)等比数列{}n a 满足如下条件:①10;a >②数列{}n a 的前n 项和1n S <.试写出满足上述所有条件的一个数列的通项公式______.【答案】*1()2nn a n =∈N (答案不唯一) 【解析】本题考查等比数列通项公式和前n 项和.例:①111(1)111220,,11122212n n a q S -=>===-<-,则12n n a = ②121(1)211330,,11133313n n n a q S -=>===-<-,则1212()333n n n a -=⨯= ③131(1)311440,,11144414n n a q S -=>===-<-,则1313()444n n n a -=⨯= 2. (朝阳)已知集合128={,,,}X x x x 是集合{2001,2002,2003,,2016,S =L 2017}的一个含有8个元素的子集. (Ⅰ)当{2001,2002,2005,2007,2011,2013,2016,2017}X=时,设,(1,8),i j x x X i j ∈≤≤(i )写出方程2i j x x -=的解(,)i j x x ;(ii )若方程(0)ij x x k k -=>至少有三组不同的解,写出k 的所有可能取值.(Ⅱ)证明:对任意一个X ,存在正整数,k 使得方程(1,i j x x k i -=≤8)j ≤至少有三组不同的解.【解析】(Ⅰ)(i )方程2i j x x -=的解有:(,)(2007,2005),(2013,2011)i j x x =(ii )以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1; 中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4; 中间相隔二数的两数差:6,9,8,9,6; 中间相隔三数的两数差:10,11,11,10; 中间相隔四数的两数差:12,14,12; 中间相隔五数的两数差:15,15; 中间相隔六数的两数差:16.这28个差数中,只有4出现3次,6出现4次,其余都不超过2次, 所以k 的可能取值有4,6(Ⅱ)证明:不妨设12820012017x x x ≤<<⋅⋅⋅<≤记1(1,2,,7)ii i a x x i +=-=⋅⋅⋅,1i i i b x x +=-(1,2,,6)i =⋅⋅⋅,共13个差数.假设不存在满足条件的k ,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而127126()()2(126)749a a a b b b ++⋅⋅⋅++++⋅⋅⋅+≥++⋅⋅⋅++=①1271268187218172()()()() 2(-)() 2161a a a b b b x x x x x x x x x x ++⋅⋅⋅++++⋅⋅⋅+=-++--=+-≤⨯+又446=这与①矛盾,所以结论成立.3. (石景山)对于项数为m (1m >)的有穷正整数数列{}n a ,记12max{,,,}k k b a a a =(1,2,,k m =),即k b 为12,,k a a a 中的最大值,称数列{}n b 为数列{}n a 的“创新数列”.比如1,3,2,5,5的“创新数列”为1,3,3,5,5.(Ⅰ)若数列{}n a 的“创新数列”{}n b 为1,2,3,4,4,写出所有可能的数列{}n a ; (Ⅱ)设数列{}n b 为数列{}n a 的“创新数列”,满足12018k m k a b -++=(1,2,,k m =),求证:k ka b =(1,2,,k m =);(Ⅲ)设数列{}n b 为数列{}n a 的“创新数列”,数列{}n b 中的项互不相等且所有项的和等于所有项的积,求出所有的数列{}n a .解:(Ⅰ)所有可能的数列{}n a 为1,2,3,4,1;1,2,3,4,2;1,2,3,4,3;1,2,3,4,4 …………3分(Ⅱ)由题意知数列{}n b 中1k k b b +≥.又12018k m k a b -++=,所以12018k m k a b +-+= …………4分111(2018)(2018)0k k m k m k m k m k a a b b b b +--+-+--=---=-≥所以1k k a a +≥,即k k a b =(1,2,,k m =) …………8分(Ⅲ)当2m =时,由1212b b b b +=得12(1)(1)1b b --=,又12,b b N *∈ 所以122b b ==,不满足题意;当3m =时,由题意知数列{}n b 中1n n b b +>,又123123b b b b b b ++=当11b ≠时此时33b >,12333,b b b b ++<而12336b b b b >,所以等式成立11b =; 当22b ≠时此时33b >,12333,b b b b ++<而12333b b b b ≥,所以等式成立22b =; 当11b =,22b =得33b =,此时数列{}n a 为1,2,3. 当4m ≥时,12m m b b b mb +++<,而12(1)!m m m b b b m b mb ≥->,所以不存在满足题意的数列{}n a .综上数列{}n a 依次为1,2,3. …………13分4. (石景山)如图所示:正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股 树”.若某勾股树含有1023个正方形,且其最大的正方形的边长________.1325. (西城)设等差数列{}n a 的前n 项和为n S .若12a =,420S =,则3a =____;n S =____.6,2n n +6.(西城) 数列n A :12,,,(2)n a a a n ≥满足:1(1,2,,)k a k n <=.记n A 的前k 项和为k S ,并规定00S =.定义集合*{n E k =∈N ,|k n ≤k j S S >,0,1,,1}j k =-.(Ⅰ)对数列5A :0.3-,0.7,0.1-,0.9,0.1,求集合5E ; (Ⅱ)若集合12{,,,}(1n m E k k k m =>,12)m k k k <<<,证明:11(1,2,,1)i i k k S S i m +-<=-;(Ⅲ)给定正整数C .对所有满足n S C >的数列n A ,求集合n E 的元素个数的最小值.解:(Ⅰ)因为 00S =,10.3S =-,20.4S =,30.3S =,4 1.2S =,5 1.3S =, [ 2分]所以 5{2,4,5}E =. [ 3分] (Ⅱ)由集合n E 的定义知 1i i k k S S +>,且1i k +是使得i k k S S >成立的最小的k ,所以 11i i k k S S +-≤.[ 5分]又因为 11i k a +<,所以 1111i i i k k k S S a +++-=+ [ 6分] 1.i k S <+所以 11i i k k S S +-<. [ 8分] (Ⅲ)因为0n S S >,所以n E 非空.设集合 12{,,,}n m E k k k =,不妨设12m k k k <<<,则由(Ⅱ)可知 11(1,2,,1)i i k k S S i m +-<=-,同理 101k S S -<,且 m n k S S ≤. 所以 12110()()()()m m m n n k k k k k k S S S S S S S S S -=-+-++-+-101111m m <+++++=个.因为 n S C >,所以n E 的元素个数 1m C +≥. [11分]取常数数列n A :1(1,2,,1)2i C a i C C +==++,并令1n C =+,则 22(1)2122n C C C S C C C +++==>++,适合题意,且 {1,2,,1}n E C =+,其元素个数恰为1C +.综上,n E 的元素个数的最小值为1C +.[13分]7.(西城)某计算机系统在同一时间只能执行一项任务,且该任务完成后才能执行下一项任务.现有三项任务U ,V ,W ,计算机系统执行这三项任务的时间(单位:s )依次为a ,b ,c ,其中a b c <<.一项任务的“相对等待时间”定义为从开始执行第一项任务到完成该任务的时间与计算机系统执行该任务的时间之比.下列四种执行顺序中,使三项任务“相对等待时间”之和最小的是A (A )U →V →W (B )V →W →U(C )W →U →V(D )U →W →V8.(延庆) 若是函数的两个不同的零点,且这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,则a b +的值等于 B (A )4 (B )5 (C )6(D )79.(延庆)设满足以下两个条件的有穷数列12,,,n a a a 为(2,3,4,)n n = 阶“Q 数列”: ①120n a a a +++=; ②121n a a a +++=.(Ⅰ)分别写出一个单调递增的3阶和4阶“Q 数列”;(Ⅱ)若2018阶“Q 数列”是递增的等差数列,求该数列的通项公式;,a b ()()20,0f x x px q p q =-+>>,,2a b -(Ⅲ)记n 阶“Q 数列”的前k 项和为(1,2,3,,)k S k n =,试证12k S ≤. 解:(Ⅰ)数列11,0,22-为单调递增的3阶“Q 数列”; 数列3113,,,8888--为单调递增的4阶“Q 数列”. (答案不唯一) ┄4分(Ⅱ)设等差数列122018,,,a a a 的公差为d ,0d >因为1220180a a a +++=,所以12018()201802a a +=.即120180a a +=.所以10091010+0a a =. 于是100910100,0a a <>. ┄5分 由于0d >,根据“Q 数列”的条件①②得1210091-2a a a +++=,10101011201812a a a +++= ┄6分两式相减得210091d =.即211009d = . ┄8分 由1201820172018+02a d ⋅=得12017=-2a d ,即12201721009a =-⋅. ┄10分所以222201712-2019(1)21009100921009n n a n =-+-=⨯⨯(,2018)n n *∈≤N . ┄11分 (Ⅲ)当k n =时,显然102n S =≤成立;当k n <时,根据条件①得1212()k k k k n S a a a a a a ++=+++=-+++,所以1212k k k k n S a a a a a a ++=+++=+++ . 所以12122k k k k n S a a a a a a ++=+++++++ 12121k k k n a a a a a a ++≤+++++++=.所以12k S ≤(1,2,3,,)k n =. ┄13分 10.(东城)设{}n a 是公差为d 的等差数列,n S 为其前n 项和,则“0d >”是“{}n S 为递增数列”的D(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件11. (东城)单位圆的内接正(3)n n ≥边形的面积记为()f n ,则(3)f =_________;下面是关于()f n 的描述:①2()sin 2n f n nπ=; ②()f n 的最大值为π;③()(1)f n f n <+;④()(2)2()f n f n f n <≤.其中正确结论的序号为__________.(注:请写出所有正确结论的序号)(1)(3)(4)12.(东城) 在(2)n n n ⨯≥个实数组成的n 行n 列的数表中,ij a 表示第i 行第j 列的数,记12i i i in r a a a =+++ (1)i n #,12(1)j j j nj c a a a j n =+++≤≤.若{1,0,1}ij a ∈-(1,)i jn #. 且1212,,,,,,,n n r r r c c c 两两不等,则称此表为“n 阶H 表”.记{}1212,,,,,,,n n n H r r r c c c =.(I )请写出一个“2阶H 表”;(II )对任意一个“n 阶H 表”,若整数[,]n n λ∈-,且n H λ∉,求证:λ为偶数; (III )求证:不存在“5阶H 表”. 解(I )……………………3分(II )对任意一个“n 阶H 表”,i r 表示第i 行所有数的和,j c 表示第j 列所有数的和 (1,i j n ≤≤).1n i i r =∑与1njj c=∑均表示数表中所有数的和,所以1n i i r =∑1njj c==∑.因为{1,0,1}ij a ∈-,所以1212,,,,,,,n n r r r c c c 只能取[,]n n -内的整数.又因为1212,,,,,,,n n r r r c c c 互不相等,[,]n n λ∈-且n H λ∉, 所以1212{,,,,,,,,}{,1,,1,0,1,,1,}n n r r r c c c n n n n λ=--+--,所以λ+1ni i r =∑1njj c=+∑(1)(1)01++(1)0n n n n =-+-+++-++-+=.所以λ12ni i r ==-∑为偶数.………………………………………8分(III )假设存在一个“5阶H 表”,则由(II )知55,5,3,3H --∈,且54H ∈和54H -∈至少有一个成立,不妨设54H ∈.设125,5r r ==-,则121,1(15)j j a a j ==-≤≤,于是3(15)j c j ≤≤≤,因而可设34r =,313233341a a a a ====,350a =.①若 3是某列的和,由于52c ≤,故只能是前四列某列的和,不妨设是第一列,即41511a a ==.现考虑3-,只能是4r 或5r ,不妨设43r =-,即424344451a a a a ====-,由234,,c c c 两两不等知525354,,a a a 两两不等,不妨设5253541,0,1a a a =-==,若551a =-则530r c ==;若550a =则541r c ==;若551a =则530c c ==,均与已知矛盾.②若3是某行的和,不妨设43r =,则第4行至少有3个1,若这3个1是前四个中某三个数,不妨设4142431a a a ===,则第五行前三个数只能是3个不同的数,不妨设5152531,0,1a a a =-==,则343c r ==矛盾,故第四行只能前四个数有2个1,第五个数为1,不妨设41424344450,1a a a a a =====,所以53r =-,第五行只能是2个0,3个1-或1个1,4个1-.则515255,,a a a 至少有两个数相同,不妨设5152a a =,则12c c =与已知矛盾.综上,不存在“5阶H 表”. ………………………………………13分13. (房山)已知有穷数列()12:,,...,2,n B a a a n n N ≥∈数列B 中各项都是集合{}11x x -<<的元素,则称该数列为Γ数列.对于Γ数列B ,定义如下操作过程T :B 中任取两项,p q a a的最后,然后删除,p q a a 这样得到一个1n -项的新数列1B (约定:一个数也视作数列).若1B 还是Γ数列,可继续实施操作过程T ,得到的新数列记作2B ,…,如此经过k 次操作后得到的新数列记作k B .解:(Ⅰ)1B 有如下的三种可能结果:11111115:,;:,;:0,32237B B B……………………3分 (Ⅱ)∀,{|11}a b x x ∈-<<,有(1)(1)1011a b a b ab ab +----=<++且(1)(1)(1)0.11a b a b ab ab+++--=>++ 所以1a b ab++{|11}x x ∈-<<,即每次操作后新数列仍是Γ数列.又由于每次操作中都是增加一项,删除两项,所以对Γ数列A 每操作一次,项数就减少一项,所以对n 项的Γ数列A 可进行1n -次操作(最后只剩下一项) ……………………6分 (Ⅲ)由(Ⅱ)可知9B 中仅有一项.对于满足,{|11)a b x x ∈-<<的实数,a b 定义运算:1a ba b ab+=+,下面证明这种运算满足交换律和结合律。

2018朝阳高三一模理科答案

2018朝阳高三一模理科答案

10 18 420=140 人. 18 30
……….3 分
(Ⅱ)由数据可知,选考方案确定的 8 位男生中选出 1 人选考方案中含有历史学科的概率 为
2 1 = ; 8 4
选考方案确定的 10 位女生中选出 1 人选考方案中含有历史学科的概率为 所以该男生和该女生的选考方案中都含有历史学科的概率为
3 . 10
1 3 3 .…….8 分 4 10 40
(Ⅲ)由数据可知,选考方案确定的男生中有 4 人选择物理、化学和生物;有 2 人选择 物理、化学和历史;有 1 人选择物理、化学和地理;有 1 人选择物理、化学和政 治. 由已知得 的取值为 1, 2 .
P( 1)
2 2 C4 C2 1 , 2 C8 4
z z A X E O F C G D y z X


m AD 0, 所以 m DE 0,


x1 3 y1 2 z1 0, 2 y1 0.
取 z1 1 ,得 m ( 2, 0, 1) . 而 AC 1,3, 2 . 所以直线 AC 与平面 ADE 所成角的正弦值 sin



z z A X E O F x z X P G C D y z X
AP 1 时, OP // 平面 ADE . AC 2
1 [0,1] , 2
B
……….14 分
2
17.(本小题满分 13 分) 解:(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有 4 人,选考方案确定 的女生中确定选考生物的学生有 6 人, 该学校高一年级选考方案确定的学生中选考生物的学生有
因为 A(0,,,, 0 2), C (1 3 0) ,所以 ( x0 , y0 , z0 2) ( ,3 , 2 ) , 所以 x0 , y0 3 , z0

2018年高三北京市朝阳区2018届高三(一模)数学

2018年高三北京市朝阳区2018届高三(一模)数学

理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。

)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。

)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C 填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:. (2)分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)答案2018.3三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由2co s b a A =,得co s 0A >,因为s in 5A =,所以c o s 5A =.因为2co s b a A =,所以4s in 2s in c o s 2555B A A ==⨯=.故ABC ∆的面积1s in 22S a c B ==. ………………….7分(Ⅱ)因为4s in 5B =,且B 为锐角,所以3c o s 5B =.所以s in s in ()s in c o s c o s s in 25C A B A B A B =+=+=.………….13分16.(本小题满分14分)证明:(Ⅰ)由已知2A B A E ==,因为O 为B E 中点,所以A O B E '⊥. 因为平面A B E '⊥平面B C D E ,且平面A B E'平面B C D E B E =,A O '⊂平面AB E ',所以A O '⊥平面BCDE .又因为C D ⊂平面B C D E ,所以A O C D '⊥. ………….5分 (Ⅱ)设F 为线段B C 上靠近B 点的四等分点,G 为C D 中点.由已知易得O F O G ⊥.由(Ⅰ)可知,A O '⊥平面B C D E , 所以A O O F '⊥,A O O G '⊥.以O 为原点,,,O F O G O A '所在直线分别为,,x y z 轴 建立空间直角坐标系(如图). 因为2A B '=,4B C =,所以(00(110),(130),(130),(110)A B C D E ,,,,,,,,'---. 设平面A D E '的一个法向量为111(,,)x y z =m ,因为(13(020)A D D E ,,,,'=--=-,所以0, 0,A D D E ⎧'⋅=⎪⎨⋅=⎪⎩m m 即111130,20. x y y ⎧-+-=⎪⎨-=⎪⎩取11z =-,得0,1)=-m . 而A C '=(1,3,.所以直线A C '与平面A DE '所成角的正弦值s in 3θ==……….10分(Ⅲ)在线段A C '上存在点P ,使得//O P 平面A D E '. 设000(,,)P x y z ,且(01)A P A Cλλ'=≤≤',则A P AC λ''=,[0,1]λ∈.因为(00(130)A C ,,',所以000(,,(,3,)x y z λλ-=,所以000,3,xy z λλ===,所以(,3,)P λλ,(,3)O P λλ=.若//O P 平面A D E ',则O P ⊥m.即0O P ⋅=m .由(Ⅱ)可知,平面A D E '的一个法向量0,1)=-m ,0-=,解得1[0,1]2λ=∈,所以当12A P A C'='时,//O P 平面A D E '. ……….14分17.(本小题满分13分)解:(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有1018420=1401830⨯⨯人.……….3分 (Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为21=84;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为310.所以该男生和该女生的选考方案中都含有历史学科的概率为13341040⨯=.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治. 由已知得ξ的取值为1,2.2242281(1)4C C P C ξ+===,1111422228()213(2)4C C C C P C ξ++⨯+===,或3(2)1(1)4P P ξξ==-==.所以ξ的分布列为所以13712444E ξ=⨯+⨯=. …….13分18. (本小题满分13分) (Ⅰ)当2a =时,ln 1()2x f x xx-=-. 2222ln 22ln ()2x x xf x xx---'=-=.(ⅰ)可得(1)0f '=,又(1)3f =-,所以()f x 在点(1,3-)处的切线方程为3y=-.….3分 (ⅱ)在区间(0,1)上2220x ->,且ln 0x ->,则()0f x '>. 在区间(1,+∞)上2220x -<,且ln 0x -<,则()0f x '<.所以()f x 的单调递增区间为(0,1),单调递减区间为(1,+∞). ….8分(Ⅱ)由0x >,()1f x <-,等价于ln 11x a x x--<-,等价于21ln 0a x x x -+->.设2()1ln h x a x x x=-+-,只须证()h x >成立.因为2121()21a x x h x a x xx--'=--=,12a <<,由()h x '=,得2210a x x --=有异号两根.令其正根为0x ,则200210a x x --=.在0(0,)x 上()0h x '<,在0(,)x +∞上()0h x '>. 则()h x 的最小值为20000()1ln h x a x x x =-+- 00011ln 2x x x +=-+-3ln 2x x -=-.又(1)220h a '=->,13()2()30222a h a '=-=-<,所以0112x <<.则0030,ln 02x x ->->.因此03ln 02x x -->,即0()h x >.所以()h x >所以()1f x <-. (13)分19. (本小题满分14分)解:(Ⅰ)由题意得222222,11 1.2c a a bc a b⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩解得a=1b =,1c =.故椭圆C 的方程为2212xy+=. ….….5分(Ⅱ)12=θθ.证明如下:由题意可设直线1l 的方程为(1)yk x =+,直线2l 的方程为ykx=-,设点11(,)A x y ,22(,)B x y ,33(,)E x y ,33(,)F x y --.要证12=θθ,即证直线A E 与直线B F 的斜率之和为零,即0A EB F k k += .因为13231323A EB F y y y y k k x x x x -++=+-+13231323(1)(1)k x k x k x k x x x x x +++-=+-+2121231323[2()2]()()k x x x x x x x x x +++=-+.由22(1),1,2y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k+++-=,所以2122412kx x k-+=+,21222212kx x k-=+.由22,1,2y k x x y =-⎧⎪⎨+=⎪⎩得22(12)2k x+=,所以232212x k=+.所以2221212322244442()20121212kkx x x x x kkk--+++=++=+++.2121231323[2()2]()()A EB F k x x x x x k k x x x x ++++==-+.所以12=θθ. ….….14分20. (本小题满分13分)解:(Ⅰ)(ⅰ)方程2i j x x -=的解有:(,)(2007,2005),(2013,2011)i j x x =.……2分 (ii )以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1; 中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6; 中间相隔三数的两数差:10,11,11,10; 中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15; 中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k 的可能取值有4,6.…………………………………………………………6分 (Ⅱ)证明:不妨设12820012017x x x ≤<<<≤,记1(1,2,,7)i i i a x x i +=-=,2(1,2,,6)i i i b x x i +=-=,共13个差数.假设不存在满足条件的k ,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而 127126()()2(126)749a a a b b b +++++++≥++++=. …………①又127126818721()()()()a a a b b b x x x x x x +++++++=-++--81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾!所以结论成立.……………………………………………………………………13分。

相关文档
最新文档