最新高中学业水平测试数学模拟试卷

合集下载

2024年7月浙江省普通高中学业水平考试——数学仿真模拟试卷01(解析版)

2024年7月浙江省普通高中学业水平考试——数学仿真模拟试卷01(解析版)

2024年7月浙江省普通高中学业水平合格性考试数学仿真模拟试卷01(考试时间:80分钟;满分:100分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.集合{}|12A x x =-≤≤,{}|1B x x =<,则()A B ⋃R ð=()A .{}|1x x >B .{}1|x x ≥-C .{}|12<≤x x D .{}|12x x ≤≤【答案】B【分析】由补集和并集的定义直接求解.【详解】集合{}|12A x x =-≤≤,{}|1B x x =<,则{}1|B x x =≥R ð,(){}1|=A B x x ≥-R ð.故选:B2.已知复数z 满足(1i)2i z -=,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】化简复数1i z =-+,结合复数的坐标表示,即可求解.【详解】由题意,复数z 满足(1i)2i z -=,可得()()()2i 1i 2i 1i 1i 1i 1i z ⋅+===-+--+,所以复数z 在复平面内对应的点(1,1)Z -位于第二象限.故选:B.3.函数lg(2)y x =-的定义域是()A .(0,2]B .(0,2)C .(,2)-∞D .(2,)+∞【答案】C【分析】由对数函数的性质可得函数lg(2)y x =-的定义域.【详解】由函数lg(2)y x =-,得到20x ->解得x 2<,则函数的定义域是(),2∞-,故选:C .4.三个数0.35a =,50.3b =,515c ⎛⎫= ⎪⎝⎭大小的顺序是()A .a b c >>B .a c b >>C .b a c >>D .c a b>>【答案】A【解析】利用指数函数、幂函数的单调性即可求解.【详解】由5x y =为增函数,则0.30551a =>=,由5y x =为增函数,555110.35⎛⎫>> ⎪⎝⎭,所以a b c >>.故选:A5.已知向量()1,2a =r ,(),3b λ= ,若a b ⊥,则λ=()A .6-B .32-C .32D .6【答案】A【分析】根据向量垂直的坐标表示进行求解.【详解】因为()1,2a =r ,(),3b λ= ,a b ⊥,所以60a b λ⋅=+=,解得6λ=-.故选:A.6.从甲、乙等4名同学中随机选出2名同学参加社区活动,则甲,乙两人中只有一人被选中的概率为()A .56B .23C .12D .13【答案】B【分析】利用古典概型,列举计算事件数,即得解.【详解】将甲,乙分别记为x ,y ,另2名同学分别记为a ,b .设“甲,乙只有一人被选中”为事件A ,则从4名同学中随机选出2名同学参加社区活动的所有可能情况有(),x y ,(),x a ,(),x b ,(),y a ,(),y b ,(),a b ,共6种,其中事件A 包含的可能情况有(),x a ,(),x b ,(),y a ,(),y b ,共4种,故42()63P A ==.故选:B7.在ABC 中,已知D 是AB 边上的中点,G 是CD 的中点,若AG AB AC λμ=+u u u r u u u r u u u r,则实数λμ+=()A .14B .12C .34D .1【答案】C【分析】根据D 是AB 边上的中点,G 是CD 的中点,得到11,22AD AB CG CD ==u u u r u u u r u u u r u u u r ,再利用平面向量的线性运算求解.【详解】解:因为D 是AB 边上的中点,G 是CD 的中点,所以11,22AD AB CG CD ==u u u r u u u r u u u r u u u r ,所以12AG AC CG AC CD =+=+u u u r u u u r u u u r u u u r u u u r,()111242AC AD AC AB AC =+-=+u u u r u u u r u u u r u u u r u u u r ,又因为AG AB AC λμ=+u u u r u u u r u u u r,所以11,42λμ==,则34λμ+=,故选:C8.若棱长为)A .12πB .24πC .36πD .144π【答案】C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.如图,在四面体ABCD 中,,E F 分别是AC 与BD 的中点,若24CD AB ==,EF BA ⊥,则EF 与CD 所成角的度数为()A .90°B .45°C .60°D .30°【答案】D【分析】设G 为AD 的中点,连接,GF GE ,由三角形中位线定理可得GF AB ∥,GE CD ∥,则GEF ∠或其补角即为EF 与CD 所成的角,结合2AB =,4CD =,EF AB ⊥,在GEF △中,利用三角函数相关知识即可得到答案.【详解】设G 为AD 的中点,连接,GF GE ,则,GF GE 分别为,ABD ACD △△的中位线,所以GF AB ∥,112GF AB ==,GE CD ∥,122GE CD ==,则EF 与CD 所成角的度数等于EF 与GE 所成角的度数,即GEF ∠或其补角即为EF 与CD 所成角,又因为EF AB ⊥,GF AB ∥,所以EF GF ⊥,则GEF △为直角三角形,1GF =,2GE =,90GFE ∠=︒,在直角GEF △中,1sin 2GEF ∠=,即30GEF ∠=︒,所以EF 与CD 所成角的度数为30°.故选:D10.我国著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合白般好,隔离分家万事休.”在数学的学习和研究中,有时可凭借函数的图象分析函数解析式的特征.已知函数()f x 的部分图象如图所示,则函数()f x 的解析式可能为()A .()21xf x x=-B .()221x f x x =+C .()221xf x x =-D .()2211x f x x +=-【答案】C【分析】根据图象函数为奇函数,排除D ;再根据函数定义域排除B ;再根据1x >时函数值为正排除A ;即可得出结果.【详解】由题干中函数图象可知其对应的函数为奇函数,而D 中的函数为偶函数,故排除D ;由题干中函数图象可知函数的定义域不是实数集,故排除B ;对于A ,当1x >时,0y <,不满足图象;对于C ,当1x >时,0y >,满足图象.故排除A ,选C.故选:C11.已知π17tan tan 422θθ⎛⎫+=- ⎪⎝⎭,则cos 2θ=()A .12-B .12C .45-D .45【答案】C【分析】利用两角和的正切公式可得出关于tan θ的方程,解出tan θ的值,再利用二倍角的余弦公式以及弦化切可求得cos 2θ的值.【详解】因为πtan tanπtan 1174tan tan π41tan 221tan tan 4θθθθθθ++⎛⎫+===- ⎪-⎝⎭-,整理可得2tan 6tan 90θθ-+=tan 3θ=,所以,222222cos sin 1tan 194cos 2cos sin 1tan 195θθθθθθθ---====-+++.故选:C.12.若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A .3B.52C.3D.3+【答案】D【分析】先把x y xy +=转化为111x y +=,再将2211x yx y x y +=+--,根据基本不等式即可求出.【详解】0x >,0y >且x y xy +=,111x y∴+=,211x y x y +-- ,()()2211xy x xy y x y -+-=--,21x y xy x y +=--+2x y =+,()112x y x y ⎛⎫=++ ⎪⎝⎭2333x yy x =++≥++当且仅当2x yy x =,即12x =+,1y =+故211x y x y +--的最小值为3+故选:D .二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中有多个是符合题目要求的,全部选对得4分,部分选对且没错选得2分,不选、错选得0分.)13.下列说法中正确的是()A .直线10x y ++=在y 轴上的截距是1B .直线()20mx y m m +++=∈R 恒过定点()1,2--C .点()0,0关于直线10x y --对称的点为()1,1-D .过点()1,2且在x 轴、y 轴上的截距相等的直线方程为30x y +-=【答案】BC【分析】对于A 项,将直线方程化成斜截式方程即得;对于B 项,把直线方程化成关于参数m 的方程,依题得到1020x y +=⎧⎨+=⎩,解之即得;对于C 项,只需验证两点间的线段中点在直线上,且两点的直线斜率与已知直线斜率互为负倒数即可;对于D 项,需注意截距相等还包括都为0的情况.【详解】对于A 项,由10x y ++=可得:=1y x --,可得直线10x y ++=在y 轴上的截距是1-,故A 项错误;对于B 项,由20mx y m +++=可得:(1)20m x y +++=,因R m ∈,则有:1020x y +=⎧⎨+=⎩,故直线()20mx y m m +++=∈R 恒过定点()1,2--,故B 项正确;对于C 项,不妨设(0,0),(1,1)A B -,直线:10l x y --=,因直线AB 的斜率为1-与直线l 的斜率为1的乘积为1-,则得AB l ⊥,又由点A 到直线l与点B 到直线l 相等,且在直线l 的两侧,故点()0,0关于直线10x y --=对称的点为()1,1-,即C 项正确;对于D 项,因过点()1,2且在x 轴、y 轴上的截距相等的直线还有2y x =,故D 项错误.故选:BC.14.已知()π,0θ∈-,7sin cos 13θθ+=,则下列结论正确的是()A .ππ,2θ⎛⎫∈ ⎪⎝-⎭-B .12cos 13θ=C .5tan 12θ=D .17sin cos 13θθ-=-【答案】BD【分析】先利用题给条件求得sin ,cos θθ的值,进而得到θ的范围,tan θ的值和sin cos θθ-的值.【详解】由7sin cos 13θθ+=可得,7cos sin 13θθ=-,则227sin sin 113θθ⎛⎫-+= ⎪⎝⎭,即524sin 2sin 01313θθ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭解之得12sin 13θ=或5sin 13θ=-,又()π,0θ∈-,则5sin 13θ=-,故12cos 13θ=,则选项B 判断正确;由5sin 013θ=-<,12cos 013θ=>可得θ为第四象限角,又()π,0θ∈-,则π,02θ⎛⎫∈- ⎪⎝⎭,则选项A 判断错误;sin θ5tan θcos θ12==-,则选项C 判断错误;51217sin cos 131313θθ-=--=-,则选项D 判断正确.故选:BD15.已知函数()()e ,021,0xx f x f x x ⎧≤⎪=⎨->⎪⎩,若关于x 的方程()f x a =有两解,则实数a 的值可能为()A .1ea =B .1a =C .ea =D .3a =【答案】BD【分析】根据题意分析可得方程()f x a =的根的个数可以转化为()y f x =与y a =的交点个数,结合()y f x =的单调性与值域以及图象分析判断.【详解】①当0x ≤时,()e xf x =在(],0-∞内单调递增,且()01f =,所以()(]0,1f x ∈;②当0x >时,则()(]*2e ,1,,k x k f x x k k k -=∈-∈N ,可知()f x 在(]*1,,k k k -∈N 内单调递增,且()()21,2ekk f k f k -==,所以()*2,2,e k k f x k ⎛⎤∈∈ ⎥⎝⎦N ,且12222,e e k k kk ++<<∈N .方程()f x a =的根的个数可以转化为()y f x =与y a =的交点个数,可得:当0a ≤时,()y f x =与y a =没有交点;当20e a <≤时,()y f x =与y a =有且仅有1个交点;当122,ek k a k +<≤∈N 时,()y f x =与y a =有且仅有2个交点;当222,ek ka k +<≤∈N 时,()y f x =与y a =有且仅有1个交点;若关于x 的方程()f x a =有两解,即()y f x =与y a =有且仅有2个交点,所以实数a 的取值范围为12,2,e k k k +⎛⎤∈ ⎥⎝⎦N ,因为281,1,3,4e e ⎛⎤⎛⎤∈∈ ⎥⎥⎝⎦⎝⎦,而A 、C 不在相关区间内,所以A 、C 错误,B 、D 正确.故选:BD.16.如图,在直三棱柱111ABC A B C -中,12AA =,1AB BC ==,120ABC ︒∠=,侧面11AAC C 的对角线交点O ,点E 是侧棱1BB 上的一个动点,下列结论正确的是()A .直三棱柱的侧面积是4+B .直三棱柱的外接球表面积是4πC .三棱锥1E AAO -的体积与点E 的位置无关D .1AE EC +的最小值为【答案】ACD【分析】首先计算AC 长,再根据直棱柱的侧面积公式,即可判断A ;首先计算ABC 外接圆的半径,再根据几何关系求外接球的半径,代入公式,即可判断B ;根据体积公式,结合线与平面平行的关系,即可判断C ;利用展开图,结合几何关系,即可判断D.【详解】A.ABC 中,AC =,所以直棱柱的侧面积为(1124++⨯=+,故A 正确;B.ABC 外接圆的半径12sin120ACr ==,所以直棱柱外接球的半径R =则直三棱柱外接球的表面积24π8πS R ==,故B 错误;C.因为11//BB AA ,且1BB ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以1//BB 平面11AAC C ,点E 在1BB 上,所以点E 到平面11AAC C 的距离相等,为等腰三角形ABC 底边的高为12,且1AAO 的面积为122⨯=则三棱锥1E AAO -的体积为定值1132=,与点E 的位置无关,故C 正确;D.将侧面展开为如图长方形,连结1AC ,交1BB 于点E ,此时1AE EC +=D 正确.故选:ACD【点睛】关键点点睛:本题D 选项解决的关键是将平面11AA B B 与11CC B B 展开到同一个面,利用两点之间距离最短即可得解.三、填空题(本大题共4小题,每空3分,共15分.)17.已知函数()21,02,0x x f x x x ⎧+≤=⎨->⎩,则()2f =;若()10f x =,则x =.【答案】4-;3-.【分析】利用分段函数的性质计算即可.【详解】由条件可知()2224f =-⨯=-;若()201103x f x x x ≤⇒=+=⇒=-,若()021050x f x x x >⇒=-=⇒=-<,不符题意.故答案为:4-;3-18.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点与抛物线216y x =的焦点重合,则双曲线C 的顶点到渐近线的距离为.【解析】求出抛物线的焦点,可得双曲线的c ,运用离心率公式可得a ,再由a ,b ,c 的关系,求得b ,求出顶点到渐近线的距离,即可得到所求值.【详解】解:抛物线216y x =的焦点为(4,0),则双曲线的4c =,双曲线的离心率等于2,即2ca=,可得2a =,b ==则双曲线的渐近线方程为y =,顶点坐标为(20)±,,可得双曲线的顶点到其渐近线的距离等于d =【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率公式的运用,考查运算能力,属于中档题.19.已知a 、b 、c 分别为ABC 的三个内角A 、B 、C 的对边,2a =,且()(sin sin )()sin a b A B c b C +-=-,则ABC 面积的最大值为.【分析】先求出角A 的大小,由1sin 2S bc A =,考虑余弦定理建立,b c 的方程,再由基本不等式求bc 的最大值.【详解】解析:因为()(sin sin )()sin a b A B c b C +-=-,根据正弦定理可知(a b)()(c b)a b c +-=-,即222b c a bc +-=,由余弦定理可知1cos 2A =,又(0,π)A ∈,故π3A =,又因为2a =,所以224b c bc +-=,2242b c bc bc bc bc =+-≥-=(当且仅当b c =时取等号),即4bc ≤所以11sin 422S bc A =≤⨯=ABC20.已知定义在R 上的函数()f x 在(,3)-∞-上是减函数,若()() 3g x f x =-是奇函数,且()03g =,则满足不等式()0xf x ≤的x 的取值范围是.【答案】][3(),6,-∞-⋃-+∞【分析】由已知条件,可得()g x 是奇函数,则()f x 关于(3,0)-对称,可得()f x 在(,3)-∞-与(3,)-+∞上是减函数,且()()060f f -==,(3)0f -=,画出()f x 对应的函数草图,可得不等式()0xf x ≤的x 的取值范围.【详解】解:将()f x 向右平移3个单位,可得到()3f x -,由()() 3g x f x =-是奇函数,可得()g x 关于原点对称,则()f x 关于(3,0)-对称,且()00(3)g f =-=,由()f x 在(,3)-∞-上是减函数,可得()f x 在(3,)-+∞上也是减函数,由()03g =,可得()()033g g =-=,故可得:()()060f f -==,可得()f x 对应的函数草图如图,可得()0xf x ≤的解集为:][3(),6,-∞-⋃-+∞,故答案为:][3(),6,-∞-⋃-+∞.【点睛】本题主要考查函数单调性与奇偶性的综合,注意数形结合解题,属于难题.四、解答题(本大题共3小题,共33分.解答应写出文字说明、证明过程或演算步骤.)21.为了解某项基本功大赛的初赛情况,一评价机构随机抽取40名选手的初赛成绩(满分100分),作出如图所示的频率分布直方图:(1)根据上述频率分布直方图估计初赛的平均分;(2)假设初赛选手按1:8的比例进入复赛(即按初赛成绩由高到低进行排序,前12.5%的初赛选手进入复赛),试估计能进入复赛选手的最低初赛分数.注:直方图中所涉及的区间是:[50,60),[60,70),[70,80),[80,90),[90,100].【答案】(1)平均分的估计值为72分;(2)最低初赛分数为85分.【分析】(1)利用每小组中间值乘以每小组频率,再求和即可;(2)先设最低分数为x ,依题意大于x 的成绩的频率为0.125,即解得x .【详解】解:(1)由频率分布直方图得样本平均分550.15650.25750.4850.15950.0572x =⨯+⨯+⨯+⨯+⨯=.因此,初赛平均分的估计值为72分;(2)根据频率分布直方图,设40名选手进入复赛的最低分数为x ,依题意成绩落入区间[90,100]的频率是0.05,成绩落入区间[80,90)的频率是0.15,按初赛成绩由高到低进行排序,前12.5%的初赛选手进入复赛,可判断x 在[80,90)内,则(90)0.0150.050.125x -⨯+=,解得85x =.因此,估计能进入复赛选手的最低初赛分数为85分.22.已知函数()()sin 0f x x x ωωω=+>的最小正周期是π.(1)求ω值;(2)求()f x 的对称中心;(3)将()f x 的图象向右平移3π个单位后,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的单调递增区间.【答案】(1)2;(2),026k ππ⎛⎫- ⎪⎝⎭,Z k ∈;(3)52,266k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈.【分析】(1)由()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭且2T ππω==,即可求ω值;(2)由(1)知()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合正弦函数的对称中心即可求()f x 的对称中心;(3)由函数平移知()sin 23g x x π⎛⎫- ⎝=⎪⎭,结合正弦函数的单调性即可求()g x 的单调递增区间.【详解】(1)()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,又0ω>,∵2T ππω==,∴2ω=.(2)由(1)知,()2sin 23f x x π⎛⎫= ⎪⎝⎭,令23x k ππ+=,解得26k x ππ=-.∴()f x 的对称中心是,026k ππ⎛⎫- ⎪⎝⎭,Z k ∈.(3)将()f x 的图像向右平移3π个单位后可得:2sin 23y x π⎛⎫=- ⎪⎝⎭,再将所得图像横坐标伸长到原来的2倍,纵坐标不变得到:()sin 23g x x π⎛⎫- ⎝=⎪⎭,由22232k x k πππππ-≤-≤+,解得52266k x k ππππ-≤≤+,Z k ∈.∴()g x 的单调递增区间为52,266k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈.【点睛】关键点点睛:(1)应用辅助角公式求三角函数解析式,结合最小正周期求参数.(2)根据正弦函数的对称中心,应用整体代入求()f x 的对称中心.(3)由函数图像平移得()g x 解析式,根据正弦函数的单调增区间,应用整体代入求()g x 的单调增区间.23.函数()221a xb f x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求实数,a b 的值;(2)用定义证明函数()f x 在()1,1-上是增函数;(3)解关于x 的不等式()()10f x f x -+<.【答案】(1)1a =±,0b =(2)证明见解析(3)102x x ⎧⎫<<⎨⎬⎩⎭.【分析】(1)利用奇函数的性质,结合条件即可得解;(2)利用函数单调性的定义,结合作差法即可得解;(3)利用()f x 的奇偶性、单调性与定义域列式即可得解.【详解】(1)函数()221a xb f x x +=+是定义在()1,1-上的奇函数所以()00f =,则()0001b f b ===+,所以()221a x f x x =+因为1225f ⎛⎫= ⎪⎝⎭,则2112212514a f ⎛⎫== ⎪⎝⎭+,则21a =,所以1a =±,此时()21x f x x =+,定义域关于原点对称,又()()()2211xx f x f x x x --==--+-+,所以()f x 是奇函数,满足题意,故1a =±,0b =.(2)由(1)知()21x f x x =+.设12,x x 是()1,1-内的任意两个实数,且12x x <,()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()()()12122212111x x x x x x --=++,因为()()22121212110,0,10x x x x x x --<+>>+,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在()1,1-上是增函数.(3)因为()()10f x f x -+<,所以()()1f x f x -<-,即()()1f x f x -<-,则111111xxx x-<-<⎧⎪-<-<⎨⎪-<-⎩,所以021112xxx⎧⎪<<⎪-<<⎨⎪⎪<⎩,所以12x<<,即此不等式解集为12x x⎧⎫<<⎨⎬⎩⎭.。

2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

2023—2024学年安徽省高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题(★★) 1. 已知集合,则()A.B.C.D.(★) 2. 下列图象中,表示定义域和值域均为的函数是()A.B.C.D.(★★) 3. 已知向量,若,则()A.9B.C.1D.(★) 4. 已知函数,则()A.B.1C.2D.3(★★) 5. 若函数是指数函数,则有()A.B.C.或D.,且(★★) 6. 已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则()A.B.3C.D.(★) 7. 水平放置的的斜二测直观图如图所示,已知,则的面积是()A.4B.5C.6D.7(★★) 8. 命题“”的否定是()A.B.C.D.(★★★) 9. 函数的图象的一条对称轴是()A.B.C.D.(★★) 10. 已知复数z满足,则()A.B.C.D.(★) 11. “今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于()A.立方尺B.立方尺C.立方尺D.立方尺(★★) 12. 抛掷一枚质地均匀的骰子,记随机事件:“点数为奇数”,“点数为偶数”,“点数大于2”,“点数小于2”,“点数为3”.则下列结论不正确的是()A.为对立事件B.为互斥不对立事件C.不是互斥事件D.是互斥事件(★★) 13. 的内角的对边分别为的面积为,且,则边()A.7B.3C.D.(★) 14. 已知是空间中三个不同的平面,是空间中两条不同的直线,则下列结论错误的是()A.若,则B.若,则C.若,则D.若,则(★★★) 15. 若不等式对所有实数恒成立,则的取值范围为()A.B.C.D.(★) 16. 已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为()A.100,30B.100,21C.200,30D.200,7(★★) 17. 已知向量与的夹角为,则向量与上的投影向量为()A.B.C.D.(★★) 18. 若函数在上是单调增函数,则实数的取值范围为A.B.C.D.二、填空题(★★) 19. 已知,则 ________ .(★★★) 20. 已知单位向量与单位向量的夹角为,则____________ .(★★) 21. 某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为____________ .(★★) 22. 某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买台设备的总成本为(单位:万元).若要使每台设备的平均成本最低,则应购买设备 ____________ 台.三、解答题(★★★) 23. 已知,其中向量,(1)求的最小正周期;(2)在中,角的对边分别为,若,求角的值.(★) 24. 如图,在直三棱柱中,,,,点是的中点.(1)证明:;(2)证明:平面.(★★★) 25. 已知函数是奇函数,且(1)求的值;(2)判断函数在上的单调性,并加以证明;(3)若函数满足不等式,求实数的取值范围.。

浙江省温州市2024年6月普通高中学业水平模拟测试数学试题

浙江省温州市2024年6月普通高中学业水平模拟测试数学试题

浙江省温州市2024年6月普通高中学业水平模拟测试数学试

学校:___________姓名:___________班级:___________考号:___________
二、多选题
13.下列选项中正确的是( )
A .33log 1.1log 1.2
<B .
()
()
3
3
1.1 1.2-<-C . 1.1 1.2
0.990.99<D .30.99
0.993<14.某不透明盒子中共有5个大小质地完全相同的小球,其中有3个白球2个黑球,现从
20.在ABC V 中,已知4BC =,4BC BD =uuu r uuu r ,连接AD ,满足
sin sin DB ABD DC ACD ×Ð=×Ð,则ABC V 的面积的最大值为四、解答题
21.某校为了解高二段学生每天数学学习时长的分布情况,随机抽取了100名高二学生进行调查,得到了这100名学生的日平均数学学习时长(单位:分钟),并将样本数据分成
[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100六组,绘制如图所示的频率分布
直方图.
20.3
【分析】分别在ADB
V和
由角平分线定理得到AB AC
cos BAC
Ð,即可得到sin
ADB
V。

安徽省2024届普通高中学业水平合格考试数学模拟试题

安徽省2024届普通高中学业水平合格考试数学模拟试题

安徽省2024届普通高中学业水平合格考试数学模拟试题一、单选题1.设集合{}3,5,6,8A =,{}4,5,8B =,则A B =I ( ) A .{}3,6B .{}5,8C .{}4,6D .{}3,4,5,6,82.在复平面内,(3i)i +对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.某学校高一、高二、高三分别有600人、500人、700人,现采用分层随机抽样的方法从该校三个年级中抽取18人参加全市主题研学活动,则应从高三抽取( ) A .5人B .6人C .7人D .8人4.“a b >”是“ac bc >”的什么条件( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件5.已知(),4a x =r ,()2,1b =-r ,且a b ⊥r r ,则x 等于( ) A .4B .-4C .2D .-26.已知角α的始边在x 轴的非负半轴上,终边经过点()3,4-,则cos α=( ) A .45B .35C .45-D .35-7.下列关于空间几何体结构特征的描述错误的是( ) A .棱柱的侧棱互相平行B .以直角三角形的一边为轴旋转一周得到的几何体不一定是圆锥C .正三棱锥的各个面都是正三角形D .棱台各侧棱所在直线会交于一点8.某地一年之内12个月的降水量分别为:71,66,64,58,56,56,56,53,53,51,48,46,则该地区的月降水量75%分位数( ) A .61B .53C .58D .649.已知函数πsin ,1()6ln ,1x x f x x x ⎧⎛⎫≤⎪ ⎪=⎝⎭⎨⎪>⎩,则()(e)f f =( )A .1B .12CD10.抛掷两个质地均匀的骰子,则“抛掷的两个骰子的点数之和是6”的概率为( )A .17B .111C .536D .11211.在ABC V 中,13BD BC =u u u r u u u r ,设,AB a AC b ==u u u r u u u r r r ,则AD =u u u r( )A .2133a b +r rB .2133a b -+r rC .4133a b -r rD .4133a b +r r12.设0.20.10.214,,log 42a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .<<c a bD .a c b <<13.在ABC V 中,下列结论正确的是( )A .若AB ≥,则cos cos A B ≥ B .若A B ≥,则tan tan A B ≥C .cos()cos +=A B CD .若sin A ≥sin B ,则A B ≥14.已知某圆锥的母线长为4,高为 )A .10πB .12πC .14πD .16π15.若函数()()2212f x x a x =+-+在区间(],4-∞-上是减函数,则实数a 的取值范围是A .[)3,-+∞B .(],3-∞-C .(],5-∞D .[)3,+∞16.已知幂函数()f x 为偶函数,且在(0,)+∞上单调递减,则()f x 的解析式可以是( )A .12()f x x = B .23()f x x = C .2()f x x -=D .3()f x x -=17.从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是( )A .“至少有1个红球”与“都是黑球”B .“恰好有1个红球”与“恰好有1个黑球”C .“至少有1个黑球”与“至少有1个红球”D .“都是红球”与“都是黑球”18.已知函数()f x 是定义域为R 的偶函数,且在(],0-∞上单调递减,则不等式()()12f x f x +>的解集为( )A .1,03⎛⎫- ⎪⎝⎭B .1,3∞⎛⎫+ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .1,13⎛⎫- ⎪⎝⎭二、填空题19.已知i 是虚数单位,复数12iiz -=,则||z =. 20.已知()()321f x x a x =+-为奇函数,则实数a 的值为.21.已知非零向量a r ,b r 满足||2||a b =r r ,且()a b b -⊥rr r ,则a r 与b r 的夹角为.22.在对树人中学高一年级学生身高(单位:cm )调查中,抽取了男生20人,其平均数和方差分别为174和12,抽取了女生30人,其平均数和方差分别为164和30,根据这些数据计算出总样本的方差为.三、解答题23.已知函数()f x 是二次函数,且满足(0)2f =,(1)()2f x f x x +=+. (1)求函数()f x 的解析式; (2)当x >0时,求函数()f x xy x+=的最小值. 24.如图,四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF =FC ,求证:P A ∥平面BDF ; (2)若BF ⊥PC ,求证:平面BDF ⊥平面PBC . 25.已知()π2sin 23f x x ⎛⎫=- ⎪⎝⎭.f x的最小正周期及单调增区间;(1)求()(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若()f A △ABC的外接圆半径为2,求△ABC面积的最大值.。

湖南高中学业水平考试数学(必修一)模拟考试试题

湖南高中学业水平考试数学(必修一)模拟考试试题

高一数学必修一学考检测卷(考试时间: 120分钟 满分: 100)班级: 姓名:本试题卷包括选择题、填空题和解答题三部分。

时量120分钟, 满分100分。

一. 选择题:本大题共10小题, 每小题4分, 满分40分。

在每小题给出的四个选项中, 只有一项是符合题目要求的。

1.已知集合A= , 那么下列结论正确的是( ) .0.1.1.0A AB AC AD A ∈∉-∈∉2. 下列幂函数中过点(0,0),(1,1)的偶函数是( )A....B.....C....D.3.已知集合 = {1.2}, ={2.3}.则 =. ....A {1, 2};B {2, 3} ;C {1, 3} ;D {1, 2, 3}4.函数 的值域是.. ).(,4]A -∞- .(,4]B -∞ .[4,)C -+∞ .[4,)D +∞5.方程 仅有一正实根 , 则 ..)A (0,1)B (1,2)C (2,3)D (3,4)7.下列函数中, 在区间(0, + )上为增函数的......... ....)A.xy )31(= B.y=log 3x C.xy 1=D.y=cosx 8.如图, 纵轴表示行走距离d, 横轴表示行走时间t, 下列四图中, 哪一种表示先快后慢的行走方法。

( )9.已知函数 , 则 的值为.. )A.0B.1C.2D.1-A 12-=x y B 12-=x yC 12-=X yD 2.52.512+-=x x y二. 填空题: 本大题共5小题, 每小题4分, 满分20分.11.已知 12.用“二分法”求方程 在区间 内的实根,取区间中点为 ,那么下一个有根的区间........ 。

13.化简 的结果......... 。

14.已知集合 , 若 , 则实数 ...... 15.不等式: 的解为......。

三. 解答题: 本大题共5小题, 满分40分.解答应写出文字说明、证明过程或演算步..16.(本小题满分6分)已知全集U=R, 集合 ,求: (1) (2)17.(本小题满分8分)已知二次函数f(x)=x2+ax+b,满足f(0)=6,f(1)=5,1.求函数y=f(x)的解析式,2.当x∈[-2,2]时,求函数y=f(x)的最小值和最大值。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03

2x
2π 3
.
试卷第 4页,共 5页
(1)求 f x 在0, π 上的单调递增区间;
(2)若当
x
0,
π 4
时,关于
x
的不等式
f
x
m
恒成立,求实数
m
的取值范围.
试卷第 5页,共 5页
信噪比.当信噪比比较大时,公式中真数中的 1 可以忽略不计.按照香农公式,若不改变
带宽W ,而将信噪比 S 从 1000 提升到 8000,则 C 大约增加了( ) lg 2 0.301
N
A.10%
B.20%
C.30%
D.50%
27.已知在
ABC
中,AB
2
,AC
3 ,BAC
3
,点
D
为边
BC
上靠近
江苏省 2024 年普通高中学业水平合格性考试数学全真模拟 数学试题 03
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x x2 x 6 0 , B 0,1,2,3 ,则 A B ( )
A.1, 2
A.﹣1
B.1
C.2
D.4
14.已知 x R,则“ x 3 1”是“ x2 x 6 0 ”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
15.青年大学习是共青团中央发起的青年学习行动,每期视频学习过程中一般有两个问
题需要点击回答.某期学习中假设同学小华答对第一、二个问题的概率分别为 1 , 3 ,且 35
D. x 0,1 , x2 x 0

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)

一、单选题1. 已知为虚数单位,复数的共扼复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 在梯形中,,,且,若与交于点,则( )A.B.C.D.3. 已知集合,,则等于A.B.C.D.4. 设向量,且,则( )A .0B .1C .2D .35. 设i 是虚数单位,若复数,则z 的共轭复数为( )A.B.C.D.6. 如图l ,在高为h 的直三棱柱容器中,,,现往该容器内灌进一些水,水深为,然后固定容器底面的一边AB 于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为(如图2),则=()A.B.C.D.7. 已知函数的部分图象如图所示,且,,则( ).A.B.C.D.8.函数函数的零点个数为A .3B .2C .1D .0江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)二、多选题三、填空题四、解答题9. 高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用表示不超过x 的最大整数,则称为高斯函数,例如,.则下列说法正确的是( )A .函数在区间上单调递增B .若函数,则的值域为C.若函数,则的值域为D .,10.已知函数的图象如图所示,令,则下列说法正确的是()A.B.函数图象的对称轴方程为C.若函数的两个不同零点分别为,则的最小值为D .函数的图象上存在点P ,使得在P点处的切线斜率为11. 已知双曲线满足条件:(1)焦点为,;(2)离心率为,求得双曲线C的方程为.若去掉条件(2),另加一个条件求得双曲线C 的方程仍为,则下列四个条件中,符合添加的条件可以为( )A .双曲线C 上的任意点P都满足B .双曲线C 的虚轴长为4C .双曲线C 的一个顶点与抛物线的焦点重合D .双曲线C的渐近线方程为12.如图,已知四棱锥的底面是直角梯形,,,,平面,,下列说法正确的是()A .与所成的角是B.与平面所成的角的正弦值是C .平面与平面所成的锐二面角余弦值是D.是线段上动点,为中点,则点到平面距离最大值为13.已知平面内两单位向量,若满足,则的最小值是___________.14. 在锐角三角形中,,,,则________15. 小张计划从个沿海城市和个内陆城市中随机选择个去旅游,则他至少选择个沿海城市的概率是__________.16. 为了调查某校高二学生是否需要学校提供学法指导,用简单随机抽样的方法从该校高二年级调查了55名学生,结果如下:男女需要2010不需要1015(1)估计该校高二年级学生中,需要学校提供学法指导的学生的比例;(用百分数表示,保留两位有效数字)(2)能否有95%的把握认为该校高二年级学生是否需要学校提供学法指导与性别有关?17. 中的内角的对边分别为,已知.(1)求角的大小;(2)求的最大值,并求出取得最大值时角的值.18. 已知等差数列的前n项和为,又对任意的正整数,都有,且.(1)求数列的通项公式;(2)设,求数列的前n项和.19. 已知函数,其中且的最小值为0.(1)求的值;(2)证明:当时,.20. 已知椭圆的长轴长为,离心率为,其中左顶点为,右顶点为,为坐标原点.(1)求椭圆的标准方程;(2)直线与椭圆交于不同的两点,,直线,分别与直线交于点,. 求证:为定值.21. 如图,在长方体中,相交于点,是线段的中点,已知.(1)求证:;(2)若是线段上异于端点的点,求过三点的平面被长方体所截面积的最小值.。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

一、单选题1. 函数的部分图像大致为( )A.B .C.D.2. 设全集,集合,则( )A.B.C.D.3. 已知点F 为双曲线(,)的左焦点,过原点O 的直线与双曲线交于A 、B 两点(点B 在双曲线左支上),连接BF 并延长交双曲线于点C ,且,AF ⊥BC ,则该双曲线的离心率为( )A.B.C.D.4.设是首项大于零的等比数列,则“”是“数列是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. 已知均为实数,下列不等式恒成立的是( )A .若,则B.若,则C .若,则D .若,则6. 下列有关命题的说法正确的是( ).A .命题“若,则”的否命题为:“若,则”B .“”是“”的必要不充分条件C .命题“,使得”的否定是:“,均有”D .命题“若,则”的逆否命题为真命题7. 已知函数为的导函数,则的大致图象是( )A. B.江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01二、多选题三、填空题C. D.8. 设集合A={1,2,3},B={x |x 2-2x +m=0},若A ∩B={2},则B=( )A.B.C.D.9. 如图,在直三棱柱中,,,则()A .平面B.平面平面C .异面直线与所成的角的余弦值为D .点,,,均在半径为的球面上10. 已知,且,则( )A.B.C.D.11. 已知直线与椭圆交于两点,点为椭圆的下焦点,则下列结论正确的是( )A .当时,,使得B.当时,,C .当时,,使得D .当时,,12. 如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形,其中,则()A.B.C.D.四、解答题13. 已知函数,其中为常数,且,将函数的图象向左平移个单位所得的图象对应的函数在取得极大值,则的值为_____________________.14. 已知函数在处有极值8,则等于______.15. 样本数据的众数是______.16. 2024年1月,某市的高二调研考试首次采用了“”新高考模式.该模式下,计算学生个人总成绩时,“”的学科均以原始分记入,再选的“2”个学科(学生在政治、地理、化学、生物中选修的2科)以赋分成绩记入.赋分成绩的具体算法是:先将该市某再选科目原始成绩按从高到低划分为五个等级,各等级人数所占比例分别约为.依照转换公式,将五个等级的原始分分别转换到五个分数区间,并对所得分数的小数点后一位进行“四舍五入”,最后得到保留为整数的转换分成绩,并作为赋分成绩.具体等级比例和赋分区间如下表:等级比例赋分区间已知该市本次高二调研考试化学科目考试满分为100分.(1)已知转换公式符合一次函数模型,若学生甲、乙在本次考试中化学的原始成绩分别为84,78,转换分成绩为78,71,试估算该市本次化学原始成绩B 等级中的最高分.(2)现从该市本次高二调研考试的化学成绩中随机选取100名学生的原始成绩进行分析,其频率分布直方图如图所示,求出图中的值,并用样本估计总体的方法,估计该市本次化学原始成绩等级中的最低分.17. 北京时间2022年11月21日0时,卡塔尔世界杯揭幕战在海湾球场正式打响,某公司专门生产世界杯纪念品,今年的订单数量再创新高,为回馈球迷,该公司推出了盲盒抽奖活动,每位成功下单金额达500元的顾客可抽奖1次.已知每次抽奖抽到一等奖的概率为10%,奖金100元;抽到二等奖的概率为30%,奖金50元;其余视为不中奖.假设每人每次抽奖是否中奖互不影响.(1)任选2名成功下单金额达500元的顾客,求这两名顾客至少一人中奖的概率;(2)任选2名成功下单金额达500元的顾客,记为他们获得的奖金总数,求的分布列和数学期望.18. “学习强国”学习平台软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块,还有“四人赛”“双人对战”两个比赛模块.“四人赛”积分规则为首局第一名积3分,第二、三名积2分,第四名积1分;第二局第一名积2分,其余名次积1分;每日仅前两局得分.“双人对战”积分规则为第一局获胜积2分,失败积1分,每日仅第一局得分.某人在一天的学习过程中,完成“四人赛”和“双人对战”.已知该人参与“四人赛”获得每种名次的概率均为,参与“双人对战”获胜的概率为,且每次答题相互独立.(1)求该人在一天的“四人赛”中积4分的概率;(2)设该人在一天的“四人赛”和“双人对战”中累计积分为,求的分布列和.19. 已知,求的值.20. 近段时间,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取120名学生对线上教学进行调查,其中男生与女生的人数之比为,男生中喜欢上网课的为,女生中喜欢上网课的为,得到如下列联表.喜欢上网课不喜欢上网课合计男生女生合计(1)请将列联表补充完整,试判断能否有的把握认为喜欢上网课与否与性别有关;(2)从不喜欢上网课的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,若所选2名学生中的女生人数为X,求X的分布列及数学期望.附:,其中.0.1500.1000.0500.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.82821. 函数f(x)=的定义域为集合,关于的不等式的解集为,求使的实数的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档学业水平考试模拟卷数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合{|14},{|28},A x x B x x =≤≤=≤≤,则A B 等于( )A .{|18}x x ≤≤ B .{|24}x x ≤≤ C .{|24}x x x ≤≥或 D. {|18}x x x ≤≥或 2.2cos 3π的值为( )A .12-B .12CD .3. 函数()lg(2)f x x =+的定义域是( ) A .),2[+∞ B .),2(+∞ C .(2,)-+∞ D .[2,)-+∞4. 函数f (x )=-x 3-3x +5的零点所在的大致区间是( )A.(-2,0)B.(0,1)C.(1,2)D.(2,3) 5.设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .12B .9C .6D .3 6.要得到函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )精品文档A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位 7.已知f (x )是偶函数,且在区间(0,+∞)上是增函数,则f (-0.5),f (-1),f (0)的大小关系是( )A. f (-0.5)<f (0)<f (1)B. f (-1)<f (-0.5)<f (0)C. f (0)<f (-0.5)<f (-1)D. f (-1)<f (0)<f (-0.5)8.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S 4的概率是( )A.14B. 34C. 12D.239.图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 210.若变量x ,y满足约束条件⎩⎨⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于精品文档( )A .-52 B.-2 C .-32D.211.如图,正六边形ABCDEF 中,BA CD EF ++等于 ( )A .0 B. BE C.AD D.CF二、填空题:本大题共4小题,每小题3分,共12分. 13. 指数函数f (x )=a x +1的图象恒过定点________.14. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_______.16.已知向量(),2a m =,向量()2,3b =-,若a b a b +=-,则实数m 的值是_______.三、解答题:本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f (x )=2sin x 2cos x2-2sin 2x2.精品文档(Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在区间[-π,0]上的最小值.18.(本小题满分10分) 如图,在圆锥PO 中,AB 是⊙O 的直径,C 是⊙O 上的一点,D 为AC 的中点,证明:平面POD ⊥平面PAC .19.(本小题满分10分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且13,21,1355311=+=+==b a b a b a(Ⅰ)求{}n a ,{}n b 的通项公式.(Ⅱ)求数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和n S .精品文档20. (本小题满分10分)某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:(Ⅰ)求表中的值和频率分布直方图中的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;(Ⅱ)如果用分层抽样的方法从样本服务次数在和的人中共抽取6人,再从这6人中选2人,求2人服务次数都在的概率.MM ,n p a [10,15)[25,30)[10,15)21. (本小题满分12分)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(Ⅰ)若直线l过点P且被圆C截得的线段长为43,求l的方程;(Ⅱ)求过P点的圆C的弦的中点的轨迹方程.普通高中学生学业水平考试模拟卷参考答案一、选择题1.A2.A3.C4.C5.B6.B7.C8.B9.D 10.A 11.D二、填空题:13. (-1,1) 14. 7π 15. 1516. 3三、解答题精品文档精品文档17. 解: (1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π…………………………5分(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4.当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为 f ⎝⎛⎭⎪⎫-3π4=-1-22.…………………………10分 18. 证明:∵OA =OC ,D 为AC 中点,∴AC ⊥OD .又∵PO ⊥底面⊙O ,AC ⊂底面⊙O ,∴AC ⊥PO . …………………………5分 ∵OD ∩PO =O ,∴AC ⊥平面POD .而AC ⊂平面PAC ,∴平面POD ⊥平面PAC . …………………………10分 19. 解:(1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0,且⎩⎨⎧1+2d +q 4=21,1+4d +q 2=13,解得⎩⎨⎧d =2,q =2,所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1. …………………………5分(2)a n b n =2n -12n -1,精品文档S n =1+321+522+…+2n -32n -2+2n -12n -1,① 2S n =2+3+52+…+2n -32n -3+2n -12n -2,②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1=2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1.…………………………10分20.可以看出,中位数位于区间[15,20),设中位数为x 则0.250.125(15)0.125(20)0.0750.05x x +⨯-=⨯-++17x ∴=………………………5分精品文档(2)由题意知样本服务次数在有20人,样本服务次数在有4人, 如果用分层抽样的方法从样本服务次数在和的人中共抽取6人,则抽取的服务次数在和的人数分别为:和. 记服务次数在为,在的为. 从已抽取的6人任选两人的所有可能为:共15种,设“2人服务次数都在”为事件,则事件包括共10种,所有.…………………………10分 21.解 (1)设|AB |=43,将圆C 方程化为标准方程为(x +2)2+(y -6)2=16, ∴圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,[10,15)[25,30)[10,15)[25,30)[10,15)[25,30)206524⨯=46124⨯=[10,15)12345,,,,a a a a a [25,30)b 121314151232425234(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a a a b a a a a a a a b a a 3534545(,),(,),(,),(,),(,),a a a b a a a b a b [10,15)A A 1213141523242534(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a a a a a a a a a a 3545(,),(,)a a a a 102()153P A ==又|AD|=23,|AC|=4.在Rt△ACD中,可得|CD|=2.设所求直线l的斜率为k,则直线l的方程为y-5=kx,即kx-y+5=0.由点C到直线l的距离公式:|-2k-6+5|k2+(-1)2=2,得k=34.故直线l的方程为3x-4y+20=0.又直线l的斜率不存在时,也满足题意,此时方程为x=0.∴所求直线l的方程为x=0或3x-4y+20=0. …………………………6分(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即CD→·PD→=0,∴(x+2,y-6)·(x,y-5)=0,精品文档精品文档化简得所求轨迹方程为x2+y2+2x-11y+30=0. …………………………12分精品文档。

相关文档
最新文档