对偶单纯形法详解
运筹学及其应用4.3 对偶单纯形法

min w= 2x1+3x2+4x3+0x4+0x5 x1+2x2+ x3-x4= 1 2x1- x2+3x3– x5=4 x1,x2,x3,x4,x5≥ 0
min w= 2x1+3x2+4x3+0x4+0x5 -x1-2x2- x3+x4= -1 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4,x5≥ 0
4
234 000
0
x1 x2 x3 x4 -1 -2 -1
x4 x5 b 1 0 -1
max
2 −2
4 ,
−3
=
−1
0 x5 -2* 1 -3 0 1 -4
σ 234 000
0 x4 0 -2.5 0.5 1 -0.5 1
2 x1 1 -0.5 1.5 0 -0.5 2
σ 0 4 1 0 1 -4
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格; (2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
1
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格;
(2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
5
• 作业 • P81 1.12(1)
6
§3 对偶单纯形法
单纯形法:由 XB = B-1b ≥ 0,使σj ≥ 0,j = 1,···,m 对偶单纯形法:由σj ≥ 0(j= 1,···,n),使XB = B-1b ≥ 0 相同点:都用于求解原问题
2.4对偶单纯形法(经典运筹学)

引进人工变量 x 6,x 7 max Z ′ = −2 x1 − x 2 − Mx 6 − Mx 7 3 x1 + x 2 − x3 + x 6 = 3 4 x + 3 x − x + x = 6 2 4 7 s.t 1 x1 + 2 x 2 + x 5 = 3 x1 , x 2 , x3 , x 4 , x5 ≥ 0
ax于是nxbx若所有的检验数为最优解则存在更好的基本可行分量的列向量中至少有一个且该分量对应中至少有一个分量若检验数域内无上界则目标函数值在可行解向量中所有的分量且该分量对应的列中存在一个分量检验数持对应的基本解可行在迭代过程中始终保做换基迭代个数越来越少最终的分量常数项检验行变量否则选定入基出基对该单纯形表做行变换常数项检验行否则换基迭代对该单纯形表做行变换选定入基出基变量要条件
≤ 0 Z- CBB-1b
例:求min Z = 2x1 + x2 3x1 + x2 ≥ 3 4x + 3x ≥ 6 1 2 s.t x1 + 2x2 ≤ 3 x1 , x2 ≥ 0 检验行 ≤0 解:标准型为
max Z ′ = − 2 x 1 − x 2 3 x1 + x 2 − x 3 = 3 4x + 3x − x = 6 1 2 4 s .t 基B的典则形式 x1 + 2 x 2 + x 5 = 3 x1 , x 2 , x 3 , x 4 , x 5 ≥ 0
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:
1、问题为标准型 2、有初始基本可行解
对偶单纯形法详解

列表求解如下:
CB
XB
0
y3
0
y4
0
y5
-Z
比
cj yj b
-3 -9 0 y1 y2 y3
00 y4 y5
-2
-1 -1 1 0 0
-3
-1 -4 0 1 0
-3
-1 -7 0 0 1
0
-3 -9 0 0 0
值 -3/-1 -9/-1 --- --- ---
CB
XB
-3 y1
0
y4
0
y5
-Z
比
ቤተ መጻሕፍቲ ባይዱ
谢谢观赏
MinW 2x1 3x2 4x3
s.t.
2xx112xx223xx33
3 4
x1, x2, x3 0
化为标准型 →
MaxZ 2x1 3x2 4x3
s.t.
2xx112xx223xx33xx45
3 4
x1, x2, x3, x4, x5 0
y1 y2 2
s.t.
y1 y1
4y2 7 y2
3 3
化为
y1 y2 y3 2
标准型
→
s.t.
y1 y1
4 7
y2 y2
y4 y5
3 3
y1 0, y2 0
y1,, y5 0
将三个等式约束两边分别乘以-1,然后
3、计算步骤:
①建立初始单纯形表,计算检验数行。
解答列≥0——已得最优解; 检验数全部≤0 (非基变量检验数<0)
至少一个元素<0,转下步;
至少一个检验数>0
(完整版)对偶单纯形法详解

一、什么是对偶单纯形法?
对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、对偶单纯形法的基本思想 1、对“单纯形法”求解过程认识的提升— —
从更高的层次理解单纯形法 初始可行基(对应一个初始基本可行解)
3 4
x1, x2 , x3, x4, x5 0
以此形式进行列表求解,满足对偶单纯形 法的基本条件,具体如下:
CB
XB
0
x4
0
x5
cj -2 -3 -4 0 0
xj b
x1 x2 x3 x4 x5
-3
-1 -2 -1 1 0
-4
-2 1 -3 0 1
-Z
0
-2 -3 -4 0 0
比
值 -2/-2 --- -4/-3 --- ---
2/5
11/5
-2 -3 -4 0 0 x1 x2 x3 x4 x5
0 1 -1/5 -2/5 1/5 1 0 7/5 -1/5 -2/5
cj-zj
0
0 0 -3/5 -8/5 -1/5
最优解: X*=(11/5,2/5, 0, 0, 0)T,
最优值: minW= -maxZ* = -[11/5×(-2)+2/5×(-3)]= 28/5
将三个等式约束两边分别乘以-1,然后
列表求解如下:
CB
XB
0
y3
0
y4
0
y5
-Z
比
cj yj b
-3 -9 0 y1 y2 y3
00 y4 y5
-2
-1 -1 1 0 0
对偶单纯形法

把上述思想移植到对偶问题上。
对偶单纯形法迭代过程的实质是:保持对偶问题的可行性(只要检验数≤0即可), 通过改变对偶问题的可行基,使原问题由不可行变为可行。根据对偶理论,这两 个可行解就是原始和对偶问题的最优解。
例2.4.1 用对偶单纯形法求解下列线性规划问题。 min z = 15x1+24 x2 +5 x3
6 x2 + x3 ≥2
st.
5x1+2 x2 + x3 ≥1
x1 , x2 , x3 ≥0
解:把线性规划问题化为标准形式。
max z′ = -15x1-24 x2 - x3 +0 x4 +0 x5
-2/3是主元素, x3是换入变量。
ቤተ መጻሕፍቲ ባይዱj
-15 -24 - 5
CB
XB
b
x1
x2
x3
-24
x2 1/4
-5/4
1
0
表 11
0
0
x4
x5
-1/4 1/4
5
x3 1/2 15/2
0
1
1/2 -3/2
(cj-zj) 或 j
-15/2 0
0
-7/2 -3/2
由于原始,对偶都已经可行,所以,表11对应的解是最优解。
求极大为标准形式时
min j
c
j
arj
z
j
arj
0
cs zs ars
求极小为标准形式时
min j
z
j c arj
j
arj
0
运筹学对偶单纯形法

max z = -2x1 - 3x2 - 4x3 -x1 - 2x2 - x3 + x4 = -3 -2x1 + x2 - 3x3 + x5 = -4 xj ≥ 0,j = 1,2,3,4,5
建立这个问题的初始单纯形表
cj→
-2 -3 -4 0 0
?
(2) 先确定换出变量:若 min{(B-1b)i|(B-1b)i <0} = (B-1b)l
对应的基变量xl为换出变量。(实际上,可取任何一个取 负值的基变量作为换出变量。取最小的含义是尽快)
(3) 确定换入变量: 检查xl所在行的各系数alj(j = 1,2,…,n)。 若所有的 alj0,则无可行解,停止计算。
§6 对偶单纯形法
在 原 来 的 单 纯 形 表 中 进 行 迭 代 时 , 前 提 要 求 右 端 项 b≥ 0(基可行解),迭代过程中在b列中得到的是原问题的基可行解, 在检验数行得到的是对偶问题的基解。当检验数行也是对偶 问题的基可行解时,原问题与对偶问题都得到最优解。
对偶单纯形法原理:根据对偶问题的对称性,保持对偶问 题的解是基可行解,即cj-CBB-1Pj ≤ 0,同时取消对解答列元 素非负的限制,在原问题非可行解的基础上, 通过逐步迭代达 到基可行解,这样就得到了最优解。
1、对应基变量x1,x2,… ,xm的检验数是
σ i = ci – zi = ci - CB B-1Pi = 0,i = 1 ,2 , … ,m
2、对应非基变量xm+1,… ,xn的检验数是
σ j = cj – zj = cj - CB B-1Pj 0,j = m+1 , … ,n
16.对偶理论(三)对偶单纯形法

16.对偶理论(三)对偶单纯形法⼉童节快乐呀这⼀部分我们考虑原问题是标准型的问题,并且介绍对偶单纯形法。
在上⼀节的强对偶定理的证明中,对标准型问题使⽤单纯形法,定义了对偶变量p为p T=c T B B−1。
然后由原问题最优性条件c T−c T B B−1A≥0T得到了等价表达的对偶可⾏性条件p T A≤c T。
那么我们之前介绍的单纯形法可以看作是在保证原问题可⾏的前提下去寻找对偶可⾏的解。
那么反过来,我们也可以从对偶可⾏的前提下去寻找原问题可⾏的解,这种算法称为对偶算法。
在接下来,将介绍对偶单纯形法。
并且说明这个算法事实上求解了对偶问题,更近⼀步,它是从对偶问题的⼀个基本可⾏解移动到另⼀个。
对偶单纯形法考虑⼀个标准型的线性规划问题,假设矩阵A是⾏满秩(为什么这个假设具有⼀般性,可参考线性规划中的⼏何(三))。
记B为基本矩阵,它包含了矩阵A的m个线性⽆关的列。
考虑下表(与之前介绍的单纯形法中的表⼀样)更详细的有不过,在这⾥不再要求B−1b是⾮负的,那就说明此时的解是⼀个原问题的基本解但不⼀定是可⾏解。
但是,我们要求¯c≥0成⽴,也相当于p T A≤c T成⽴(具体见上⼀节强对偶定理证明)。
这说明现在有了⼀个对偶问题的可⾏解,并且对偶问题的⽬标函数值为p T b=c T B B−1b=c T B x B,这恰好就是上表中的左上⾓元素的相反数。
如果不等式B−1b≥0也成⽴,那么这个解也将是⼀个原问题的可⾏解,并且⽬标函数值相同,这说明我们找到了原问题和对偶问题的最优解。
如果不等式B−1b≥0并不成⽴,那么我们将寻找下⼀个基矩阵。
找到满⾜x B(l)<0的l,考虑表中的第l⾏为pivot ⾏(x B(l)),v1,⋯,v n),其中v i为B−1A i的第l个元素。
对于满⾜v i<0的所有i(如果存在的话),我们计算⽐率¯c i/|v i|,然后记j为这些⽐率中最⼩的那个的下标(为什么这么选呢,后⾯会说),也就是说v j<0且¯cj|v j|=min{i∣v i<0}¯ci|v i|.称v j为pivot 元素。
对偶单纯形法

1. 换出变量的确定原则
常数列中最小的负元素所在的行所对应的基变量为换出变量.
p11-1
§3.4 灵敏度分析
运筹学
灵敏度分析——研究系数变化对最优解的影响.
一、改变价值向量
在最终表内, cr的变化只引起检验数的变化, 需重新计算检验数.
§3.3 对偶单纯形法
运筹学
一、对偶单纯形法与单纯形法的区别
对 运用对偶单纯形法时, 不需要引入人工变量, 但必须先给 定原问题的一个对偶可行基本解.
二、对偶单纯形法的求解方法
▲ 以求解下述线性规划 问题为例
min z 2x1 3x2 4x3 s.t. x1 2x2 x3 3
二、改变资源向量
在最终表内, br的变化只引起右端项的变化, 需重新计算右端项. 利用B-1(b+b).
三、改变A中的一列
通常是非基变量所对应的列, 需重新计算检验数.
四、增加一个新的约束条件
五、增加一个新的变量
p11-2
运筹学
作业:P81第1.12题之(2); 第1.13题
p11-3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、举例——用对偶单纯形法求解LP:
MinW 3y1 9 y2
MaxZ 3y1 9 y2
y1 y2 2
s.t.
y1 y1
4y2 7 y2
3 3
化为
y1 y2 y3 2
标准型
→
s.t.
y1 y1
4 7
y2 y2
y4 y5
3 3
y1 0, y2 0
y1, , y5 0
XB
-3 y1
0
y4
0
y5
-Z
比
cj yj b
2 -1 -1
-3 -9 0 y1 y2 y3
1 1 -1 0 -3 -1 0 -6 -1
00 y4 y5
00 10 01
保持为基本 可行解
原问题
初始基本 可行解
始终满足解 的可行性
三、对偶单纯形法的实施
1、使用条件: ①检验数全部≤0;
②解答列至少一个元素 < 0;
2、实施对偶单纯形法的基本原则:
在保持对偶可行的前提下进行基变换——每 一次迭代过程中取出基变量中的一个负分量 作为换出变量去替换某个非基变量(作为换入 变量),使原始问题的非可行解向可行解靠近。
→迭代→另一个可行基(对应另一个基 本可行解),直至所有检验数≤0为止。
所有检验数≤0意味着
CN CB B1N 0 YA C ,
说明原始问题的最优基也是对偶问题的可行 基。换言之,当原始问题的基B既是原始可 行基又是对偶可行基时,B成为最优基。
定理2-5 B是线性规划的最优基的充要条件 是,B是可行基,同时也是对偶可行基。
3 4
x1, x2, x3 0
化为标准型 →
MaxZ 2x1 3x2 4x3
s.t.
2xx112xx223xx33xx45
3 4
x1, x2, x3, x4, x5 0
将两个等式约束两边分别乘以-1,得
MaxZ 2x1 3x2 4x3
s.t.
2xx112xx223xx33xx45
通过逐步迭代实现对偶可行(检验数行≤0)。 2、 对偶单纯形法思想:
换个角度考虑LP求解过程:保持对偶可行 的前提下(检验数行保持≤0) ,通过逐步迭 代实现原始可行(b列≥0,从非可行解变成 可行解)。
对偶单纯形法的思想(图示)
始终满 足对偶 可行性
最优解 基本可行性 对偶可行性
保持对偶可行性 初始对偶可行解
Max Z CX
LP原问题: AX b
s.t. ຫໍສະໝຸດ X0若B是A中的一个基
可行基
对偶可行基
B对应的解是基 本可行解,则B 是可行基
若单纯形乘子 Y CBB1 是对偶问题的可行解, 则B是对偶可行基
的CB可B行1 解是对偶问题
等价
检验数 N 0
YA C CBB-1A C C CBB-1A 0 N 0
即
min i
( B 1b) i
( B 1b) i
0
(B1b)l ,则选xl出基,
相应的行为主元行。
然后确定换入变量——原则是:在保持对偶 可行的前提下,减少原始问题的不可行性。
如果
min j
c
j
al'j
z
j
al'j
0
ck zk
a
' lk
(最小比值原则),则选 xk 为换入变量 , 相应 的列为主元列 , 主元行和主元列交叉处的元
3 4
x1, x2 , x3, x4, x5 0
以此形式进行列表求解,满足对偶单纯形 法的基本条件,具体如下:
CB
XB
0
x4
0
x5
cj -2 -3 -4 0 0
xj b
x1 x2 x3 x4 x5
-3
-1 -2 -1 1 0
-4
-2 1 -3 0 1
-Z
0
-2 -3 -4 0 0
比
值 -2/-2 --- -4/-3 --- ---
素
a
' lk
为主元素。
若 值吗al'j?为0 ,要什计么算?最小比
按主元素进行换基迭代(旋转运算、枢 运算),将主元素变成1,主元列变成单位向 量,得到新的单纯形表。
循环以上步骤,直至求出最优解。
3、举例——用对偶单纯形法求解LP:
MinW 2x1 3x2 4x3
s.t.
2xx112xx223xx33
2/5
11/5
-2 -3 -4 0 0 x1 x2 x3 x4 x5
0 1 -1/5 -2/5 1/5 1 0 7/5 -1/5 -2/5
cj-zj
0
0 0 -3/5 -8/5 -1/5
最优解: X*=(11/5,2/5, 0, 0, 0)T,
最优值: minW= -maxZ* = -[11/5×(-2)+2/5×(-3)]= 28/5
将三个等式约束两边分别乘以-1,然后
列表求解如下:
CB
XB
0
y3
0
y4
0
y5
-Z
比
cj yj b
-3 -9 0 y1 y2 y3
00 y4 y5
-2
-1 -1 1 0 0
-3
-1 -4 0 1 0
-3
-1 -7 0 0 1
0
-3 -9 0 0 0
值 -3/-1 -9/-1 --- --- ---
CB
证明: C CBB-1A 0
(CB MCN ) CBB-1 (BMN) 0
(CB MCN ) (CBB-1BMCBB-1N) 0 (CB CBB-1BMCN CBB-1N) 0
CB CBB-1B 0 CN CBB-1N 0
N 0
单纯形法的求解过程就是:
在保持原始可行的前提下(b列保持≥0),
2.3 对偶单纯形法
一、什么是对偶单纯形法?
对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、对偶单纯形法的基本思想 1、对“单纯形法”求解过程认识的提升— —
从更高的层次理解单纯形法 初始可行基(对应一个初始基本可行解)
3、计算步骤:
①建立初始单纯形表,计算检验数行。
解答列≥0——已得最优解; 检验数全部≤0 (非基变量检验数<0)
至少一个元素<0,转下步;
至少一个检验数>0
解答列≥0——原始单纯形法; 至少一个元素<0,另外处理;
基变换:
先 确 定 换 出 变 量 —— 解 答 列 中 的 负 元 素 (一般选最小的负元素)对应的基变量出基;
CB
XB
0
x4
-2 x1
cj xj b
-1
2
-2 -3 -4 0 0 x1 x2 x3 x4 x5
0 -5/2 1/2 1 -1/2 1 -1/2 3/2 0 -1/2
cj-zj
比
0
0 -4 -1 0 -1
值 --- -4/-5/2 --- -1/-1/2
CB
XB
-3 x2
-2 x1
cj xj b