多边形及其内角和讲义(学生用)

合集下载

《多边形的内角和与外角和》课件

《多边形的内角和与外角和》课件
未知边数情况下
如果不知道多边形的边数,可以先列出多边形的一个顶点出发的对角线,这 样可以将多边形分成若干个三角形,然后利用三角形内角和求解。
例子解析
1 2 3
求四边形内角和
四边形可以分成两个三角形,每个三角形的内 角和为180°,因此四边形的内角和为2 × 180°=360°。
求五边形内角和
五边形可以分成三个三角形,每个三角形的内 角和为180°,因此五边形的内角和为3 × 180°=540°。
一个正六边形的外角和是多少度?
05
结论与总结
主要内容回顾
多边形的内角和公式:$180^{\circ} \times (n-2)$,其中n是多边形的边数
多边形的外角和恒等于360^{\circ}
外角和的推导过程:将多边形分成若干个三角形,每个三角形的外角和为 360^{\circ},因此多边形的外角和为360^{\circ}
以五边形为例,五边形有5个顶点,每个顶点对应 的外角为180度/5 = 36度,因此五边形的外角和 为36 × 5 = 180度。
以四边形为例,四边形有4个顶点,每个顶点对应 的外角为180度/4 = 45度,因此四边形的外角和 为45 × 4 = 180度。
以此类推,对于任意多边形,其外角和均为360度 。
课后作业
基础题
基础题1
求一个四边形的内角和。
基础题2
求一个五边形的内角和。
基础题3
求一个六边形的内角和。
提高题
提高题1
01
已知一个四边形其中三个角的度数之和,求第四个角的度数。
提高题2
02
已知一个五边形其中四个角的度数之和,求第五个角的度数。
提高题3
03
已知一个六边形其中五个角的度数之和,求第六个角的度数。

专题04 多边形及其多边形内角和(知识点串讲)(解析版)

专题04 多边形及其多边形内角和(知识点串讲)(解析版)

专题04 多边形及其多边形内角和知识网络重难突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形 内角:多边形中相邻两边组成的角叫做它的内角。

外角:多边形的边与它邻边的延长线组成的角叫做外角。

对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

正多边形概念:各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)典例1 (2018春富顺县期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.典例2 (2018秋桥北区期中)过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数是( )A.10 B.11 C.12 D.13【答案】B【详解】设多边形有n条边,n-2=9,则n=11,故答案选B.典例3 (2018春道里区期末)如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( ) A.6 B.9 C.14 D.20【答案】B【详解】由题意可知n=6,所以对角线条数为9知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°(重点)n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

典例1 (2019春安庆市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.典例2 (2019春南阳市期中)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【答案】B【详解】根据n边形的内角和公式,得:(n-2)•180=360,解得n=4.故选B典例3 (2018春菏泽市期末)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.巩固训练一、单选题(共10小题)1.(2018春龙安区期末)一个多边形切去一个角后,形成的另一个多边形的内角和为540 ,那么原多边形的边数为()A.4 B.4或5 C.5或6 D.4或5或6【答案】D【详解】设新多边形的边数为n,则(n−2)⋅180°=540°,解得n=5,如图所示,截去一个角后,多边形的边数可以增加1、不变、减少1,所以,5−1=4,5+1=6,所以原来多边形的边数为4或5或6.故选:D.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式.2.(2019春闻喜县期末)下列正多边形中,不能够铺满地面的是()A.正六边形B.正五边形C.正方形D.正三角形【答案】B【详解】A. 正六边形的每个内角是120°,能整除360°,能密铺;B. 正五边形每个内角是180°−360°÷5=108°,不能整除360°,不能密铺;C. 正方形的每个内角是90°,能整除360°,能密铺;D. 正三角形的每个内角是60°,能整除360°,能密铺.故选B.【名师点睛】此题考查平面镶嵌(密铺),解题关键在于掌握计算法则.3.(2018春南昌县期末)已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是A.4 B.5 C.6 D.8【答案】C【详解】设这个多边形是n边形,根据题意,得(n-2)×180°=2×360°,解得:n=6,即这个多边形为六边形,故选C.【名师点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(2019春道外区期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.5.(2018春东坡区期末)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【答案】C【详解】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【名师点睛】主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180 (n≥3且n为整数).6.(2018春金安区期中)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【答案】A【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【名师点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.7.(2018春小店区期中)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.8.(2017秋民勤县期中)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【名师点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.(2016春荔湾区期中)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10,这个正n边形的所有对角线的条数是:==35,故选C.10.(2018春德州市期末)一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6【答案】B【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.所以,从一点引对角线的条数是:7-3=4.故选:B【名师点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.二、填空题(共5小题)11.(2018春天水市期末)如图,五边形是正五边形,若,则__________.【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.[名师点睛]题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.12.(2019春海淀区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】分析: 剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.详解: n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【名师点睛】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.13.(2018春金东区期末)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【名师点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.(2018春延边市期中)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.【答案】540°【详解】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°, ∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.【名师点睛】本题考查了三角形的外角和性质,四边形的内角,找到外角与邻补角是解题关键.15.(2019春东阳市期末)若一个多边形的内角和比外角和多900,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则 (n−2)⋅180°−360°=900°,解得n=9.故答案为: 9.【名师点睛】本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.三、解答题(共2小题)16.(2018春云岩区期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【详解】(1)设内角为x,则外角为,由题意得,x+=180°,解得:x=120°,=60°,这个多边形的边数为:=6,答:这个多边形是六边形,(2)设内角为x,则外角为,由题意得: x+=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【名师点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.17.(2017春黄岩区期中)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.。

《多边形及其内角和》教案

《多边形及其内角和》教案

《多边形及其内角和》教案《多边形及其内角和》教案1一、教学目标1、掌握多边形的内角和公式,并能熟练运用。

2、通过探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力,体会从特殊到一般的认识问题的方法。

3、通过探索多边形内角和公式,尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

4、通过猜想,推理等数学活动,感受数学活动充满探索以及数学结论的确定性,提高学生的学习热情。

二、教学重点、难点重点:探索多边形的内角和公式。

难点:探索多边形内角和时,如何把多边形转化成三角形,利用三角形内角和180度求出多边形内角和。

三、教学方法:学生自主探究、合作交流与教师启发引导相结合.四、教具准备①每个小组一张“探究实验报告单”(活动1)②每人一张“类比探索五边形、六边形、七边形的内角和的答题纸”(活动2)③多媒体课件五、教学过程(一)创设情境,引入新课问题1:把一个长方形纸片剪去一个角还剩几个角。

【学生给出的答案可能是---三个角、四个角、五个角,教师演示动画。

】问题2:你知道所得图形的内角和吗。

你知道102边形的内角和吗。

【根据学生的回答,教师指出本课内容,板书课题: 多边形的内角和。

】(二)合作交流,探索新知活动1:猜想验证四边形的内角和问题:(1)任意四边形的内角和等于多少度。

(2)你是怎样得到的。

你能找到几种方法。

【问题(1)学生很容易猜到360°,问题(2)组织学生四人一组拿出课前老师发给每个小组的探究实验报告,讨论并记录探究方法。

在讨论的过程中,教师给出合格、良好、优秀的“自我评价标准”,每个小组对照评价表给出自我评价,教师深入到学生讨论中,以“边听—边问—边导”的形式,适时对各小组进行点拨。

讨论结束后,小组学生代表用实物投影展示探究实验报告,说明求四边形内角和的方法,并讲述想法。

教师对学生找到的不同方法都给予肯定和评价,并加以总结,归纳学生提出的探究方法:度量、剪拼、分割。

多边形的内角和与外角和第一课时(公开课正式稿)

多边形的内角和与外角和第一课时(公开课正式稿)

探究1
还有其他的分解方法吗? C
D
B E A 五边形内角和: 3×180°=540°
探索n边形内角和
还有其他的分解方法吗?
探究2
A
180°× 4=720°?
E
B
D
C
O
180°× 4 –180° =3×180°= 540°
探索n边形内角和
还有其他的分解方法吗?
A
O
180°× 5=900°?
探究3
E B

三角形
180°
四边形
360°?
五边形 六边形 ? ?
n边形 ?
探索n边形内角和
B
A
D
四边形的内角和为:2×180°=360°
C
定理:四边形内角和等于360°
从四边形的一个顶点引一条对角线,把四边形分成 两个三角形,四边形的内角和等于这两个三角形的内角 和之和。那么五边形呢?怎么求它的内角和?
探索n边形内角和
解 : 设这个多边形的边数为 n ,
(n-2)×180°= 900°
n- 2 = 900°÷180°
n-2
n
= 5
= 7
答:这个多边形是七边形。
多边形内角和公式的应用
1440° 1. 十边形的内角和为_______.
2. 已知多边形的内角和为1080 ° ,则这个多边形 8 的边数为_______.
从n边形的一个顶点可以引____对角线 n-3 把多边形分成____个三角形. n-2
n边形的内角和等于(n-2) · 180°
其中,n为大于或等于三的正整数
多边形内角和公式的应用
例1(1)六边形的内角和是多少度?
(2)正六边形的内角都相等,它的每个 内角是多少度?

七年级下册多边形内角和讲义

七年级下册多边形内角和讲义

C7.5 多边形的内角和一、新知引入1、在△ABC 中,(1)∠C = 90º , ∠B = 30º, 则 ∠A = ; (2)∠A = 100º , ∠B = ∠C , 则 ∠B = ; (3)∠B = 30º , ∠C = 2∠A , 则 ∠C = ; (4)∠A : ∠B : ∠C = 2 : 3 : 4 ,则∠A = ; ∠B = ;∠C = 。

2、三角形的内角和是180°,多边形的内角和如何计算呢?你知道四边形的内角和吗?在小学计算不规则多边形的面积大多采用什么方法?(回忆小学所学内容,为学习新知识作铺垫。

)3,把四边形2个三角形,你能计算四边形ABCD 的内角和吗?四边形ABCD 的内角和是180°×2=360°。

4、如图,把五边形ABCDE 分成3个三角形,你能计算五边形ABCDE 的内角和吗?五边形ABCDE 的内角和是180°×3=540°。

5、仿照上面的方法,六边形ABCDEF 可以分成多少个三角形?n 边形可以分成多少个三角形? 填表:多边形边数456…n分成的三角形个数 2 3 4 …多边形的内角和 180°×2 180°×3 180°×4 …由此表格得到,n边形的内角和等与E DC B AB DA1、想一想:你还有不同于上述的分割方案吗? (分组讨论,学生从不同角度思考问题)(1)用如下所示的分法,将多边形分割成三角形,并完成表格:由此表格得到,n边形的内角和等与典型例题1、若一个多边形的对角线有14条,则这个多边形的边数是( ) A. 10 B. 7 C. 14 D. 62、一个多边形,除去一个内角外,其余各内角的和为2750°,求这个多边形的边数。

3、多边形的内角和可能是( )A .810°B .540°C .180°D .605°多边形的边数 3 4 5 6 7 … n分成的三角形的个数…多边形的内角和…_ C_A _ B _ P_E_ D_C_ A_ F _ E_ D_ B_ A_D_ A_ C_ P_F _E_C _B _A _GABC αβγ 1 23AB C α β γ 1 23B A CD 1 2 34 αβ γ δ4、一个多边形的每个内角是1440,求它的边数。

人教版 八年级数学 多边形及其内角和讲义 (含解析)

人教版 八年级数学 多边形及其内角和讲义 (含解析)

第2讲多边形及其内角和知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习多边形及其内角和,首先要学会判断凸多边形和凹多边形,然后要学会计算多边形的内角和和外角和,能够处理多边形的一些基础题目。

知识梳理讲解用时:20分钟凸多边形、凹多边形1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2、凸多边形:如果把一个多边形的所有边中,有一条边向两方无限延长成为一直线时,其他各边不都在此直线的同旁,那么这个多边形就叫做凹多边形,其内角中至少有一个钝角。

3、凹多边形:如果把一个多边形的所有边中,任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,其内角应该全不是钝角,任意两个顶点间的线段位于多边形的内部或边上。

目前我们研究的都是凸多边形1、多边形的内角:多边形相邻两边组成的角叫做它的内角。

2、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

3、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

4、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

从同一个顶点引出对角线的条数:0 1 2 3 n-3 (n≥3)分割出三角形的个数:0 2 3 4 n-2 (n≥3)多边形内角和:180° 360° 540° 720° (n-2)·180°课堂精讲精练【例题1】设四边形内角和等于,五边形外角和等于,则与之间的关系是( ) A.B.C.D.【答案】B【解析】四边形的内角和是360°,多边形的内角和也是360°.解:多边形边数为,则内角和为,四边形内角和,多边形外角和为, 五边形外角和, 因此. 故正确答案为:.讲解用时:2分钟解题思路:此题比较简单,熟记多边形的内角和和外角和公式做题即可. 教学建议:掌握多边形的内角和和外角和公式,灵活做题.难度: 3 适应场景:当堂例题 例题来源:无 年份:2018【练习1.1】下列图形中,多边形有( )总结:1、多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

人教版八年级上册 11.3 多边形及其内角和 讲义

人教版八年级上册 11.3 多边形及其内角和 讲义

第三节多边形及其内角和(1 )三角形没有对角线(2 )正多边形必须满足定义中的两个条件:①各个角都相等;②各条边都相等 .二者缺一不可 ,如果一个多边形的各个角都相等或每条边都相等 ,那么这个多边形并不一定是正多边形 ,如:菱形和矩形 .2 、多边形的内角和1.多边形的内角和等于 (n -2 )×180° (n≥3 ,且n为整数 ).应用:⑴边数求内角和;⑵内角和求边数;⑶正n边形的每个内角的度数等于()nn︒⨯-18022.多边形的外角和是360°注:多边形的每个内角和与它相邻的外角是邻补角 ,所以n边形的内角和为n×180° ,所以外角和等于n×180° - (n -2 )×180° =360°.应用:⑴外角度数求正多边形的边数;⑵正多边形的边数求一个外角的度数 .3 、平面镶嵌 (密铺 )平面图形镶嵌的定义:用形状 ,大小完全相同的一种或几种平面图形进行拼接 .彼此之间不留空隙 ,不重叠地铺成一片 ,这就是平面图形的镶嵌 .注:正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°,假设能构成360° ,那么说明能够进行平面镶嵌 ,反之那么不能 .总结:①单一正多边形的镶嵌:正三角形 ,正四边形 ,正六边形 .②两种正多边形的镶嵌:3个正三角形和2个正方形、4个正三角形和1个正六边形、2个正三角形和2个正六边形、1个正三角形和2个正十二边形、1个正方形和2个正八边形等 .③用任意的同一种三角形或四边形能镶嵌成一个平面图形 . 例题1 -1.假设一个多边形的内角和小于其外角和 ,那么这个多边形的边数是 ( ) 例题1 -2.一个多边形截去一个角后 ,形成另一个多边形的内角和为2520° ,那么原多边形的边数是 ( )检测1 -1假设一个多边形的内角和与外角和相加是1800° ,那么此多边形是 ( ) 检测1 -2将一长方形纸片沿一条直线剪成两个多边形 ,那么这两个多边形的内角和之和不可能是 ( )A.360°B.540°C.720°D.900°检测1 -3如图 ,∠A +∠B +∠C +∠D +∠E +∠F 的大小为 ( )A.180°B.360°C.540°D.720°第四节 图形的面积高频核心考点 精题精讲精练 方法技巧提炼正方形面积 =边长×边长; 长方形 (矩形 )面积 =长×宽;平行四边形面积 =底×高; 三角形面积 =21×底×高; 梯形面积 =21× (上底 +下底 )×高.⑴和差法:把图形面积用常见图形的面积和或差表示 ,通过常规图形面积公式计算 .⑵割补法:有时直接求图形的面积有困难 ,我们可以通过分割或补形 ,把图形转化为容易观察或解决的图形的面积进行求解 .⑶等积变形法:对某些图形 ,找出与所求图形面积相等或有关联的特殊图形 ,通过代换为易求图形的面积 .⑷等比法:将面积比转化为线段的比 .同 (等 )高时 ,面积之比等于底之比;同 (等 )底时 ,面积之比等于高之比 .三角形一边中线平分三角形的面积 .例题 4 -1.将直角△ABC 绕顶点B 旋转至|如图位置 ,其中∠C =90º ,AB=4 ,BC =2 ,AC =23,︒=∠60ABC ,点C 、B 、A ′在同一直线上 ,那么阴影局部的面积是 ________ .例题4 -2.如下图 ,△ABC 中 ,点 D ,E ,F 分别是 BC ,AD ,CE 边上的中课后作业 出门考 点 ,且ABC S ∆ =4cm ²那么BEF S ∆的值为 ( )A.2cm ² B.1cm ² C.0.5cm ²D.0.25cm ²检测1 -1 .如图,在∆ABC 中,D 是BC 上任意一点,O 是AD 上任意一点,ABO S ∆ =3,A CO BO D S 2S ∆∆= =1,那么COD S ∆ =________ .检测1 -2.如图 ,AD 是△ABC 边BC 的中线 ,E 、F 分别是AD 、BE 的中点 ,假设△BFD 的面积为6 ,那么△ABC 的面积等于 ( )1.以下说法:①伸缩门的制作运用了四边形的不稳定性;②夹在两条平行线间的垂线段相等;③成中|心对称的两个图形不一定是全等形;④一组对角相等的四边形是平行四边形;⑤用反证法证明 "四边形中至|少有一个角是钝角或直角〞时 ,必先假设 "四边形中至|多有一个角是钝角或直角〞 ,其中正确的选项是 ( )A.①②B.③④C.①②④D.①②⑤2.平行四边形、矩形、菱形、正方形都具有的性质是 ( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.轴对称图形3.假设一个多边形的每一个内角都是150° ,那么它是______边形;从它的一个顶点出发画对角线 ,可以把这个多边形分割______个三角形.4.如下图,AD,AE 分别是∆ADC 和∆ABC 的高和中线,AB =9cm,,AC =12cm,∠CAB =90º.试求:(1)AD 的长;(2)求∆ABE 的面积;(3)求∆ACE 和∆ABE 的周长的差.5.如图,在△ABC 中, BE ⊥AC ,BC =5cm, AC =8cm, BE=3cm ,(1 )求△ABC 的面积;(2 )画出△ABC 中的BC 边上的高AD,并求出AD 的值 .日期:_______ 姓名:1.以下说法中 ,你认为正确的选项是 ( )A.四边形具有稳定性B.等边三角形是中|心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360º2.以下各图中 ,是凸多边形的是 ( )A. B. C. D.3.把一个多边形纸片沿一条直线截下一个三角形后 ,变成一个18边形 ,那么原多边形纸片的边数不可能是 ( )A.16B.17C.18D.194.如果一个多边形的每个内角都是120º ,那么这个多边形的边数是________.5.从一个10边形的一个顶点出发 ,连接其余各顶点 ,可以将这个边形分割成______个三角形.。

(完整版)多边形及其内角和知识点

(完整版)多边形及其内角和知识点

知识要点梳理边形的内角和等于180°(n-2)。

360°。

边形的对角线条数等于1/2·n (n-3)3、4、6/。

拼成360度的角3、4。

知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意: ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可; ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。

要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形内角和
第一部分知识点回顾
定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。

凸多边形
分类1:
凹多边形
正多边形:各边相等,各角也相等的多边形叫做正多边形。

分类2:
多边形非正多边形:
1、n边形的内角和等于180°(n-2)。

多边形的定理 2、任意凸形多边形的外角和等于360°。

3、n边形的对角线条数等于1/2·n(n-3)
只用一种正多边形:3、4、6/。

镶嵌拼成360度的角
只用一种非正多边形(全等):3、4。

知识点一:多边形及有关概念
1、多边形的定义:在同一平面内。

多边形的分类:不叫三边形
2、镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。

这里的多边形可以形状相同,也可以形状不相同。

实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。

3、常见的一些正多边形的镶嵌问题:
(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。

(2)只用一种正多边形镶嵌地面:只有正三角形、正方形、正六边形的地砖可以用。

注意:任意四边形的内角和都等于360°。

所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。

(3)用两种或两种以上的正多边形镶嵌地面
用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。

例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌。

第二部分经典习题
类型一:多边形内角和及外角和定理应用
1.一个多边形的内角和等于它的外角和的5倍,它是几边形
【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.
【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少
.
【变式3】个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。

类型二:多边形对角线公式的运用
2.某校七年级六班举行篮球比赛,比赛采用单循环积分制(即每两个班都进行一次比赛).你能算出一共需要进行多少场比赛吗
【变式1】一个多边形共有20条对角线,则多边形的边数是().
A.6 B.7 C.8 D.9
【变式2】一个十二边形有几条对角线。

类型三:可转化为多边形内角和问题
3.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.
【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.
类型四:实际应用题
4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角
【变式1】如图所示,小亮从A点出发前进10m,向右转15°,
再前进10m,又向右转15°,…,这样一直走下去,当他第一
次回到出发点时,一共走了__________m.
【变式2】小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗若能,当他走回点A时共走了多少米若不能,写出理由。

【变式3】如图所示是某厂生产的一块模板,已知该模板的边AB∥CF,CD∥AE. 按规定AB、CD的延长线相交成80°角,因交点不在模板上,不便测量. 这时师傅告诉徒弟只需测一个角,便知道AB、CD的延长线的夹角是否合乎规定,你知道需测哪一个角吗说明理由.
类型五:镶嵌问题
5.分别画出用相同边长的下列正多边形组合铺满地面的设计图。

(1)正方形和正八边形;
(2)正三角形和正十二边形;
(3)正三角形、正方形和正六边形。

【变式1】分别用形状、大小完全相同的①三角形木板;②四边形木板;③正
五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①
B、②
C、③
D、④
【变式2】用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( )
A、4
B、5
C、6
D、8
多边形及其内角和
(请在50分钟内完成,按考试要求自己)
一、选择题:(每小题3分,共24分)
1.一个多边形的外角中,钝角的个数不可能是( ) 个个个个
2.不能作为正多边形的内角的度数的是( ) B.(108)°°
3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )
:1 :1 C.5:2 :4
4.一个多边形的内角中,锐角的个数最多有( )个 个 个 个
5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )
A.都是钝角;
B.都是锐角
C.是一个锐角、一个钝角
D.是一个锐角、一个直角
6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )
A.十三边形
B.十二边形
C.十一边形
D.十边形
7.若一个多边形共有十四条对角线,则它是( )
A.六边形
B.七边形
C.八边形
D.九边形
8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( ) ° ° ° °
二、填空题:(每小题3分,共15分)
1.多边形的内角中,最多有________个直角.
2.从n 边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.
3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.
4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.
5.每个内角都为144°的多边形为_________边形.
三、基础训练:(每小题12分,共24分)
1.如图所示,用火柴杆摆出一系列
三角形图案,按这种方式摆下去,
当摆到20层(n=20)时,需要多少
根火柴
2.一个多边形的每一个外角都等于24°,求这个多边形的边数.
四、提高训练:(共15分)
一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n 是互质的正整数,求这个多边形的边数(用m,n 表示)及n 的值.
五、探索发现:(共18分)
从n 边形的一个顶点出发,最多可以引多少条条对角线请你总结一下n 边形共有多少条对角线.
六、中考题与竞赛题:(共4分)
(2002·湖南)若一个多边形的内角和等于1080°,则这个多边形的边数是( )
.8 C n=3n=2
n=1。

相关文档
最新文档