一元一次方程应用题方案设计问题专项训练二(含答案)
一元一次方程应用题(含答案)

一元一次方程应用题试卷简介:行程问题,经济问题,方案设计类应用题等一、单选题(共6道,每道10分)1.节日期间,某电器按成本价提高35%后标价,为了促销,决定打九折销售,为了吸引更多顾客又降价130元,此时仍可获利15%.请问该电器的成本价是多少元?设该电器的成本价为x元,根据题意可列方程为( )A. B.C. D.答案:D解题思路:由题知电器的售价是,利润是15%x,根据售价-成本=利润,可列方程为,故选D试题难度:三颗星知识点:一元一次方程的应用—打折销售2.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是y件(y>20),而销售单价每增加1元,销售量就减少10件.则当y取何值时,才能使销售单价为80元与销售单价为82元时的销售利润相等,可列方程为( )A.(80-60)y=(82-60)(y-20)B.(80-60)y=(82-60)(y+20)C.80y=82(y-20)D.(80-60)y=(82-60)(y-10)答案:A解题思路:利润=售价-成本,因此单价为80元时,利润为(80-60)y,由题知单价为82元时销售量为(y-20),利润为(82-60)(y-20),当利润相等时可列方程(80-60)y=(82-60)(y-20),故选A 试题难度:三颗星知识点:经济问题3.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意可列方程为( )A.10(1-x%)-8=(1+90%)×(10-8)B.10(1-x%)-8=90%×(10-8)C.10·x%-8=90%×(10-8)D.10(1-x%)-8=(10-8)÷90%答案:B解题思路:利润=售价-成本,可知降价前一件商品的利润是(10-8)元,降价后一件商品的利润是10(1-x%)-8,根据题意可列方程为10(1-x%)-8=90%×(10-8),故正确选项为B试题难度:三颗星知识点:一元一次方程的应用—打折销售4.一列火车通过450米长的山洞用了23秒,经过一位站在铁路边的扳道工人用了8秒,求这列火车的长度.若设这列火车的长度为x米,根据题意可列方程为( )A. B.C. D.答案:C解题思路:路程火车通过山洞所行的路程是450+x,由速度=路程÷时间得火车速度为,经过工人所行的路程是x,由速度=路程÷时间得火车速度为,由于火车的速度不变,所以,故正确选项为C试题难度:三颗星知识点:行程问题5.甲、乙两船航行于A、B两地之间,由A到B航速为每小时35千米,由B到A航速为每小时25千米,现甲船由A地开往B地,乙船由B地开往A地,甲船先航行2小时,两船在距B地120千米处相遇,求两地的距离.若设两地的距离为x千米,根据题意可列方程为( )A. B.C. D.答案:A解题思路:两船在距B地120千米处相遇,所以甲船走的距离为(x-120),乙走路程为120,甲先走2小时,根据时间相等列等式:,故选A试题难度:三颗星知识点:行程问题6.用一根铁丝围成一个长4分米,宽2分米的长方形,然后将这个长方形改成正方形,则下列说法错误的是( )A.铁丝长度没变B.正方形的面积比长方形多1平方分米C.图形的形状发生了变化D.长方形和正方形的面积相等答案:D解题思路:因为铁丝的长度是不变的,利用长方形的周长公式可算出铁丝的长度为12分米,进而利用正方形的周长公式即可求出正方形的边长为3分米,从而求出长方形的面积为8平方分米,正方形的面积为9平方分米,故B选项正确,D选项错误,故答案选D.试题难度:三颗星知识点:一元一次方程的应用——我变高了二、填空题(共4道,每道10分)7.已知今年母女二人年龄之和是53,如果10年前母亲的年龄是女儿年龄的10倍,则今年母亲的年龄为____岁.答案:40解题思路:设母亲今年的年龄是x,则今年女儿的年龄是(53-x),十年前木母亲的年龄是(x-10),女儿的年龄是(53-x-10),根据题意可列方程为x-10=10(53-x-10),解得x=40,因此母亲今年的年龄是40岁试题难度:知识点:一元一次方程应用--数字规律问题8.足球的比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队踢了14场球,共得了19分,其中负了5场,那么这个球队胜了____场.答案:5解题思路:首先理解题意找出题中的等量关系:平场得分+胜场得分+负场得分=19分,根据此列方程即可.设该队胜了x场,则该队平了(14-x-5)场,胜场得分是3x分,平场得分是(14-x-5)分,负场得分为0分,根据等量关系列方程得:3x+(14-5-x)+0=19,解得x=5,故答案为5试题难度:知识点:一元一次方程的应用——得分问题9.一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车有____辆.答案:10解题思路:设摩托车x辆,则汽车(24-x)辆,根据题意列等式3x+4(24-x)=86,求得x=10,故答案为10试题难度:知识点:一元一次方程应用--鸡兔同笼问题10.在“十一”黄金周期间,某超市推出如下表所示的优惠方案:小丽在该超市两次购物分别付款80元、216元.如果小丽改成在该超市一次性购买与上次完全相同的商品,则应付款____元.答案:256解题思路:当一次性购物金额不少于100且不足300元时,打折之后的价钱不少于90元且不足270元,因此可知小丽两次所购物品的打折情况分别是不打折和打九折,设付款216元的物品原价是x元,因此0.9x=216,解得x=240,可知小丽改成一次性购买与上次完全相同的物品时,原价是320元,大于300元,打八折,因此应付款元试题难度:知识点:一元一次方程应用——打折销售。
部编数学七年级上册专题09一元一次方程的应用题十二大题型(解析版)含答案

专题09 一元一次方程的应用题 十二大题型一元一次方程的应用题属于必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、方案优化选择、行程问题、工程问题、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题等共进行方法总结与经典题型进行分类。
1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题¾¾¾®分析抽象方程¾¾¾®求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.注意:(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量等。
一元一次方程应用题集(含答案)

一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
一元一次方程应用题专项练习附详细答案(自编)

一元一次方程应用题专项调配问题(一)人数调配1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
4.甲班有45人,乙班有39人,现在需要从甲、乙两班各抽调一些同学去参加歌咏比赛。
如果甲班抽调的人数比乙班多1人,那么甲班剩余的人数恰好是乙班剩余人数的2倍。
问从甲、乙两班各抽调了多少人参加歌咏比赛。
5.甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工人?6.甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工(二)物品调配1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?3、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?4、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的75,丙班分到的比乙班少20本,问共有多少练习本?5、将一批白杨树苗栽在一条马路的两旁,若每隔3米栽一棵,将剩下3棵树苗;若每隔2.5米栽一棵,则还缺77棵树苗.求这条马路的长及这批树苗的棵数.三、分配问题:1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)

一元一次方程应用题(方案设计问题)(人教版)(专题)一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米时,按每立方米a元收费;超过15立方米时,不超过的部分每立方米扔按a元收费,超过的部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.因此该居民在一个月内用水35立方米时,应交水费:(元).故选B.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米时,按每立方米0.8元收费;超过60立方米时,不超过部分仍按每立方米0.8元收费,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.66元B.60元C.78元D.75元答案:A解题思路:4月份的煤气费平均每立方米0.88元,那么所用煤气一定超过60立方米.交煤气费包括60立方米的煤气费和超过60立方米的煤气费,设4月份用了煤气x立方米,根据题意得,解得x=75,4月份应交煤气费:75×0.88=66(元).故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题3.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同.设购买电脑x台(x>10),用含x的代数式分别表示在甲、乙两电脑商购买时付的钱数,下列正确的是( )A.B.C.D.答案:D解题思路:由题意得,在甲处购买需要花钱数:在乙处购买需要花钱数:故选D.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题4.(上接第3题)若要使得在甲、乙两电脑商购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:根据第3题,要使得在甲、乙两电脑商购买电脑花钱一样多,则,解得x=20.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题5.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.若采用方案三,则需要精加工( )A.3天B.4天C.5天D.6天答案:C解题思路:设精加工的有x天,则粗加工的有(10x)天,根据题意可列方程为,解得x=5,即需要精加工5天,粗加工5天.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题6.(上接第5题)5题的三种方案中,获利最多的方案和对应的利润分别为( )A.方案三,562 500元B.方案二,435 000元C.方案三,600 000元D.方案一,500 000元答案:A解题思路:根据题意,列表梳理信息如下:由题意和第5题的计算结果得方案一:,所以利润为5000×100=500 000(元);方案二:利润为7 500×5×10+1 200×(100-5×10)=435000(元);方案三:利润为7 500×5×5+5 000×5×15=562 500(元).综上可知,方案三的利润最高,为562 500元.故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题。
七年级数学一元一次方程应用题(方案设计问题)(北师版)(专题)(含答案)

一元一次方程应用题(方案设计问题)(北师版)(专题)一、单选题(共6道,每道10分)1.一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其他人可享受7折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断( )A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能答案:C解题思路:设全票价格为x,则:甲旅行社:x+0.7x+0.7x=2.4x乙旅行社:所以甲、乙收费相同故选C.试题难度:三颗星知识点:一元一次方程的应用2.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款( )元.A.312或334B.322或334C.312或344D.322或344答案:C解题思路:三种优惠方案对应的实际金额为:①0-100(不含100元)②90-315(不含315元)③280以上分别求出两次付款优惠前的金额:第一次付款70元,在优惠方案①范围内,因此优惠之前的金额也是70元;第二次付款288元,即在优惠方案②范围内,又在方案③范围内,因此需要讨论:如果是方案②,则优惠之前的金额是288÷0.9=320元;如果是方案③,则优惠之前的金额是288÷0.8=360元;因此,如果把两次购物改成一次性购物,则优惠前的金额为70+320=390元或70+360=430元,按方案③打折后的金额为312元或344元.故选C.试题难度:三颗星知识点:一元一次方程的应用3.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:当购买乒乓球多少盒时,两种优惠办法付款一样?( )A.20B.25C.30D.35答案:A解题思路:设当购买乒乓球x盒时,两种优惠办法付款一样则甲店的付款金额:5×30+5(x-5)乙店的付款金额:5×30×0.9+5x·0.9若两种优惠办法付款一样,则:5×30+5(x-5)=5×30×0.9+5x·0.9解得,x=20故选A.试题难度:三颗星知识点:一元一次方程的应用4.乐清市某服装店在国庆期间对顾客实行优惠,规定如下:若顾客在该超市一次性购物实际付款432元,问此顾客一次性购物标价总和为多少元?( )A.480B.540C.600D.480或540答案:D解题思路:实际付款432元肯定高于200元,但不确定是按九折优惠还是八折优惠,因此需要讨论:如果是按八折,则标价总和为432÷0.8=540元;如果是按九折,则标价总和432÷0.9=480元;因此此顾客一次性购物标价总和为480或540元.故选D.试题难度:三颗星知识点:一元一次方程的应用5.某书城开展学生优惠购书活动,凡一次性购书不超过元的一律九折优惠,超过元的,其中元按九折算,超过元的部分按八折算.某学生第一次去购书付款元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了元,则该学生第二次购书实际付款( )元.A.204B.230C.190D.不确定答案:A解题思路:第一次去购书付款元,显然实际金额没有超过200元,因此实际金额为72÷0.9=80元,节省了8元;因此第二次节省了26元;因为26>200-200×0.9=20,所以第二次购书的实际金额一定超过200元;设第二次金额购书的应付金额为x(x>200)元,则有200×0.9+(x-200)·0.8=x-26解得,x=230;所以实付金额为:230-26=204元故选A.试题难度:三颗星知识点:一元一次方程的应用6.某服装厂生产一种西装和领带,西装每套定价500元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示).(2)问两种方案付款价格是否可能一样,若一样,请求出x的值为多少.( )A.36x+9200;40x+9000;不可能.B.36x+9200;40x+9000;可能,x=50.C.40x+9200;36x+9000;不可能.D.40x+9200;36x+9000;可能,x=50.答案:C解题思路:优惠方案①:20套西装送20条领带,剩余(x-20)条领带单独购买,则需付款20×500+40(x-20)=40x+9200优惠方案②:20×500×0.9+40x·0.9=36x+9000若两种方案付款价格一样,则40x+9200=36x+9000,解得,x=-50,又因为x>20,所不符合题意,因此两种方案付款价格不可能一样.故选C试题难度:三颗星知识点:一元一次方程的应用。
应用一元一次方程——方案问题专题(含答案解析)

应用一元一次方程——方案问题专题1.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?2.某厂生产一种计算器,其成本价为每只36元,现有两种销售方式:第一种是直接由厂门市部销售,每只售价为48元,但需要每月支出固定费用6480元(固定费用指门市部的房租等);第二种是批发给文化用品商店销售,批发价每只42元;又知两种方式均需缴纳的税款为销售金额的10%.(1)求该厂每月销售出多少只计算器时,两种方式所获利润相等;(2)该厂今年六月份计划销售这种计算器1500只,问应选用哪种销售方式才能使所获利润最大?(利润=售价﹣税款﹣进价)3.一家游泳馆每年6〜8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.请根据你学过的知识解决下列问题,并写出解题过程:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(2)什么情况下,不购会员证比购证更合算?4.某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:第一档:月用电量不超过240度的部分的电价为每度0.6元;第二档:月用电量超过240度但不超过400度部分的电价为每度0.65元;第三档:月用电量超过400度的部分的电价为每度0.9元.(1)已知老王家去年5月份的用电量为380度,则老王家5月份应交电费元;(2)若去年6月份老王家用电的平均电价为0.70元,求老王家去年6月份的用电量;(3)已知老王家去年7、8月份的用电量共500度(7月份的用电量少于8月份的用电量),两个月的总电价是303元,求老王家7、8月的用电量分别是多少?5.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?6.妈妈在网上商城购物,发现甲、乙两家店中都有自己想买的商品,且标价都一样,且标价都一样,两家店也都在做促销活动,甲店的优惠活动为:全场8.5折,乙店的优惠活动为:所购商品标价总额不超过200元时,无优惠;超过200元而不超过500元时,按商品标价总额打9折结算付款;超过500元时,其中500元打9折,超过500元的部分打8折.(1)当商品标价总额是300元时,在甲、乙两店购物实付款分别是多少?(2)当标价总额是多少时,在甲、乙两店购物实付款一样?(3)妈妈分两次在乙店分别购物付款189元和466元,若她一次性在该店购买同样多的商品,可以节省多少钱?7.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家5月份用水量和交费情况:月份12345用水量(吨)810111518费用(元)1620233544根据表格中提供的信息,回答以下问题:(1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水量为多少吨?8.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?9.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?10.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?11.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.12.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?参考答案与试题解析1.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?【分析】(1)设该班购买乒乓球x盒,根据乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.(2)根据各商店优惠条件计算出所需款数确定去哪家商店购买合算.【解答】解:(1)设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,答:购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时,甲店需付款30×5+(15﹣5)×5=200元.乙店需付款(30×5+15×5)×0.9=202.5元.因为200<202.5,所以去甲店合算.(3)当购买30盒时,甲店需付款30×5+(30﹣5)×5=275元.乙店需付款(30×5+30×5)×0.9=270元.因为275>270,去乙店合算.【点评】乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍增一盒乒乓球,乙店全部按定价的9折优惠.2.某厂生产一种计算器,其成本价为每只36元,现有两种销售方式:第一种是直接由厂门市部销售,每只售价为48元,但需要每月支出固定费用6480元(固定费用指门市部的房租等);第二种是批发给文化用品商店销售,批发价每只42元;又知两种方式均需缴纳的税款为销售金额的10%.(1)求该厂每月销售出多少只计算器时,两种方式所获利润相等;(2)该厂今年六月份计划销售这种计算器1500只,问应选用哪种销售方式才能使所获利润最大?(利润=售价﹣税款﹣进价)【分析】(1)分别利用第一种销售方式的月利润=销售总收入﹣总成本﹣纳税款﹣固定费用;第二种销售方式的月利润=销售总收入﹣总成本﹣纳税款,把得到的两个关系式相等求解即可;(2)把x=1500代入得到的两个关系式,计算后比较即可.【解答】解:(1)设该厂每月销售x个计算器时两种方式所获利润相等,根据题意可得:第一种方式:48x﹣48x×10%﹣6480﹣36x=7.2x﹣6480;第二种方式:42x﹣42x×10%﹣36x=1.8x,则48x﹣48x×10%﹣6480﹣36x=42x﹣42x×10%﹣36x解得:x=1200,答:该厂每月销售1200个计算器时两种方式所获利润相等;(2)将x=1500代入两式第一种方式7.2x﹣6480=4320(元);第二种方式1.8x=2700(元);比较可知第一种方式所得利润较大.【点评】此题主要考查了一元一次方程的应用,根据题意得到两种方案的关系式是解决本题的关键.3.一家游泳馆每年6〜8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.请根据你学过的知识解决下列问题,并写出解题过程:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(2)什么情况下,不购会员证比购证更合算?【分析】假设游泳x次,于是可表示购证后花费为(80+x)元,不购证花费3x元,(1)当80+x=3x时,购会员证与不购证付一样的钱,然后解方程;(2)当80+x<3x时购证更划算,然后解不等式.(3)当80+x>3x时购证更划算,然后解不等式.【解答】解:假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,(1)根据题意得80+x=3x,得出x=40,也就是说6﹣8月共游泳40次的话,两种情况花费一样多;(2)根据题意得80+x<3x,得出x>40,6﹣8月游泳次数大于40的话,购证更划算.(3)根据题意得80+x>3x,得出x<40,6﹣8月游泳次数小于40的话,不购会员证更划算.【点评】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:第一档:月用电量不超过240度的部分的电价为每度0.6元;第二档:月用电量超过240度但不超过400度部分的电价为每度0.65元;第三档:月用电量超过400度的部分的电价为每度0.9元.(1)已知老王家去年5月份的用电量为380度,则老王家5月份应交电费235元;(2)若去年6月份老王家用电的平均电价为0.70元,求老王家去年6月份的用电量;(3)已知老王家去年7、8月份的用电量共500度(7月份的用电量少于8月份的用电量),两个月的总电价是303元,求老王家7、8月的用电量分别是多少?【分析】(1)根据收费标准,列式计算即可求出老王家5月份应交电费;(2)设老王家去年6月份的用电量为a度,由电费的平均价为0.70元可得出a >400,根据收费标准结合总电价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论;(3)设老王家去年7月份的用电量为x度,则8月份的用电量为(500﹣x)度,分x<100、100≤x≤240和240<x<250三种情况,列出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)0.6×240+0.65×(380﹣240)=235(元).故答案为:235.(2)设老王家去年6月份的用电量为a度.∵去年6月份老王家用电的平均电价为0.70元,∴a>400.根据题意得:0.6×240+0.65×(400﹣240)+0.9(a﹣400)=0.7a,解得:a=560.答:老王家去年6月份的用电量为560度.(3)设老王家去年7月份的用电量为x度,则8月份的用电量为(500﹣x)度.当x<100时,有0.6x+0.6×240+0.65×(400﹣240)+0.9(500﹣x﹣400)=303,解得:x=(舍去);当100≤x≤240时,有0.6x+0.6×240+0.65(500﹣x﹣240)=303,解得:x=200;当240<x<250时,有0.6×240+0.65(x﹣240)+0.6×240+0.65(500﹣x﹣240)=303,方程无解.答:老王家去年7月份的用电量为200度,8月份的用电量为300度.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)分x<100、100≤x≤240和240<x<250三种情况,列出关于x的一元一次方程.5.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.6.妈妈在网上商城购物,发现甲、乙两家店中都有自己想买的商品,且标价都一样,且标价都一样,两家店也都在做促销活动,甲店的优惠活动为:全场8.5折,乙店的优惠活动为:所购商品标价总额不超过200元时,无优惠;超过200元而不超过500元时,按商品标价总额打9折结算付款;超过500元时,其中500元打9折,超过500元的部分打8折.(1)当商品标价总额是300元时,在甲、乙两店购物实付款分别是多少?(2)当标价总额是多少时,在甲、乙两店购物实付款一样?(3)妈妈分两次在乙店分别购物付款189元和466元,若她一次性在该店购买同样多的商品,可以节省多少钱?【分析】(1)根据两家商店的优惠方案,可知当商品标价总额是300元时,甲店实付款=购物标价×0.85,乙店实付款=300×0.9,分别计算即可;(2)设当标价总额是x元时,在甲、乙两店购物实付款一样.根据甲店实付款=乙店实付款列出方程,求解即可;(3)首先计算出两次购物标价,然后根据优惠方案即可求解.【解答】解:(1)当商品标价总额是300元时,甲店实付款=300×0.85=255(元),乙店实付款=300×0.9=270(元);(2)设当标价总额是x元时,在甲、乙两店购物实付款一样.当一次性购物标价总额是500元时,甲店实付款=500×0.85=425(元),乙店实付款=500×0.9=450(元),∵425<450,∴x>500.根据题意得0.85x=500×0.9+0.8(x﹣500),解得x=1000.答:当标价总额是1000元时,在甲、乙两店购物实付款一样;(3)妈妈分两次在乙店分别购物付款189元和466元,第一次购物付款189元,购物标价可能是189元,也可能是189÷0.9=210元,第二次购物付款466元,购物标价是(466﹣450)÷0.8+500=520元,两次购物标价之后是189+520=709元,或210+520=730元.若他只去一次该超市购买同样多的商品,实付款500×0.9+0.8(709﹣500)=617.2元,或500×0.9+0.8(730﹣500)=634元,可以节省189+466﹣617.2=37.8元,或189+466﹣634=21元.答:若她一次性在该店购买同样多的商品,可以节省37.8或21元.【点评】本题考查了一元一次方程的应用,理解两家商店的优惠方案,进行分类讨论是解题的关键.7.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家5月份用水量和交费情况:月份12345用水量(吨)810111518费用(元)1620233544根据表格中提供的信息,回答以下问题:(1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水量为多少吨?【分析】(1)根据1、2、3月份的条件,当用水量不超过10吨时,每吨的收费2元.根据3月份的条件,用水11吨,其中10吨应交20元,则超过的1吨收费3元,即超出10吨的部分每吨收费3元;(2)根据求出的缴费标准,则用水20吨应缴水费就可以算出;(3)中存在的相等关系是:10吨的费用20元+超过部分的费用=29元.【解答】解:(1)从表中可以看出规定吨位数不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元;(2)小明家6月份的水费是:10×2+(20﹣10)×3=50元;(3)设小明家7月份用水x吨,29>10×2,所以x>10.所以,10×2+(x﹣10)×3=29,解得:x=13.故小明家7月份用水13吨.【点评】本题主要考查一元一次方程的应用,正确理解收费标准,列出符合题意的一元一次方程是解决本题的关键.8.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?【分析】(1)本题的等量关系是:两种电视的台数和=50台,买两种电视花去的费用=9万元.然后分进的两种电视是A、B,A、C,B、C三种情况进行讨论.求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案.【解答】解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.①当选购A,B两种电视机时,B种电视机购(50﹣x)台,可得方程:1500x+2100(50﹣x)=90000,即5x+7(50﹣x)=300,解得:x=25,则B种电视机购50﹣25=25(台);②当选购A,C两种电视机时,C种电视机购(50﹣x)台,可得方程:1500x+2500(50﹣x)=90000,解得:x=35,则C种电视机购50﹣35=15(台);③当购B,C两种电视机时,C种电视机为(50﹣y)台,可得方程:2100y+2500(50﹣y)=90000,解得:y=,(不合题意,舍去)由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元),若选择(1)中的方案②,可获利150×35+250×15=9000(元),因为9000>8750,所以为了获利最多,选择第二种方案.【点评】此题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:两种电视的台数和=50台,买两种电视花去的费用=9万元.列出方程,再求解.9.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【分析】(1)运用分别购票的费用和﹣联合购票的费用就可以得出结论;(2)设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人,根据“如果两单位分别单独购买门票,一共应付5500元”建立方程求出其解即可;(3)有三种方案:方案一:各自购买门票;方案二:联合购买门票;方案三:联合购买101张门票.分别求出三种方案的付费,比较即可.【解答】解:(1)如果甲、乙两单位联合起来购买门票需40×102=4080(元),则比各自购买门票共可以节省:5500﹣4080=1420(元);(2)设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人.依题意得:50x+60×(102﹣x)=5500,解得:x=62.则乙单位人数为:102﹣x=40.答:甲单位有62人,乙单位有40人;(3)方案一:各自购买门票需50×60+40×60=5400(元);方案二:联合购买门票需(50+40)×50=4500(元);方案三:联合购买101张门票需101×40=4040(元);综上所述:因为5400>4500>4040.故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,有理数大小比较的运用,设计方案的运用,解答时建立方程求出各单位人数是关键.10.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.11.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.【分析】(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需天,巨星厂单独加工这批产品需要天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数﹣巨星厂单独加工这批产品需要的天数=20,根据此等量关系列出方程求解即可.(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出既省钱,又省时间的加工方案.【解答】解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960(件),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:方案设计问题思考步骤:
①理解题意,找关键词,确定_____________或者_____________.
②梳理信息,列表,确定_____________.
③表达或计算_____________,比较、选择适合方案.
一元一次方程应用题(方案设计问题)专项训练
(二)
一、单选题(共7道,每道14分)
1.为促进资源节约型和环境友好型社会建设,根据国家发改委实施“阶梯电价”的有关文件要求,某市决定对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:
若3月份一户居民用电量为()千瓦时,则该户居民3月份应缴电费( )
元.
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程的应用
2.(上接第1题)如果小明家4月份用电410千瓦时,则需交电费( )
A.260.6元
B.263.1元
C.313.3元
D.373.1元
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程的应用
3.某班要买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价50元,乒乓球每盒10元.经洽谈后,甲店每一副球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.该班急需球拍5副,乒乓球盒(不少于5盒).该班在甲、乙两店购买所需的费用分别为( )元
A.甲店:;乙店:
B.甲店:;乙店:
C.甲店:;乙店:
D.甲店:;乙店:
答案:D
解题思路:
试题难度:三颗星知识点:一元一次方程应用题
4.(上接第3题)若两种优惠办法付款一样多,则应该购买乒乓球( )
A.25盒
B.20盒
C.30盒
D.35盒
答案:A
解题思路:
试题难度:三颗星知识点:一元一次方程的应用
5.一牛奶制品厂现有鲜奶吨,若在市场上直接销售鲜奶,每吨可获利500元;若将鲜奶制成酸奶销售,每加工1吨鲜奶可获利1200元;若将鲜奶制成奶粉销售,每加工1吨鲜奶可获利2000元.该厂的生产能力是:若专门生产奶粉,则每天可用去鲜奶2吨;若专门生产酸奶,则每天可用去鲜奶3吨.由于受设备和人员的限制,奶粉和酸奶不能同时生产,为保证生产质量,这批鲜奶必须4天的时间全部销售或加工完毕,该厂研究出三种方案:
方案一:将鲜奶全部直接销售;
方案二:尽可能地将鲜奶做成奶粉,没有来得及加工的鲜奶直接进行出售;
方案三:将一部分鲜奶做成奶粉,其余部分做成酸奶,刚好4天做完.
若该厂选用方案二,则该厂从这批鲜奶中能获利( )元
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程应用题
6.(上接第5题)当时,若选用方案三,设天生产奶粉,依题意可列方程为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:一元一次方程的应用
7.(上接第5,6题)当时,上述三种方案,获利最大的是( )
A.方案一
B.方案二
C.方案三
D.方案二和方案三一样多
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程的应用。