人教版七年级数学上册一元一次方程解应用题专题练习

合集下载

七年级上册第三章《一元一次方程》列方程解应用题的练习(3)

七年级上册第三章《一元一次方程》列方程解应用题的练习(3)

七年级上册第三章《一元一次方程》列方程解应用题的练习一、解下列方程(每题6分,共30分)1、6751413-=--y y2、246231x x x -=+--3、22836x x -=+4、126231-=+--x x x5、33-a 2211与--a 互为相反数,求a二、列一元一次方程解应用题。

(每题10分,共40分)1、某班组每天需生产50个零件才能在规定的时间内完成一项生产任务,实际上该班组每天比计划多生产6个零件,结果比规定时间提前3天并超额生产了120个零件,求该班组原计划完成的零件任务是多少个?2、某人从家骑自行车到火车站,如果每小时行15千米,那么可以比火车开车时间提前15分钟到达;如果每小时行9千米,则要比开车时间晚15分钟到达;则这个人的家到火车站的距离为多少千米?3、一辆慢车从甲地开往乙地,出发3小时后,一辆快车也从甲地开往乙地,快车比慢车晚20分钟到达乙地,已知慢车速度为20千米/时,快车速度是慢车速度的3倍,求甲乙两地的距离。

4、要加工200个零件。

甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。

已知甲每小时比乙多加工2个零件。

求甲、乙每小时各加工多少个零件?二、工程方面的练习(每题10分,共30分)1、一项工程甲队独做需要8天完成,乙队独做需要9天完成,甲做3天后,乙来支援,再经过多少天完成工程的43。

2、某项工作,甲单独做要4小时,乙单独做要6小时,甲先做30分,然后甲、乙共同做,问甲、乙共同做还要多少小时才能完成全部工作?3、一件工作,甲单独做20小时完成,乙单独做12小时完成。

现在先由甲单独做4小时,剩下的部分由甲、乙合做。

剩下的部分需要几小时完成?。

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。

问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。

变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。

请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。

2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。

变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。

变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。

如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。

完整版)人教版七年级上册数学一元一次方程应用题及答案

完整版)人教版七年级上册数学一元一次方程应用题及答案

完整版)人教版七年级上册数学一元一次方程应用题及答案一元一次方程大练列一次方程(组)或分式方程解应用题的基本步骤是:审、设、列、解、答。

常见题型有以下几种情形:1.和、差、倍、分问题,即两数和等于较大的数加上较小的数,较大的数等于较小的数乘以倍数加上增(或减)数;2.行程类问题,即路程等于速度乘以时间;3.工程问题,即工作量等于工作效率乘以工作时间;4.浓度问题,即溶质质量等于溶液质量乘以浓度;5.分配问题,即调配前后总量不变,调配后双方有新的倍比关系;6.等积问题,即变形前后的质量(或体积)不变;7.数字问题,即若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a等等;8.经济问题,即利息等于本金乘以利率乘以期数;本息和等于本金加上利息等于本金加上本金乘以利率乘以期数;税后利息等于本金乘以利率乘以期数乘以(1减利息税率);商品的利润等于商品的售价减去商品的进价;商品的利润率等于商品的利润除以商品的进价乘以100%等等。

一元一次方程应用题知能点1:市场经济、打折销售问题1.商品利润等于商品售价减去商品成本价;商品利润率等于商品利润除以商品成本价乘以100%;商品销售额等于商品销售价乘以商品销售量;商品的销售利润等于(销售价减成本价)乘以销售量;商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。

下面是几道应用题:1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。

已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:A。

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。

人教版七年级上册数学第3章一元一次方程应用题训练

人教版七年级上册数学第3章一元一次方程应用题训练

人教版七年级上册数学第3章一元一次方程应用题训练1.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价50元,乒乓球每盒定价10元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x盒(不小于5盒)问:(1)用代数式表示两店购买所需的费用.(2)当需要40盒乒乓球时,通过计算,说明此时去哪家购买较为合算.(3)当购买乒乓球数为多少盒时,甲乙两家商店所需费用一样.2.某项工程,甲队单独干需10小时完成,乙队单独干则需20小时完成,丙队单独干则需30小时完成.开始时三队合作,一段时间后甲队有事离开,剩余工程由乙、丙两队合作完成,此项工程从开始到工作完成共用6小时,问甲队实际做了多少小时?3.如图,将1,2,3,…,40这40个数按照下表进行排列,现用一个Z字框(图中阴影部分)框住表中的4个数,移动该框,设框中最小的数为x.(1)请用含x的代数式表示框中4个数的和.(2)框中4个数的和可能是132吗?若能,请求出最小的数.4.将一段长为1.2千米河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24米,乙队每天整治16米,求甲、乙两队分别整治河道多少米?5.为了防治“新型冠状病毒”,学校决定为师生购买一批医用口罩.本周学校给七(1)班全体同学配备了一定数量的口罩,若每名同学发3个口罩,则多50个口罩.若每名同学发5个口罩,则少70个口罩.请问该班有多少名学生?6.某社区超市用2000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的2倍少4件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?7.在一条铁路上,有甲,乙两个站,相距408千米,一列慢车从甲站开出每小时行72千米,一列快车从乙站开出,每小时行96千米,若两车同向而行,几小时后两车相距60千米?8.某粮库原有大米132吨,一周内该粮库大米的进出情况如表:(运进大米记作“+”,运出大米记作“﹣”).(1)若经过这一周,该粮库存有大米88吨,求m的值,并说明星期五该粮库是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨25元,求这一周该粮库需要支付的装卸总费用.9.七年级1班共有学生45人,其中男生人数比女生人数少3人.某节课上,老师组织同学们做圆柱形笔筒,每名学生每节课能做筒身30个或筒底90个.(1)七年级1班有男生、女生各多少人?(2)原计划女生负责做筒身,男生做筒底,要求每个筒身匹配2个筒底,那么每节课做出的筒身和筒底配套吗?如果不配套,男生要支援女生几人,才能使筒身和筒底配套?10.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲组每天修理桌凳16套,乙组每天修理桌凳比甲多8套,甲组单独修完这些桌凳比乙组单独修完多用20天,问该中学库存多少套桌凳?11.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?12.元旦期间,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促价活动.已知甲、乙两种商品的原销售单价之和为1200元,小敏的妈妈参加活动购买甲、乙两种商品各一件,共付800元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中销售甲种商品800件,销售乙种商品1500件,共获利99000元,已知每件甲种商品的利润比乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?13.某公司给学校赠送了一批图书,学校决定将这批图书分发给七年级所有班级,如果每班分200本,则剩余120本,若每班分240本,则还缺120本,这个学校七年级有多少个班级?14.为了防治“新型冠状病毒”,学校决定为师生购买一批医用口罩.已知甲种口罩每盒180元,乙种口罩每盒210元,学校购买了这两种口罩共50盒,合计花费9600元,求甲、乙两种口罩各购买了多少盒?15.A,B两列火车的长分别为156m和180m,A车比B车每秒多行4m.(1)若两列火车相向而行,从相遇到全部错开,需要8s.问两车速度各是多少?(2)在(1)的条件下,若两列火车同向行驶,且B车行驶在A车前方,求A车的车头从B车的车尾开始追及到A车车尾超过B车车头需多少时间?16.聪聪同学到某校游玩时,看到运动场的宣传栏中的部分信息(如表):聪聪同学结合学习的知识设计了如下问题,请你帮忙解决:(1)从表中可以看出,负一场积分,胜一场积分;(2)某队在比完22场的前提下,胜场总积分能等于负场总积分吗?请说明理由.17.为了备战2021年体育中考,某校九年级(1)班想购买若干个篮球和排球.某文具店篮球和排球的单价之和为85元,篮球的单价是排球单价的2倍多10元.(1)求篮球和排球的单价;(2)现该文具店正在搞促销活动,所有商品均打m折销售,九年级(1)班在该文具店买了6个篮球和12个排球,共花了561元,求m的值.18.甲、乙两人在400米的环形跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,求两人第一次相遇的时间.19.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?20.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A 表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q 从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至点C需要多少时间?(2)求P、Q两点相遇时,t的值和相遇点M所对应的数.。

人教版七年级数学上册一元一次方程解应用题专题练习

人教版七年级数学上册一元一次方程解应用题专题练习

人教版七年级数学上册一元一次方程解应用题专题练习首先,题目中给出了学生总数和女生人数占男生的比例,因此可以设男生人数为x,那么女生人数就是0.4x。

而总人数是1049,因此可以列出方程:x + 0.4x = 1049,解方程可得男生人数为629人。

2、一块长方形的面积是60平方米,宽比长小3,求长和宽。

设长为x,则宽为x-3.根据题目中给出的信息,可以列出方程:x(x-3) = 60,解方程可得长为8,宽为5.3、甲、乙两人同时从A、B两地相向而行,甲行的速度是每小时4公里,乙行的速度是每小时3公里,他们相遇在距离A地40公里的地方,求AB两地的距离。

设AB两地的距离为x,那么甲和乙相遇的时间就是x/7(因为他们的速度是相加的)。

同时,由题目中给出的信息,他们相遇的地方距离A地40公里,距离B地就是x-40公里。

因此可以列出方程:x/7 = (x-40)/4,解方程可得AB两地的距离为140公里。

提高练:1、某商店的商品原价为100元,现在打8折出售,求现价。

打8折相当于原价的80%,因此现价就是80元。

2、一个三位数的个位数是3,百位数是个十位数之和,如果将这个三位数的百位数和个位数交换后得到一个比原来的数小108,求这个三位数。

设十位数为x,则百位数为x+3.原来的三位数就是100(x+3) + 10x + 3.交换百位数和个位数后得到的数是100x + 30 + x,比原来的数小108,因此可以列出方程:100(x+3) + 10x + 3 - (100x + 30 + x) = 108,解方程可得这个三位数为192.3、某人存款元,每年利率为5%,连续存5年,求5年后的本息和。

每年的利息是本金的5%,因此第一年的利息是500元,第二年的利息是×0.05=525元,以此类推,第五年的利息是1276.25元。

因此5年后的本息和就是+500+525+551.25+578.81+1276.25=2031.31元。

人教版七年级上册《一元一次方程》应用题分类练习(一)

人教版七年级上册《一元一次方程》应用题分类练习(一)

《一元一次方程》应用题分类练习(一)一.行程问题:1.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.2.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.3.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?4.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?5.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?二.配套问题:6.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?7.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?三.数字问题:8.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.9.小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.四.数轴问题:10.如图,A,B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP+OQ=5时的运动时间t的值.11.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.五.积分问题:12.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A20 0 100B19 1 94C18 2 88D14 6 64E10 10 40(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?13.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进14 10 4 24光明14 9 5 23远大14 m n22卫星14 4 10 a钢铁14 0 14 14 请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.六.方案问题:14.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用20天,在粉刷的过程中,该开发商要付甲工程队每天费用1600元,付乙工程队每天费用2600元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(2)问方式完成:请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.15.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案1.解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).2.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.3.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.4.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.5.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.6.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.7.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.8.解:设这个两位数的个位数字为x,则十位数字为2x,原两位数为(10×2x+x),十位数字与个位数字对调后的数为(10x+2x),依题意,得:(10×2x+x)﹣(10x+2x)=27,解得:x=3,∴2x=6,∴10×2x+x=63.答:这个两位数为63.9.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:小明的考场号是2315.10.解:(1)A、B两点之间的距离是:4﹣(﹣12)=16.故答案为16;(2)分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP+OQ=5,∴12﹣5t+4﹣2t=5,解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP+OQ=5,∴5t﹣12+3(t﹣2)=5,∴t=,综上所述,当OP+OQ=5时的运动时间t的值为或.11.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.12.解:(1)由参赛选手A可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛选手B的得分列得:19×5﹣x=94,解得:x=1,则答对一道题得5分,答错一道题扣1分;(2)设参赛选手F答对y道题,根据题意得:5y﹣1×(20﹣y)=76,解得:y=16,则参赛选手F答对16道题.13.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.14.解:(1)设乙工程队要刷x天,由题意得:240x=160(x+20),解得:x=40,240×40=9600(间),答:这个小区共有9600间房间;(2)设甲工程队的工作时间为y天,则乙工程队的工作时间(2y+4)天,由题意得:160y+240y+240(1+25%)×(2y+4﹣y)=9600,解得:y=12,2y+4=2×12+4=28(天),答:乙工程队共粉刷28天;(3)方案一:由甲工程队单独完成,时间:40+20=60(天),60×1600=96000(元);方案二:由乙工程队单独完成需要40天,费用:40×2600=104000(元);方案三:按(2)问方式完成,时间:28天,费用:12×(1600+2600)+(28﹣12)×2600=92000(元),∵28<40<60,且92000<96000<104000,∴方案三最合适,答:选择方案三既省时又省钱的粉刷方案.15.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)。

人教版七年级上册数学一元一次方程应用题(比赛积分问题)专题训练

人教版七年级上册数学一元一次方程应用题(比赛积分问题)专题训练

人教版七年级上册数学一元一次方程应用题(比赛积分问题)专题训练1.在学完“有理数的运算”后,数学老师组织了一次计算能力竞赛.竞赛规则是:每人分别做50道题,答对一题得3分,不答或答错一题倒扣1分.(1)如果参赛学生小红最后得分142分,那么小红答对了多少道题?(2)参赛学生小明能得145分吗?请简要说明理由.2.某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得-1分.如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?3.某校积极推进“阳光体育”工程,本学期在七年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负胜一场得3分,负一场得﹣1分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数多于乙班1次,请你求出甲班、乙班各胜了几场.4.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?5.足球比赛的计分规则是胜一场得3分,平一场得1分,负一场得0分”,一支足球队在某个赛季中共比赛16场,现已比赛了10场,负3场,共得17分,问:(1)前10场比赛中这支足球队共胜多少场?(2)这支足球队打满16场比赛,最高能得多少分6.为提高学生的运算能力,我县某学校七年级在元旦之前组织了一次数学速算比赛.速算规则如下:速算试题形式为计算题,共20道题,答对一题得5分,不答或错一题倒扣1分.梓萌同学代表班级参加了这次比赛,请解决下列问题:(1)如果梓萌同学最后得分为76分,那么她计算对了多少道题?(2)梓萌同学的最后得分可能为85分吗?请说明理由.7.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分、一支足球队在某一赛季共需比赛14场,现已经比赛了8场,输了一场,得了17分.请问:(1)前8场比赛中,这支球队共胜了几场?(2)请你分析一下,这支球队在后面的6场比赛中,至少要胜几场比赛,才能使总得分不低于29分?8.某中学举行“我爱祖国”知识竞答比赛,规定每个选手共要答20道题,每答对一题得5分,不答或答错一题扣2分.(1)设选手小明答对x题,则小明不答或答错共___________题(用含x的代数式表示);(2)若小明最终的成绩为65分,求小明答对了多少道题?9.某篮球联赛规则规定:胜一场得2分,负一场得1分.某篮球队赛了12场,共得20分. 该篮球队负了多少场?请按照下列步骤解决这个问题:(1)设该篮球队胜了x场,则负了_________场,根据题意列出一个一元一次方程:_________;(2)解(1)中所得的方程,并回答:该篮球队负了多少场?10.为丰富校园文化生活,某学校在元旦之前组织了一次百科知识竞赛.竞赛规则如下:竞赛试题形式为选择题,共50道题,答对一题得3分,不答或错一题倒扣1分.小明代表班级参加了这次竞赛,请解决下列问题:(1)如果小明最后得分为142分,那么他回答对了多少道题?(2)小明的最后得分可能为136分吗?请说明理由.11.某班一次数学检测中,共出了20道题,总分为100分,现从中抽出5份试卷进行分析.如图表所示:(1)某同学得了70分,他答对了试卷多少道题?(2)有一同学H他得了76分,另一同学G说他得了72分,谁说的对了?为什么?12.在学完“有理数的运算”后,我县某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.13.某校学生会为积极响应武汉市文明创建活动,组织有关方面的知识竞赛,共设有20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.(1)参赛者答对一题得______分,答错一题得______分;(2)参赛者小红得了70分,她答对了几道题?(3)参赛者小明说他得了84分,你认为可能吗?为什么?17.2022年卡塔尔世界杯已于12月19日完美落下帷幕,在欧洲区预选赛中某小组某队以不败的战绩踢完12场积了18分.(1)已知足球积分为胜一场积3分,平一场积1分,则该队现在胜、平各几场?(2)为了鼓励该队获得好成绩,该队的赞助商制定了一个奖励机制,每位球员胜一场获得15000欧元奖励,平一场获得7000欧元奖励,则该队一位球员能获得多少报酬?18.某校组织科技知识竞赛,共有25道选择题,各题分值相同.每题必答,答对得分,答错倒扣分.下表记录了5个参赛者的得分情况.(1)填空:每答对一道题得______分,每答错一道题扣______分.(2)参赛者F说他得76分,他答对了多少道题?(3)参赛者G说他得80分,你认为可能吗?为什么?参考答案: 1.(1)48;(2)不能得145分.2.胜6场,负4场3.(1)胜:6场,负:4场 (2)甲:4场,乙:3场4.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.5.(1)前10场比赛中这支足球队共胜5场;(2)这支足球队打满16场比赛,最高能得35分.6.(1)16道;(2)不能,7.(1)5场(2)至少胜3场8.(1)()20x -(2)159. (1)(12)x - ,2x+(12-x)=20;(2)410.(1)48;(2)不可能.11.(1)他答对了试卷15道题;(2)同学H 说得对,同学G 说的不对,12.(1)48道;(2)不可能,13.(1)5,﹣1;(2)参赛者E 说他得80分,是不可能的,14.(1)答对1题得5分,答错1题扣1分;(2)她答对16道题.15.(1)1,2;(2)不可能胜场总积分能等于负场总积分16.(1)5,1-(2)参赛者小红答对了15道题(3)参赛者小明不可能得84分,17.(1)胜3场,平9场;(2)108000欧元18.(1)4;2(2)参赛者F答对了21道题;(3)参赛者G不可能得80分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题专题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子, 然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解, 是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1 8.储蓄问题利率=每个期数内的利息本金×100%利息=本金×利率×期数经典例题基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数。

②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?(3)某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?2.(1)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?(2)、一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天?3.(1)兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?(2)、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的1/3,求小强叔叔今年的年龄。

4、在全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该对共胜了多少场5.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80 毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).6.(1)有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.(2)某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

求两车的速度。

(3)、甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问:1)两车同时开出,相向而行,出发后多少小时相遇?2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?附加题:1、甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过几秒钟两人首次相遇?(2)两人同时同地同向而行时,经过几秒钟两人首次相遇.7(1)、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。

已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。

(2)、一艘船从A 港到B 港顺流行驶,用了5小时;从B 港返回A 港逆流而行,用了7.5小时,已知水流的速度是3千米/时,求船在静水中的速度。

8.(1)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5, 这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?(2)、学校有电视和幻灯机共90台,已知电视机和幻灯机的台数比为2:3,求学校有电视机和幻灯机各多少台?9.(1)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件. 已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.(2)、用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(3)、甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?10(1)把一些图书分给某班学生,如果每人4本,则剩余12本,如果每人分5本,则还缺30本,问该班有多少学生?(2)、一批宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住,那么这批宿舍有多少间,人有多少个?11(1)、四个连续的奇数的和为32,这四个数分别是什么?(2)、有一列数,按一定规律排列成4-,8-,12-,16-,20-,24-,……其中某三个相邻数的和是672-,求这三个数各是多少?(3)、一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。

12(1)、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?(2)、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?(3)、某种品牌电风扇的标价为165元,若降价以九折出售,仍可获利10%(相对于成本价),那么该商品的成本价是多少?(4)、某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%, 另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?13.大红,小红过年收到的压岁钱共1000元,大红把他的压岁钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税;小红把他的压岁钱买了月利率为2.15‰的债券,但要交纳20%的利息税,一年后两人的到的收益恰好相等,两人压岁钱个是多少钱?14、在某个月的日历中,圈出一个竖列上相邻的三个日期,如果它们的和为30,那么这三天分别是几号?15.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦? 应交电费是多少元?16.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3 种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元, 销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?17.某地的出租车收费标准是:起步价10元(即行驶距离不超过4千米都需付10元),超过4千米以后,每增加1千米加收1.2元(不足1千米按1千米计算)。

某人乘这种出租车下车时交付了16元车费,那么他搭乘出租车最多走了多少千米(不计等候时间)?18、小明到希望书店帮同学们购书,售货员告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠,请问在这次买书中,小明在什么情况下,办会员卡与不办会员卡一样?当小明买标价为200元的书时,怎么合算,能省多少钱?19、(1)下面是两种移动电话计费方式表方式一方式二月租费50元/月0本地通话费0.2元/分0.6元/分(1)若某人一个月内在本地通话100分,选择哪一种方式比较合算?(2)若某人一个月内在本地通话150分,选择哪一种方式比较合算?(3)你认为如何选择会更加合算些?(2)、下面是两种移动电话计费方式表方式一方式二月租费50元/月0本地通话费0.6元/分0.2元/分(1)若某人一个月内在本地通话100分,选择哪一种方式比较合算?(2)若某人一个月内在本地通话150分,选择哪一种方式比较合算?(3)你认为如何选择会更加合算些?四、拓展提升1.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家1—4月份用水量和交费情况:月份12348101215用水量(吨)费用(元)16202635根据表格中提供的信息,回答以下问题:(1)求出规定吨数和两种收费标准;(2)若小明家5月份用水20吨,则应缴多少元?(3)若小明家6月份缴水费29元,则6月份用水多少吨?2.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家1—4月份用水量和交费情况:月份1234用水量(吨)8101215费用(元)16202635根据表格中提供的信息,回答以下问题:1)求出规定吨数和两种收费标准;2)若小明家5月份用水20吨,则应缴多少元?3)若小明家6月份缴水费29元,则6月份用水多少吨?2、某商店购进一种商品,出售时在进价的基础上加了一定的利润,若数量x与售价y之间的关系如下表(表中售价栏内的0.10是包装费用)。

请你观察下表,并回答:数量x(单位:千克)售价y(单位:元)13+0.5+0.126+1+0.139+1.5+0.1412+2+0.1……1)写出用数量x表示售价y的关系式。

2)小明的妈妈用56.1元买了多少千克的商品?经典例题答案1.解:设甲、乙一起做还需x小时才能完成工作.根据题意,得16×12+(16+14)x=1解这个方程,得x=115115=2小时12分答:甲、乙一起做还需2小时12分才能完成工作.2.解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x18+2x=15+x,2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3 年后具有相反意义的量)3.解:设圆柱形水桶的高为x毫米,依题意,得π·(2002)2x=300×300×80x≈229.3答:圆柱形水桶的高约为229.3毫米.4.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米, 过完第一铁桥所需的时间为600x 分.过完第二铁桥所需的时间为250600x -分.依题意,可列出方程600x +560=250600x -解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米.5.解:设这种三色冰淇淋中咖啡色配料为2x 克,那么红色和白色配料分别为3x 克和5x 克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.解:设这一天有x 名工人加工甲种零件,则这天加工甲种零件有5x 个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.7.解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x 千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.解:按购A,B 两种,B,C 两种,A,C 两种电视机这三种方案分别计算,设购A 种电视机x 台,则B 种电视机y 台.(1)①当选购A,B 两种电视机时,B 种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750故为了获利最多,选择第二种方案.。

相关文档
最新文档