大学物理实验实验步骤总结

合集下载

大学物理实验报告

大学物理实验报告

⼤学物理实验报告(此⽂档为word格式,下载后您可任意编辑修改!)第⼀部分实验基础知识物理学是研究物质间相互作⽤及其运动规律的科学,物质间的相互作⽤及其运动是⽤测量的物理量来描述的,因此测量是物理学中⼀个很重要的概念。

可是说,物理学是门建⽴在测量基础上科学。

那么,什么是测量呢?测量就是利⽤标准物件对研究对象的某种属性进⾏⽐较从得出量值关系的过程。

被测量某种属性称为物理量,被选作标准来确定被测对象量值的器具称为仪器。

在经典物理中,⼈们认为被测物理量始终存在⼀个与测量者个⼈意志⽆关的数值,这个数值叫做测量的真实值。

⼀测量与误差测量是利⽤测量仪器与被测对象的物理量值进⾏⽐较,⽐较的结果称为测量值。

但是被测对象的物理量值应该存在⼀个与测量者个⼈意志⽆关的真实存在,这个真实存在叫真实值。

真实值和测量值之间有差异,这种差异叫误差。

测量值()-真实值()=误差()因为真实值是不确知的,测量的任务就是:(1)找到最接近真实值的最佳估计值。

(2)给出最佳估计值的可靠程度。

误差的分类:根据误差的性质,将误差分为偶然误差和系统误差。

偶然误差:是由于各种偶然因素对实验者、测量仪器、被测物理量的影响⽽产⽣的。

偶然误差的特点是,多次重做同—实验时,结果有时偏⼤,有时偏⼩,并且偏⼤和偏⼩的机会相同。

减⼩偶然误差的⼀般⽅法是多次测量,取其平均值作为测量的真值。

设对某物理量的多次测量结果为则取实验标准差:具有偶然误差的测量值是随机的,为了反映测量相对真值的分散性的量称为实验标准差,可使⽤贝塞尔公式来描述平均值的标准差:测量值是随机的,则其平均值也必然具有随机误差,由于求和时随机误差的抵偿效应,平均值误差的绝对值较⼩,它的实验标准差⽐⼩。

标准偏差⼩的测量值,说明分布狭窄或者较向中间集中,偏离真实值的可能性⼩,测量可靠性⾼。

系统误差:系统误差是由于仪器本⾝不精确,或实验⽅法粗略,或实验原理不完善⽽产⽣的。

其特点是,在多次重做同—实验时,其结果总是同样地偏⼤或偏⼩,不会出现有⼏次偏⼤⽽另外⼏次偏⼩的情况。

大学物理实验报告范文3篇

大学物理实验报告范文3篇

大学物理实验报告范文3篇大学物理实验是一门着重培养大学生综合能力和素质的课程。

做好大学物理实验课程的考试工作对于大学物理实验课程教学质量的提高和人才的培养都具有重要的意义。

本文是小编为大家整理的大学物理实验报告范文3篇_大学物理实验报告怎么写,仅供参考。

大学物理实验报告范文篇一:一、实验综述1、实验目的及要求1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。

2.学会直接测量、间接测量的不确定度的计算与数据处理。

3.学会物理天平的使用。

4.掌握测定固体密度的方法。

2 、实验仪器、设备或软件1 50分度游标卡尺准确度=0.02mm 最大误差限△仪=±0.02mm2 螺旋测微器准确度=0.01mm 最大误差△仪=±0.005mm 修正值=0.018mm3 物理天平 TW-0.5 t天平感度0.02g 最大称量500g △仪=±0.02g 估读到 0.01g二、实验过程(实验步骤、记录、数据、分析)1、实验内容与步骤1、用游标卡尺测量圆环体的内外径直径和高各6次;2、用螺旋测微器测钢线的直径7次;3、用液体静力称衡法测石蜡的密度;2、实验数据记录表(1)测圆环体体积(2)测钢丝直径仪器名称:螺旋测微器(千分尺) 准确度=0.01mm 估读到0.001mm测石蜡的密度仪器名称:物理天平TW—0.5 天平感量:0.02 g 最大称量500 g3、数据处理、分析(1)、计算圆环体的体积1直接量外径D的A类不确定度SD ,SD=○SD=0.0161mm=0.02mm2直接量外径D的B类不确定度u○d.ud,=Ud=0.0155mm=0.02mm3直接量外径D的合成不确定度σσ○σD=0.0223mm=0.2mm4直接量外径D科学测量结果○D=(21.19±0.02)mmD=5直接量内径d的A类不确定度S○Sd=0.0045mm=0.005mmd。

dS=6直接量内径d的B类不确定度u○dud=ud=0.0155mm=0.02mm7直接量内径d的合成不确定度σi σ○σd=0.0160mm=0.02mm8直接量内径d的科学测量结果○d=(16.09±0.02)mm9直接量高h的A类不确定度S○Sh=0.0086mm=0.009mmd=h hS=10直接量高h的B类不确定度u○h duh=0.0155mm=0.02mm11直接量高h的合成不确定度σ○σh=0.0177mm=0.02mm 12直接量高h的科学测量结果○h=(7.27±0.02)mmhσh=13间接量体积V的平均值:V=πh(D-d)/4 ○22V =1277.8mm14 间接量体积V的全微分:dV=○3(D2-d2)4dh+Dh?dh?dD- dd 22再用“方和根”的形式推导间接量V的不确定度传递公式(参考公式1-2-16)222v(0.25?(D2?d2)?h)?(0.5Dh??D)?(0.5dh??d)计算间接量体积V的不确定度σ3σV=0.7mmV15写出圆环体体积V的科学测量结果○V=(1277.8±0.7) mm2、计算钢丝直径(1)7次测量钢丝直径d的A类不确定度Sd ,Sd=SdSd =0.0079mm=0.008mm3(2)钢丝直径d的B类不确定度ud ,ud=udud=0.0029mm=0.003mm(3)钢丝直径d的合成不确定度σ。

大学物理演示实验报告

大学物理演示实验报告

实验一锥体上滚【实验目的】:1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。

2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。

【实验仪器】:锥体上滚演示仪图1,锥体上滚演示仪【实验原理】:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。

本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。

实验现象仍然符合能量最低原理。

【实验步骤】:1.将双锥体置于导轨的高端,双锥体并不下滚;2.将双锥体置于导轨的低端,松手后双锥体向高端滚去;3.重复第2步操作,仔细观察双锥体上滚的情况。

【注意事项】:1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。

2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动【实验目的】:演示旋转刚体(车轮)在外力矩作用下的进动。

【实验仪器】:陀螺进动仪图2陀螺进动仪【实验原理】:陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。

【实验步骤】:用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。

这就是进动现象。

【注意事项】:注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。

实验三弹性碰撞仪【实验目的】:1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。

2. 演示弹性碰撞时能量的最大传递。

3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。

【实验仪器】:弹性碰撞仪图3,弹性碰撞仪【实验原理】:由动量守恒和能量守恒原理可知:在理想情况下,完全弹性碰撞的物理过程满足动量守恒和能量守恒。

当两个等质量刚性球弹性正碰时,它们将交换速度。

大学物理实验报告(通用10篇)

大学物理实验报告(通用10篇)

大学物理实验报告(通用10篇)大学物理实验报告(通用10篇)在当下这个社会中,我们使用报告的情况越来越多,报告具有语言陈述性的特点。

你所见过的报告是什么样的呢?以下是小编精心整理的大学物理实验报告,仅供参考,希望能够帮助到大家。

大学物理实验报告1一、演示目的气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。

二、原理首先让尖端电极和球型电极与平板电极的距离相等。

尖端电极放电,而球型电极未放电。

这是由于电荷在导体上的分布与导体的曲率半径有关。

导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。

反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。

当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。

而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。

三、装置一个尖端电极和一个球型电极及平板电极。

四、现象演示让尖端电极和球型电极与平板电极的距离相等。

尖端电极放电,而球型电极未放电。

接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生五、讨论与思考雷电暴风雨时,最好不要在空旷平坦的田野上行走。

为什么?大学物理实验报告2实验报告一.预习报告1.简要原理2.注意事项二.实验目的三.实验器材四.实验原理五.实验内容、步骤六.实验数据记录与处理七.实验结果分析以及实验心得八.原始数据记录栏(最后一页)把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。

实验报告的种类因科学实验的对象而异。

如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。

随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。

实验报告必须在科学实验的基础上进行。

它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。

物理的实验报告

物理的实验报告

篇一:物理实验报告物理实验报告班级学号姓名实验地点试验日期实验一:昆特管预习部分【实验目的】:通过演示昆特管,反应来回两个声波在煤油介质中交错从而形成的波峰和波谷的放大现象。

【实验仪器】电源,昆特管【实验原理】:两束波的叠加原理,波峰与波峰相遇,波谷与谷相遇,平衡点与平衡点相遇,使震动的现象放大。

报告部分【实验内容】:一根玻璃长,管里面放一些没有,在一段时致的封闭端,另一端连接一个接通电源的声波发生器,打开电源,声波产生,通过调节声波的频率大小,来找到合适的频率,使波峰和波谷的现象放大,从而发现有几个地方、出现了剧烈的震动,有些地方看似十分平静。

【实验体会】:看到这个实验,了解到波的叠加特性,也感受到物理的神奇。

我们生活在一个充斥着电磁波、声波、光波的世界当中,了解一些基本的关于博得只是对于我们的健康生活是很有帮助的。

实验二:鱼洗实验【实验目的:演示共振现象】【实验仪器:鱼洗盆】【注意事项】【实验原理】用手摩擦“洗耳”时,“鱼洗”会随着摩擦的频率产生振动。

当摩擦力引起的振动频率和“鱼洗”壁振动的固有频率相等或接近时,“鱼洗”壁产生共振,振动幅度急剧增大。

但由于“鱼洗”盆底的限制,使它所产生的波动不能向外传播,于是在“鱼洗”壁上入射波与反射波相互叠加而形成驻波。

驻波中振幅最大的点称波腹,最小的点称波节。

用手摩擦一个圆盆形的物体,最容易产生一个数值较低的共振频率,也就是由四个波腹和四个波节组成的振动形态,“鱼洗壁”上振幅最大处会立即激荡水面,将附近的水激出而形成水花。

当四个波腹同时作用时,就会出现水花四溅。

有意识地在“鱼洗壁”上的四个振幅最大处铸上四条鱼,水花就像从鱼口里喷出的一样。

五:实验步骤和现象:实验时,把“鱼洗”盆中放入适量水,将双手用肥皂洗干净,然后用双手去摩擦“鱼洗”耳的顶部。

随着双手同步地同步摩擦时,“鱼洗”盆会发出悦耳的蜂呜声,水珠从4个部位喷出,当声音大到一定程度时,就会有水花四溅。

大学物理常见实验步骤一览表

大学物理常见实验步骤一览表

大学物理常见实验步骤一览表
本文档旨在提供大学物理常见实验的步骤和操作指南。

以下是几个常见实验的简要步骤描述。

1.阻力的测量
实验目标:测量物体在不同阻力下的运动情况。

1.准备实验器材:小车、斜面、测量尺、计时器等。

2.将小车放置在斜面上,用测量尺测量小车的初始位置。

3.以一定的初速度将小车推动下斜面,并进行计时。

4.记录小车通过一定距离时的用时。

5.重复实验多次,取平均值作为结果。

2.物体自由下落
实验目标:研究物体自由下落的速度与时间的关系。

1.准备实验器材:垂直挂满刻度的长纸条、一个小球、计时器等。

2.将纸条竖直挂起,并在合适位置标出时间刻度。

3.从纸条上方让小球自由下落,并同时开启计时器。

4.在小球碰到地面时停止计时。

5.根据时间刻度和计时结果,得到小球每经过一个固定时间间隔所通过的距离。

6.重复实验多次,绘制速度与时间的图表。

3.物体斜抛运动
实验目标:研究物体在斜抛运动中的轨迹。

1.准备实验器材:斜坡、小球、测量尺、计时器等。

2.在斜坡上固定一个起点和一个终点,并用测量尺测量起点和终点之间的距离。

3.将小球从起点斜抛出发,在空中进行自由落体运动。

4.记录小球落地所用的时间。

5.根据落地时间和起点到终点的距离,计算出小球的抛射速度和抛射角度。

请根据具体实验需求对实验步骤进行适当调整,并确保在实验过程中注意安全。

以上是几个常见物理实验的步骤一览表,希望对你的实验工作有所帮助。

大学生实验报告实验过程

大学生实验报告实验过程

大学生实验报告实验过程1. 实验目的本次实验的目的是研究物理学中的光电效应现象,并通过实验探索光电效应的规律和特性。

2. 实验原理实验基于光电效应的基本原理,即当光束照射到金属表面时,如果光的能量足够大,就会将金属表面的电子从金属中释放出来。

3. 实验材料与仪器- 光电池- 光源- 电源- 实验电路板- 电压表- 光电效应实验装置4. 实验步骤4.1 实验环境准备1. 将实验室中的其他杂光源关闭,以确保实验环境光线较暗。

2. 将实验电路板与电源连接,确保实验电路正常。

4.2 实验装置搭建1. 将光源放置在实验装置的固定位置上,并连接到电源上。

2. 将光电池放置在实验装置的另一端,并连接到电路板的相应接口上。

3. 通过调整光源的位置和方向,使光线能够准确地照射到光电池的光电阵面上。

4.3 实验数据采集1. 打开电源,调整电压表的量程和零点,使其能够准确读取电流信号。

2. 测量不同光源亮度下的电流值,并记录数据。

3. 改变光源的距离,测量不同距离下的电流值,并记录数据。

4.4 实验数据处理1. 绘制电流与光源亮度关系图,观察并分析它们之间的关系。

2. 计算出不同距离下的电流密度,并绘制与距离的关系图。

3. 根据实验结果,进行数据拟合,并推导出光电效应的相关公式。

5. 实验结果与讨论通过实验数据的分析与处理,我们得到了光电效应与光源亮度、光源距离的关系图,发现二者呈现一种正相关的趋势。

当光源亮度增加或者光源与光电池的距离减小时,电流值也相应增大。

这说明光电效应受到光源的辐射能量和光线照射强度的影响。

根据实验结果,我们推导出了光电效应的相关公式,并验证了它的准确性。

此外,通过实验数据的拟合,我们还得到了光电效应的一些特性参数,如光电阈值、最大动能等。

6. 结论本次实验通过研究光电效应现象,探索了光电效应的规律和特性。

实验结果表明,光电效应与光源亮度和光源距离呈现一种正相关趋势。

同时,我们还得到了光电效应的相关公式和特性参数。

大学物理牛顿环实验

大学物理牛顿环实验

大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。

当一束光照射在玻璃表面时,会产生反射和透射两种现象。

反射光会在玻璃表面形成亮斑,而透射光则会继续传播。

当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。

这些反射和透射光会相互干涉,形成明暗相间的条纹,这就是牛顿环。

三、实验步骤1、调整分光仪,使一束光通过玻璃棱镜,分成两束相干光,并在空间叠加。

2、调整分光仪的望远镜,观察到清晰的牛顿环。

3、使用读数显微镜测量牛顿环的直径,并记录下来。

4、改变分光仪的棱镜角度,观察干涉条纹的变化,并记录下来。

5、分析实验数据,得出结论。

四、实验结果与分析1、实验结果在实验中,我们观察到了清晰的牛顿环干涉现象,并且使用读数显微镜测量了牛顿环的直径。

随着分光仪棱镜角度的变化,干涉条纹也会发生变化。

2、结果分析通过实验数据,我们可以得出以下(1)牛顿环是由两束相干光在空间叠加而形成的干涉现象。

(2)干涉条纹的明暗交替是由于两束光的相位差引起的。

(3)通过测量牛顿环的直径,我们可以计算出光波的波长。

(4)随着分光仪棱镜角度的变化,干涉条纹会发生变化,这是因为光的波长和入射角发生了变化。

五、结论通过本次实验,我们深入了解了干涉现象与光波的波动性质,学习了使用分光仪、读数显微镜的方法。

这对于我们今后在光学领域的研究具有重要意义。

大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。

当一束光照射在玻璃表面时,会产生反射和透射两种现象。

反射光会在玻璃表面形成亮斑,而透射光则会继续传播。

当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液体表面张力1、不加水,调零(-80mv~0mv )2、两点定标(定标后不再动“mv ”旋钮):挂上砝码盘(不能使用手,必须用镊子小心挂上)依次加入第一个砝码,记录数据u1,加入第二个砝码,记录数据u2,加入第三个砝码,不用记录数据,取下第三个砝码,待稳定后记录数据u2’,取下第二个砝码,记录数据u1’,取下第一个砝码和砝码盘。

U=FBU 为单个砝码电压:(u1+u1’)/2=u01; (u2+u2’)/2=u02; U=(u02-u01)*10^-3(mv 换算成V) F 为单个砝码重力:F=0.5*10^-3(单个砝码质量,换算成kg )*9.8 B 为仪器灵敏度:B=U/F3、挂上吊环(吊环应多次调整水平,可利用旋转吊环观察吊环是否水平;用镊子挂上用镊子取下)。

在培养皿中装上水,培养皿先擦干净后,装水并保证培养皿外表面没有水。

吊环下沿应完全浸没(浸没1mm 左右即保证完全浸没)。

转动放置培养皿转台下部的升降螺丝,将吊环拉离水面,此时,观察环浸入液体中及从液体中拉起时的电压值,记录即将脱离水面的最大电压值U1,吊环完全脱离水面悬空后的电压值U2(U1,U2测量过程中若未观察到最大值可重复试验直到测量到为止;U1-U2约为40~60)BD D U U )(2121+-=πσσ为所求表面张力系数。

4、仪器整理:除了培养皿内表面可以有水外其他地方都不能有水,吊环、砝码盘、砝码需擦干后放入盒内,关闭电源,仪器归位摆放整齐。

电子示波器的调节和使用1、开机找亮点(三个信号都断开):内部信号(TIME/DIV )关闭(逆时针旋转到底);5个小旋钮所有缺口竖直向上;SOURCE 打到CH1/CH2;MODE 打到AUTO ;按下交替出发(TRIG.ALT );断开外接信号(CH1/CH2都打到GND );灰度关到最小(逆时针旋转到底)。

开机,灰度顺时针旋转到最大,屏幕中心出现亮点。

2、调节直线(接通CH1/CH2):打开函数发生器,将CH2调节到SIN 正弦信号。

(函数发生器显示屏幕下方的蓝色按钮对应屏幕上对应符号,调节频率在数字键盘上按键,左右按键可调节光标位置)。

(默认频率CH1为1CH2为1.5) 调出水平有限线段(接通CH1):接通函数发生器上的CH1信号;示波器上CH1打到AD/DC ;MODE (示波器面板下方中间)打到CH1;内部信号关掉(TIME/DIV 逆时针旋转到底)。

此时屏幕出现水平线段,按指定要求调节到指定长度(双色旋钮和左右按键合作调节)。

调出竖直有限线段(接通CH2):接通函数发生器上的CH2信号;示波器上CH2打到AD/DC ;MODE (示波器面板下方中间)打到CH2;内部信号关掉(TIME/DIV 逆时针旋转到底)。

此时屏幕出现竖直线段,按指定要求调节到指定长度(双色旋钮和左右按键合作调节)。

3、调出正弦波型(接通内部信号+CH1/CH2) 调出通道1的正弦波型(CH1+内部信号):函数发生器上CH1选择SIN 波型,并打开CH1信号;示波器上CH1打到AD/DC ;MODE 打到CH1;内部信号打开(TIME/DIV 顺时针旋转到底)。

此时屏幕上出现通道1的正弦波型,通过调节左右旋钮和SWP.V AR 旋钮调整出指定完整波形个数。

调出通道2的正弦波型(CH2+内部信号):函数发生器上CH2选择SIN 波型,关闭CH1信号并打开CH2信号;示波器上CH2打到AD/DC ;MODE 打到CH2;内部信号打开(TIME/DIV 顺时针旋转到底)。

此时屏幕上出现通道2的正弦波型,通过调节左右旋钮和SWP.V AR 旋钮调整出指定完整波形个数。

(若要叠加两个通道的波形,则同时打开CH1和CH2信号(上述操作),并将MODE 打到ADD ,此时出现两波形的叠加波形。

)4、调出李莎文图形(接通CH1和CH2,断开内部信号(TIME/DIV 逆时针旋转到底)):断开内部信号;CH1,CH2同时打到AD/DC ;MODE 打到CH2。

此时出现李莎文图形。

在函数发生器上调节李莎文图形:图形竖直切点数图形水平切点数==n m CH f CH f x y )1()2( 七种基本比例: CH2(fy ) 1 1 1 2(1) 3(1.5) 3(1.5) 2 CH1(fx ) 1233(1.5)2(1)4(2)15、整理仪器:将灰度关掉(逆时针旋转到底)后关闭示波器。

关闭函数发生器。

将仪器摆放整齐后离开。

光的干涉1、打开钠光灯。

2、对牛顿环仪做目视调节。

轻旋三个调节螺钉使牛顿环中心面积小且稳定位于中央位置(切忌拧紧螺钉以免破坏仪器)。

3、不使用反光镜,将反光镜反转。

将牛顿环仪放在显微镜筒正下方的载物台上,调节显微镜下45°镜片使钠光灯光反射进牛顿仪。

在显微镜目镜视场中能看到明亮黄光。

4、调焦与视差消除。

调整显微镜目镜,使从目镜中能看清十字准线。

目测,使目镜筒降到最低,再使镜筒缓慢上升,知道看清牛顿环。

(只向上移动镜筒,不向下移动,以免破坏牛顿环仪)5、选准线方向,转动鼓轮,使牛顿环中心在视场中央,调节竖直准线与牛顿环相切,水平准线与载物台移动方向平行。

6、测量牛顿环直径。

(适当转动测微鼓轮或移动牛顿环,使显微镜头位于标尺中部(约20~25mm 处))使十字叉竖直准线在干涉环第一环,转动鼓轮,向左数45环,然后反向转动到第40环左端切线位置,读数,依次读到第36环;读出25~21环(或按实验具体要求),继续转动鼓轮使镜筒移动过干涉环中心向右至第21环,读数(右端切线位置),依次读到25环,读出36~40环。

切忌中途反转鼓轮和数错级数。

7、数据处理:36~40环环径=左边-右边的绝对值 记为Dm 21~25环环径=左边-右边的绝对值 记为Dnλ)(422n m D D R nm--= 10105893-⨯=λm8、整理仪器。

分光仪的调整和使用1、先调整分光仪:内外盘下轴心后面的螺钉松开,载物台下控制高低的螺钉拧紧,目镜镜头正上方的螺钉拧松(可调节范围)2、将三棱镜放置于载物台上,保持载物台水平,黑色载物台与下方大概3~5mm 距离,三棱镜各面与载物台的凹槽互相垂直。

3、镜筒保持水平,目镜中可看到绿色矩形和黑色双横线单竖线,若不清楚,调节靠近眼睛的目镜。

4、使用半调法将两个光学面的绿色十字调到双横线上面那个黑色十字叉上。

左右转动黑色载物台,调节载物台下的螺钉,每次只调一半的距离,然后换一个光学面继续调节,调节3~4次。

使两个光学面的绿色十字都在黑色十字中心部位。

5、读书:外盘+内盘。

外盘读出度(°),内盘精度为1′,内盘读对齐的刻度数有多少条刻度然后乘以1′。

若跨过0刻度读数:从>0°(10°)往小于零度的地方跨,在对应的读数上—360°;从<0°(330°)往大于零度的地方跨,在对应读书上+360°。

6、数据处理:)(21180'2'121θθθθα-+--︒=根据公式看谁是'22/θθ,12021≈-θθ;计算结果60≈α。

7、整理实验仪器。

光敏电阻的特性测定 1、接线。

传感器、电阻、光电管串联:传感器工作电源+(红色)—光电管(红);光电管(黑)—电阻(+);电阻(—)—传感器工作电源(—);电阻的正负由接入传感器负极那部分判定较简单。

光电管与电源输出端串联:从光电管出来的白线分出的红、黑线分别接入电源输出端上部的红、黑孔。

电压表并联测电压:(+)—(+);(—)—(—);需测电阻两端电压,测电源输出端两端电压。

2、测光敏电阻的伏安特性(线性):固定照度,改变电源电压值(Ucc ),电压表接电阻两端,记录对应的电压值(Ur )。

照度查表,不同的光源电压+距离=不同照度固定照度:电压表接入电源输出端,用光电源粗/细调调到指定电压,光电管调到指定距离(注意在1之前还有5mm )。

记录0.3照度时电压表量程选用5V ,记录2照度时电压表量程选用10V 。

3、测光敏电阻的光照特性(非线性):电源电压(黑色最大的旋钮)调到4V/10V ,改变照度,记录光敏电阻电压值。

选定电源电压值,改变照度(改变电源输出端电压+距离),记录电阻电压(Ur )。

4、数据处理:)(00.1)(mA k V U I R Ω=伏安特性曲线由I-Ucc 画出;光照特性由I-照度(Lux )画出。

纵坐标是电流值,横坐标是电压值/照度值。

5、拆除电线,整理仪器。

霍尔效应与磁场测定1、按标示中文接好电路。

三个两向开关从左至右依次是工作电路,霍尔电压,外加磁场,此实验中不改变霍尔电压,只改变工作电路和外加磁场。

2、工作电流调至5mA ,励磁电流调至1000mA=1000A ,精确度按钮(LH )。

3、17与4对齐,选为第一个测量点,依次记录测得的电压值(U1~4)。

电压值 1 2 3 U1 + + + U2 — + + U3 — + — U4++—任意选定一个方向为正方向,不改变霍尔电压(2)的方向(考试中定向下为正)。

以3cm 为间隔取4个点,四个点后减小测量点距离,基本上以一个0.1mA 的变化为一个测量点;变化小时可少测量点,变化明显时多测量点,一直测到磁场边缘位置。

4、数据处理:432141U U U U U H +++=作图,以电压值Uh 为纵坐标,以间隔距离为横坐标。

拉伸法测杨氏弹性模量1、找像:保证测量仪钢丝铅直。

望远镜与台距离1m (光杠杆与望远镜在同一高度);光杠杆放在圆柱上(不能碰到钢丝),A 、B 角在一条线上;目测平面镜在竖直面上;在平面镜中看见标尺的像;三点一线在目镜中找到像;调整清晰度(使十字叉对准刻度线,记录刻度值)2、记录测量值:每增加一个砝码,待稳定后记录刻度值X1,一直加到第8个(第8个砝码不读数)然后依次减砝码,记录减掉第8个砝码后7个砝码的读数X2,依次减完。

对应两个数据取平均值(消除摩擦和滞后带来的系统误差)注意:加减砝码动作要轻,加减砝码过程连贯进行不能中途倒转。

3、用钢卷尺量取钢丝长度L ,光杠杆镜面到标尺垂直距离D 。

4、取下光杠杆在平整的纸上压出三个足痕,自a 画一条线垂直于b,c 连线(约7.52cm ),用游标卡尺(0.02mm )量出垂直长度。

5、用螺旋测微仪测量钢丝直径d (测10次,取平均值)6、数据处理:mg F =(砝码重力,单个砝码m=360g )xl d DLFY ∆=28π注意各数据的精确度和单位。

7、仪器整理。

磁阻传感器与地磁场测量1、测量地磁场实验仪的灵敏度K :分度盘水平放置,传感器游标盘(与传感器连为一体的)0刻线与分度盘0刻线重合(0-0重合),开机预热。

2、调“恒流调节”改变电流,记录电流、电压,电流反向,记录电流、电压。

相关文档
最新文档