电力系统自动化未来发展方向
电力系统自动化未来发展方向

电力系统自动化未来发展方向引言概述:电力系统自动化是指利用先进的信息技术和通信技术,对电力系统进行监控、控制和管理的一种技术手段。
随着信息技术的快速发展和电力系统的不断升级,电力系统自动化在未来的发展中将扮演更加重要的角色。
本文将从五个方面详细阐述电力系统自动化的未来发展方向。
一、智能化1.1 智能监控:利用人工智能和大数据技术,实现对电力系统各个环节的实时监控,提高监测的准确性和效率。
1.2 智能调度:通过智能算法和优化模型,实现电力系统的自动调度,提高电力资源的利用效率和供需的平衡。
1.3 智能维护:利用物联网技术和传感器网络,实现电力设备的在线监测和预测维护,提高设备的可靠性和可用性。
二、可靠性与安全性2.1 高可靠性:引入智能设备和自动化系统,提高电力系统的稳定性和可靠性,减少停电和事故的发生。
2.2 安全保障:加强对电力系统的网络安全防护,建立安全监测和预警机制,防止黑客攻击和信息泄露。
2.3 灾害应对:结合智能化技术和数据分析,提前预测和应对自然灾害对电力系统的影响,减少灾害造成的损失。
三、可持续发展3.1 新能源接入:推动可再生能源的大规模接入电力系统,提高清洁能源的利用率,减少对传统能源的依赖。
3.2 能源储存技术:研发高效、可靠的能源储存技术,解决可再生能源波动性和间歇性的问题,提供可靠的能源供应。
3.3 能源管理:利用智能化技术,实现对能源的精细管理和优化配置,提高能源利用效率和节能减排效果。
四、数字化转型4.1 数据共享:建立统一的数据平台和标准,实现电力系统各个环节的数据共享和协同,提高数据的利用价值。
4.2 业务协同:打破各个部门和企业之间的信息孤岛,实现业务的协同和流程的优化,提高工作效率和服务质量。
4.3 智能决策:利用数据分析和人工智能技术,辅助决策者做出准确、科学的决策,提高决策的效果和决策的速度。
五、国际合作5.1 技术交流:加强与国际电力系统自动化领域的合作与交流,借鉴国际先进经验和技术,推动我国电力系统自动化的发展。
电力系统自动化发展历程及趋势

电力系统自动化发展历程及趋势引言概述:电力系统自动化是指利用先进的信息技术和通信技术,对电力系统进行监控、控制和管理的一种技术手段。
随着科技的不断发展,电力系统自动化在过去几十年中取得了巨大的进步。
本文将从五个方面详细阐述电力系统自动化的发展历程及趋势。
一、传统电力系统的自动化1.1 自动化的概念和意义传统电力系统的自动化是指利用自动化技术对电力系统的运行过程进行监控和控制,提高电力系统的效率和可靠性。
1.2 自动化的关键技术传统电力系统的自动化主要依靠计算机、通信和控制技术。
其中,计算机技术用于数据处理和算法运行,通信技术用于数据传输和远程控制,控制技术用于电力系统的实时控制和优化。
1.3 自动化的应用领域传统电力系统的自动化应用广泛,包括电力生产、输电、配电和用户侧的自动化控制。
二、智能电网的发展2.1 智能电网的概念和特点智能电网是利用先进的传感器、通信和控制技术实现电力系统的智能化管理和运行的一种新型电力系统。
它具有高度自动化、可靠性强和能源效率高等特点。
2.2 智能电网的关键技术智能电网的关键技术包括智能传感器、智能计量、智能监控和智能控制等。
这些技术可以实现电力系统的实时监测、故障诊断和优化控制。
2.3 智能电网的应用前景智能电网的应用前景广阔,可以提高电力系统的可靠性和安全性,降低能源消耗和环境污染,促进能源的可持续发展。
三、可再生能源的接入与管理3.1 可再生能源的接入问题随着可再生能源的快速发展,电力系统面临着可再生能源的大规模接入问题。
如何合理安排可再生能源的发电计划,确保电力系统的稳定运行成为一个重要的问题。
3.2 可再生能源的管理技术可再生能源的管理技术主要包括预测和调度技术。
预测技术可以准确预测可再生能源的发电量,调度技术可以合理安排可再生能源的发电计划。
3.3 可再生能源的管理挑战可再生能源的管理面临着不确定性和波动性的挑战。
如何有效应对可再生能源的波动性,提高电力系统的稳定性和可靠性是一个亟待解决的问题。
电力系统自动化未来发展方向

电力系统自动化未来发展方向一、引言随着科技的不断发展和电力行业的不断进步,电力系统自动化在能源领域中扮演着至关重要的角色。
本文将探讨电力系统自动化的未来发展方向,并就其在能源领域中的应用进行详细阐述。
二、背景电力系统自动化是指利用先进的计算机技术、通信技术和控制技术对电力系统进行监控、控制和管理的过程。
它可以提高电力系统的可靠性、安全性和经济性,减少人为操作错误,提高电力系统的响应速度和效率。
三、电力系统自动化的发展趋势1. 智能化未来的电力系统自动化将趋向于智能化发展。
通过引入人工智能、大数据分析和机器学习等技术,电力系统可以自动学习和优化运行策略,提高系统的稳定性和可靠性。
2. 数字化电力系统自动化将向数字化方向发展。
通过数字化技术,电力系统可以实现全面的数据采集、传输和处理,实时监测和分析电力系统的运行状态,为系统运行和维护提供更准确的数据支持。
3. 网络化未来的电力系统自动化将更加网络化。
通过建立高速、可靠的通信网络,实现电力系统各个子系统之间的实时信息交互和协调控制,提高系统的集成度和协同性。
4. 安全性电力系统自动化的未来发展将更加注重安全性。
通过引入网络安全技术和防护措施,保护电力系统免受网络攻击和恶意操作的威胁,确保电力系统的稳定运行和数据的安全性。
5. 可持续发展未来的电力系统自动化将更加注重可持续发展。
通过引入可再生能源和能源储存技术,优化电力系统的能源结构,减少对传统能源的依赖,提高能源利用效率,实现电力系统的可持续发展。
四、电力系统自动化的应用1. 电网监控与管理通过电力系统自动化技术,可以实现对电网的实时监测和管理。
可以监测电力系统的负荷、电压、频率等参数,及时发现和处理异常情况,提高电力系统的可靠性和稳定性。
2. 能源调度与优化电力系统自动化可以实现对电力系统的能源调度和优化。
通过对电力系统的负荷预测和能源供应的优化调度,可以实现电力系统的经济运行和能源的高效利用。
3. 能源交易与市场运营电力系统自动化可以支持能源交易与市场运营。
电力系统自动化发展历程及趋势

电力系统自动化发展历程及趋势一、引言电力系统自动化是指利用先进的计算机技术、通信技术和控制技术,实现电力系统的自动化运行、监控和管理。
随着科技的不断进步和电力行业的发展,电力系统自动化在过去几十年中取得了巨大的发展。
本文将详细介绍电力系统自动化的发展历程以及未来的趋势。
二、电力系统自动化的发展历程1. 初期阶段(20世纪50年代-60年代)电力系统自动化最初起源于20世纪50年代,当时主要应用于电力系统的监控和保护。
通过安装传感器和测量设备,实现对电力系统各个部份的监测,并通过自动化装置实现对电力系统的保护。
这一阶段的自动化程度较低,主要依靠机械和电气设备。
2. 中期阶段(70年代-80年代)在20世纪70年代和80年代,随着计算机和通信技术的快速发展,电力系统自动化进入了中期阶段。
电力系统开始引入计算机控制和通信技术,实现了对电力系统的远程监控和远程操作。
此外,还引入了自动化调度系统和自动化设备管理系统,提高了电力系统的运行效率和可靠性。
3. 现代化阶段(90年代至今)在20世纪90年代以及近年来,电力系统自动化进入了现代化阶段。
随着信息技术的快速发展,电力系统自动化的应用范围不断扩大。
现代化的电力系统自动化包括以下几个方面的发展:(1)智能电网:智能电网是电力系统自动化的重要领域之一。
通过引入先进的传感器、通信和控制技术,实现对电力系统各个环节的智能化管理和控制,提高电力系统的可靠性、安全性和可持续性。
(2)分布式能源管理:随着可再生能源的快速发展,电力系统越来越多地引入了分布式能源,如太阳能和风能等。
分布式能源管理系统通过自动化技术,实现对分布式能源的集成管理和优化调度,提高能源利用效率。
(3)电力市场化:电力市场化是电力系统自动化的另一个重要方向。
通过引入自动化的电力市场交易系统,实现电力供需的平衡和电力价格的合理调节,提高电力市场的竞争性和透明度。
三、电力系统自动化的未来趋势1. 智能化和数字化未来的电力系统自动化将更加智能化和数字化。
电力系统自动化发展趋势及新技术的应用

电力系统自动化发展趋势及新技术的应用近年来,随着技术的进步和社会的发展,电力系统自动化已经发展到一定的高度,在电力系统的运行管理和调度中发挥着重要作用。
自动化系统为电力系统优化调度和节约能源带来了诸多方面的好处,其发展和应用也是未来几年电力系统研究的热点话题。
一、电力系统自动化的发展趋势1、技术向智能化发展。
智能电网、智能变电站、智能变压器、智能电表、智能电力系统等技术的发展,将使网供电的效率得到极大的提升,有利于优化调度和节约能源。
2、应用开源软件及系统平台。
现代自动化系统已经由传统的封闭型软件升级为开源软件,已经实现了全面的数字技术应用,从而使得系统的可靠性和可维护性大大提高,使电力公司的管理更加高效灵活。
3、实现系统的可靠性提升。
自动化系统越来越智能,已经达到了对电网布置及运行状况建模,快速响应,客户自我受理等效果,使电力系统的可靠性大大提高,实现了“安全”、“高效”、“方便”等形式。
4、实现远程管控。
自动化系统可以通过远程管控实现复杂电力系统资源的及时调整和维护,实现电力系统的有效管理及高效运行。
二、新技术的应用及其实施1、采用物联网技术。
物联网技术可以实现电力系统的节能安全监控,通过传感器及其他数据采集技术,实现对电力系统运行状态的实时监测,进行节能安全管理。
2、智能控制系统的应用。
采用智能控制系统,可以通过系统的自动调整,实现负荷的稳定,提高设备的使用率,节省能源,降低运行成本。
3、人工智能技术的应用。
可以采用深度学习算法、多层安全授权等技术,实现电力系统的精准分析,以了解电力系统的运行状态,提高电力系统的安全性和可靠性。
4、采用大数据分析技术。
大数据技术可以根据电力系统实时运行情况及历史数据,对电力系统进行统计分析和预测,进一步提升电力系统的精准性和可靠性。
三、应用步骤1、建立智能电网系统。
建立新一代智能电网系统,根据电力系统实际运行情况,科学设置控制参数,以满足系统的安全性要求。
电力系统自动化发展历程及趋势

电力系统自动化发展历程及趋势一、引言电力系统自动化是指利用先进的信息技术和控制技术,对电力系统进行监控、调度、保护和控制的一种技术手段。
随着信息技术的不断发展和应用,电力系统自动化在过去几十年中取得了显著的发展。
本文将介绍电力系统自动化的发展历程,并探讨未来的发展趋势。
二、电力系统自动化的发展历程1. 第一阶段:人工控制时代在电力系统刚刚建立的初期,人们主要依靠人工进行对电力系统的监控和控制。
这个阶段的主要特点是人工操作,缺乏自动化设备和技术支持。
由于人工操作的局限性,电力系统的稳定性和可靠性受到了很大的限制。
2. 第二阶段:远动控制时代随着电力系统规模的不断扩大和电力设备的增多,人们开始意识到需要引入自动化技术来提高电力系统的运行效率和可靠性。
远动控制技术的浮现标志着电力系统自动化进入了一个新的阶段。
远动控制系统通过远程传输和接收信号,实现对电力设备的远程控制和监控,极大地提高了电力系统的运行效率。
3. 第三阶段:自动化监控时代随着计算机技术的快速发展,电力系统自动化进入了一个全新的阶段。
自动化监控系统利用计算机和通信技术,实现对电力系统的实时监测和控制。
自动化监控系统可以对电力设备进行故障检测和诊断,并提供相应的控制策略,从而提高电力系统的可靠性和安全性。
4. 第四阶段:智能化控制时代随着人工智能技术的快速发展,电力系统自动化进入了智能化控制时代。
智能化控制系统利用人工智能算法和大数据分析技术,对电力系统进行智能化的监控和控制。
智能化控制系统可以根据电力系统的实时状态和需求,自动调整控制策略,提高电力系统的运行效率和可靠性。
三、电力系统自动化的未来趋势1. 智能化技术的应用未来,随着人工智能技术的不断发展和应用,电力系统自动化将更加智能化。
智能化技术将能够对电力系统进行更加精确的监控和控制,提高电力系统的运行效率和可靠性。
2. 大数据分析的应用随着电力系统数据的不断增加,大数据分析技术将发挥越来越重要的作用。
电力系统自动化未来发展方向

电力系统自动化未来发展方向标题:电力系统自动化未来发展方向引言概述:随着科技的不断发展,电力系统自动化在电力行业中发挥着越来越重要的作用。
未来,电力系统自动化将会朝着更加智能化、高效化和可靠化的方向发展。
本文将从五个方面探讨电力系统自动化的未来发展方向。
一、智能化1.1 智能感知技术:通过引入物联网技术和传感器技术,实现对电力系统各个环节的实时监测和数据采集,提高系统的感知能力。
1.2 人工智能应用:利用人工智能技术,对电力系统进行智能分析和预测,提高系统的智能化水平,减少人为干预。
1.3 自适应控制技术:引入自适应控制算法,使电力系统能够根据外部环境和内部状态自动调整控制策略,提高系统的智能化程度。
二、高效化2.1 能源管理系统:通过建立高效的能源管理系统,实现对电力系统的优化调度和资源分配,提高系统的能源利用效率。
2.2 智能优化算法:利用智能优化算法对电力系统进行优化设计和运行控制,提高系统的运行效率和性能。
2.3 高效能源转换技术:引入新型高效能源转换技术,如直流输电技术和高温超导技术,提高电力系统的能源转换效率。
三、可靠化3.1 强化安全监控系统:建立完善的安全监控系统,实现对电力系统各种潜在风险的及时监测和预警,提高系统的可靠性。
3.2 智能故障诊断技术:利用智能故障诊断技术,实现对电力系统故障的快速定位和处理,提高系统的可靠性和稳定性。
3.3 备用能源配置优化:通过优化备用能源配置和应急响应机制,提高电力系统的抗灾能力和可靠性。
四、数字化4.1 数据共享与互联:建立电力系统数字化平台,实现各个环节数据的共享和互联,提高系统的信息化程度。
4.2 虚拟仿真技术:利用虚拟仿真技术对电力系统进行模拟和优化设计,提高系统的数字化水平和效率。
4.3 云计算技术应用:引入云计算技术,实现对电力系统的大数据处理和存储,提高系统的数字化运行效率。
五、绿色化5.1 可再生能源整合:加强对可再生能源的整合利用,提高电力系统的绿色化水平和环保性。
电力系统自动化现状及发展趋势

电力系统自动化现状及发展趋势
一、电力系统自动化的现状
电力系统自动化工程是一项具有技术性、复杂性和全球性特点的技术发展。
它涉及到现代化的电力设备、变压器、线路、电力系统控制与保护系统、自动化系统、监测系统和自动控制系统的研发与应用。
它破除了传统电力系统管理与控制的技术壁垒,极大提高了电力系统的安全性、可靠性和经济性,以及电力系统运行与管理的智能性。
1、网络自动化技术发展迅速,目前网络自动化技术主要有现代通信技术、物联网技术、云计算技术等,网络自动化技术主要用于电力系统的信息采集、信息数据库管理、远程监控和故障诊断等。
2、自动调度技术发展趋势明显,已经被广泛应用于电力系统各个层面,主要用于电力系统实时调度、调度决策、容量优化、运行监控、负荷预测等应用领域。
3、现代智能监控技术发展迅猛,主要包括自动故障诊断系统、状态估计系统、自动控制系统、自动发电调度系统、负荷预测系统、智能电网等。
4、智能电网技术的发展势头良好,目前已成为电力系统可持续发展的亮点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、电力系统自动化技术1.电网调度自动化。
电网调度自动化主要组成部分由电网调度控制中心的汁算机网络系统、工作站、服务器、大屏蔽显示器、打印设备、通过电力系统专用广域网连结的下级电网调度控制中心、调度范围内的发电厂、变电站终端设备等构成。
电网调度自动化的主要功能是电力生产过程实时数据采集与监控电网运行安全分析、电力系统状态估计、电力负荷予测、自动发电控制、自动经济调度并适应电力市场运营的需求等。
2.变电站自动化。
电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。
变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。
变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。
变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。
3.发电厂分散测控系统(DCS)。
过程控制单元(PCU)由可冗余配置的主控模件(MCU)和智能l/O模件组成。
MCU模件通过冗余的l/O总线与智能l/O模件通讯。
PCU直接面向生产过程,接受现场变送器、热电偶、热电阻、电气量、开关量、脉冲量等信号,经运算处理后进行运行参数、设备状态的实时显示和打印以及输出信号直接驱动执行机构,完成生产过程的监测、控制和联锁保护等功能。
运行员工作站(OS)和工程师工作站(ES)提供了人机接口。
运行员工作站接收PCU发来的信息和向PCU发出指令,为运行操作人员提供监视和控制机组运行的手段。
工程师工作站为维护工程师提供系统组态设置和修改、系统诊断和维护等手段。
二、电力系统自动化总的发展趋势(一)当今电力系统的自动控制技术正趋向于1、在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。
2、在设计分析上日益要求面对多机系统模型来处理问题。
3、在理论工具上越来越多地借助于现代控制理论。
4、在控制手段上日益增多了微机、电力电子器件和远程通信的应用。
(二)整个电力系统自动化的发展则趋向于1、由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。
2、由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。
3、由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。
4、装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。
5、追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。
2由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统);由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展;由单一功能向多功能、一体化发展,例如变电站综合自动化的发展;装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变;追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制;由以提高运行的安全、经济、效率为目标向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。
三、具有变革性重要影响的三项新技术(一)电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。
电力系统控制面临的主要技术困难有:1、电力系统是一个具有强非线性的、变参数的动态大系统。
2、具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。
3、不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。
(二)FACTS和DFACTS1、FACTS概念的提出在电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术――柔性交流输电系统(FACTS)技术悄然兴起。
所谓“柔性交流输电系统”技术又称“灵活交流输电系统”技术,简称FACTS,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。
这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。
2、FACTS的核心装置之一――ASVC的研究现状各种FACTS装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。
ASVC是包含了FACTS装置的各种核心技术且结构比较简单的一种新型静止无功发生器。
ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。
它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。
与旋转同步调相机相比,ASVC的调节范围大,反应速度快,不会发生响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声,并且因为ASVC是一种固态装置,所以能响应网络中的暂态也能响应稳态变化,因此其控制能力大大优于同步调相机。
3、DFACTS的研究态势DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。
其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。
. 基于GPS统一时钟的新一代EMS和动态安全监控系统。
(1)基于GPS统一时钟的新一代EMS。
目前应用的电力系统监测手段,主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。
前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;而后者数据刷新间隔较长,只能用于分析系统的稳态特性。
两者还具有一个共同的不足,即不同地点之间缺乏准确地共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析;(2)基于GPS的新一代动态安全监控系统。
基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。
电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。
采用GPS实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。
(三)基于GPS统一时钟的新一代EMS和动态安全监控系统1.基于GPS统一时钟的新一代EMS目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。
前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。
两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。
2.基于GPS的新一代动态安全监控系统基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。
电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。
采用GPS实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。
GPS技术与相量测量技术结合的产物――PMU(相量测量单元)设备,正逐步取代RTU设备实现电压、电流相量测量(相角和幅值)。
四、当前电力系统自动化依赖lT技术向前发展的重要热点技术1.电力一次设备智能化。
常规电力一次设备和二次设备安装地点一般相隔几十至几百米距离,互相间用强信号电力电缆和大电流控制电缆连接,而电力一次设备智能化是指一次设备结构设计时考虑将常规二次设备的部分或全部功能就地实现,省却大量电力信号电缆和控制电缆,通常简述为一次设备自带测量和保护功能。
2.电力一次设备在线状态检测。
对电力系统一次设备如发电机、汽轮机、变压器、断路器、开关等设备的重要运行参数进行长期连续的在线监测,不仅可以监视设备实时运行状态,而且还能分析各种重要参数的变化趋势,判断有无存在故障的先兆,从而延长设备的维修保养周期,提高设备的利用率,为电力设备由定期检修向状态检修过度提供保障。
3.光电式电力互感器。
电力互感器是输电线路中不可缺少的重要设备,其作用是按一定比例关系将输电线路上的高电压和大电流数值降到可以用仪表直接测量的标准数值,以便用仪表直接测量。
其缺点是随电压等级的升高绝缘难度越大,设备体积和质量也越大;信号动态范围小,导致电流互感器会出现饱和现象,或发生信号畸变;互感器的输出信号不能直接与微机化计量及保护设备接口。
4.适应光电互感器技术的新型继电保护及测控装置。
电力系统采用光电互感器技术后,与之相关的二次设备,如测控设备,继电保等装置的结构与内部功能将发生很大的变化。
首先省去了装置内部的隔离互感器、A/D转换电路及部分信号处理电路,从而提高了装置的响应速度。
但需要解决的重要关键技术是为满足数值计算需要对相关的来自不同互感器的数据如何实现同步采样,其次是高效快速的数据交换通信协议的设计。
五、电力系统自动化的研究方向(一)智能保护与变电站综合自动化对电力系统电保护的新原理进行了研究,将国内外最新的人工智能、模糊理论、综合自动控制理论、自适应理论、网络通信、微机新技术等应用于新型继电保护装置中,使得新型继电保护装置具有智能控制的特点,大大提高电力系统的安全水平。
对变电站自动化系统进行了多年研究,研制的分层分布式变电站综合自动化装置能够适用于35-500kV各种电压等级变电站。
微机保护领域的研究处于国际领先水平,变电站综合自动化领域的研究已达到国际先进水平。
(二)电力市场理论与技术基于我国目前的经济发展状况、电力市场发展的需要和电力工业技术经济的具体情况,认真研究了电力市场的运营模式,深入探讨并明确了运营流程中各步骤的具体规则;提出了适合我国现阶段电力市场运营模式的期货交易(年、月、日发电计划)、转运服务等模块的具体数学模型和算法,紧紧围绕当前我国模拟电力市场运营中亟待解决的理论问题。
(三)电力系统实时仿真系统对电力负荷动态特性监测、电力系统实时仿真建模等方面进行了研究,引进了加拿大Teqsim公司生产的电力系统数字模拟实时仿真系统,建成了全国高校第一家具备混合实时仿真环境的实验室。
该仿真系统不仅可进行多种电力系统的稳态及暂态实验,提供大量实验数据,并可与多种控制装置构成闭环系统,协助科研人员进行新装置的测试,从而为研究智能保护及灵活输电系统的控制策略提供了一流的实验条件。