谐波危害及抑制谐波的方法
抑制谐波干扰常用的方法

抑制谐波干扰常用的方法1.滤波器:应用良好设计的滤波器可以有效地降低谐波干扰。
滤波器可分为有源滤波器和无源滤波器两类。
有源滤波器通过输入与谐波相反的相位来实现谐波的抵消,而无源滤波器则通过吸收谐波的能量来消除谐波。
2.降低谐波发生源:降低谐波发生源的数量和强度也是有效抑制谐波的方法之一、可以采用合适的电源,避免使用产生大量谐波的设备,或者通过更换谐波发生源的设计和运行来降低其谐波产生量。
3.电力电子设备的设计优化:电力电子设备是电力系统中可能产生谐波的常见源。
通过对电力电子设备的设计进行优化,可以减少其产生的谐波。
例如,在设计中应用合适的滤波器和补偿装置,或者使用降低谐波的控制方法,都可以有效地减少谐波干扰。
4.使用变压器:变压器可以提供一定程度的谐波抑制功能。
在电力系统中,通过使用适当设计的谐波隔离变压器,可以有效地降低谐波的传播和干扰。
这是因为谐波对于变压器的阻抗通常较高,可以将谐波限制在变压器较小的区域内。
5.谐波滤波器的安装和调整:谐波滤波器是一种专门用于抑制谐波的装置。
通过安装谐波滤波器,可以在电力系统中选择性地去除谐波成分。
滤波器的调整需要深入研究电力系统的谐波特性,并根据实际情况进行适当的选择和设置。
6.谐波监测和控制:谐波监测和控制系统可以实时监测电力系统中的谐波情况,并采取相应的控制策略来抑制谐波。
这可以通过在线监测设备、谐波分析仪和自动控制装置实现。
当系统中的谐波水平超过预设阈值时,控制系统可以自动启动滤波器等设备来抑制谐波干扰。
7.谐波抑制转换器:谐波抑制转换器是一种特殊的电力电子装置,可以通过改变其频率和幅度来抑制谐波。
这种转换器通常应用在大功率电力系统中,可以降低对网络的谐波干扰。
总的来说,抑制谐波干扰的方法涉及系统设计、设备优化、滤波器安装调整和监测控制等多个方面。
通过综合运用这些方法,可以有效地减少谐波的产生和传播,提高电力系统的质量和稳定性。
谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些谐波的抑制方法谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
关于“谐波的产生和危害有哪些谐波的抑制方法”的详细说明。
1.谐波的产生和危害有哪些1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
2.谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。
3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。
5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。
2.谐波的抑制方法(一)降低谐波源的谐波含量在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。
这就需要在设计、制造和使用谐波源设备时,要注意谐波对供电系统及其供用电设备的影响,采取切实可行的治理措施。
用电业务管理部门要严格把关,对于没有采取治理措施的谐波源用户,要禁止其入网运行。
(二)在谐波源处吸收谐波电流这种方法是对已有谐波进行有效抑制的方法,也是目前电力系统使用最为广泛地抑制谐波的方法。
其主要方法有以下几种:1.无源滤波器无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。
这种方法由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,是目前采用的抑制谐波及无功补偿的主要手段。
2.有源滤波器有源滤波器即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。
3.防止并联电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用。
谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。
虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。
1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。
此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。
2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。
此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。
3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。
在高度电子化的社会中,这种通信干扰可能会带来严重的问题。
为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。
滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。
2.使用变压器:变压器可以用来减小谐波的影响。
通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。
3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。
电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。
4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。
例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。
5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。
定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。
总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。
为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。
谐波的产生原因危害与治理

谐波的产生原因危害与治理谐波是指信号在传输过程中产生的频率是原有信号频率的整数倍的现象。
谐波一般是由于信号源产生幅度非线性特性、信号传输线路的不完美特性以及外界干扰等多种因素共同作用所导致的。
1.非线性特性:当信号源的输入电压超过其线性范围时,信号源会产生非线性失真。
这种非线性特性会使得原信号分解成包含各种谐波成分的信号,即产生谐波。
2.传输线路的不完美:在电力传输和通信线路中,由于电导率不一致、绝缘材料的不均匀性以及线路的接地等因素,会引起谐波的产生。
这些因素使得线路对于不同频率的信号具有不同的传输特性,从而造成信号的失真和谐波的产生。
3.外界干扰:外界电磁辐射的干扰也会引起谐波的产生。
当外界电磁波与系统内的信号相互作用时,可能会产生共振现象,从而导致谐波信号的产生。
谐波的存在会带来一系列的危害,包括以下几个方面:1.信号失真:谐波信号会改变原信号的波形和频谱特性,导致信号失真。
这会影响到电力传输系统和通信系统中的信号传输质量,降低系统的可靠性和稳定性。
2.设备损坏:谐波会导致电流和电压的波形变形,产生大量的电磁干扰。
这些干扰会对设备的正常工作造成影响,甚至会导致设备损坏和故障。
谐波还可能引起设备内部电子元件的过热现象,加速设备老化和损坏。
3.电力系统能源浪费:谐波会引起电力系统中电流和电压的非功率信号,造成能量损耗。
这不仅会浪费能源,还会导致电力系统的效率降低。
为了治理谐波对系统的危害,可以采取以下几种方法:1.模拟电路设计中采用线性器件:选择线性器件作为信号源和信号传输线路中的关键部件,减少非线性特性对信号的影响。
2.使用滤波器:在信号源和负载之间加入合适的滤波器,可以有效地滤除谐波成分,保证原信号的传输质量。
3.优化供电系统:针对供电系统中频繁出现谐波问题的设备,进行电源选择、接线方式和接地设计的优化,减少谐波产生。
4.电源质量改进:加强对供电设备的质量管理,采用高质量的电源设备,减少谐波对电力系统的影响。
电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
谐波分析产生原因,危害,解决方法【精选文档】

谐波分析一、谐波的相关概述谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。
谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性.由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。
当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。
电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波.因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。
(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。
(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。
二、谐波的危害谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率.(2)谐波影响各种电气设备的正常工作。
(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故.(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。
(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。
三、谐波的分析由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害.我国对于谐波相关工作的研究大致起源于20世纪80年代。
我国国家技术监督局于93年颁布了国家标准《电能质量-—公用电网谐波》(GB/T 14549—1993)。
该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。
谐波的危害与治理

谐波的危害与治理谐波是指工业、农业及其他领域电器设备产生的不同频率的电流或电压的干扰信号。
谐波的产生对人类的健康和设备的正常运行产生了相当大的危害。
在以下的几个方面,我们将详细介绍谐波的危害性以及相应的治理方法。
首先,谐波对人类的健康造成了威胁。
在人体组织中,脑、肌肉、神经等都是通过电信号进行传递和控制的。
而谐波的存在会使得这些电信号被扭曲、失真甚至干扰,从而导致血液循环、神经传导、肌肉运动等功能受到影响。
长期暴露在谐波环境下,人们可能会出现头痛、疲劳、失眠、注意力不集中、神经衰弱等症状。
其次,谐波对电力系统的稳定性和设备的正常运行产生了影响。
谐波信号会加大电网中的负荷,降低系统的功率因数,导致电网负荷不均衡、频率偏移等问题。
同时,谐波还会增加电力设备的损耗,缩短使用寿命,引发电力设备故障和事故。
特别是对于高精度的仪器设备和敏感的电子设备来说,谐波的存在会严重影响其正常运行和测量结果的准确性。
另外,谐波还会影响到公共环境和通信系统。
在城市中,电网中的谐波信号可能会通过建筑物和地下管道传播到附近的电子设备或通信系统中,导致通信信号的干扰和传输中断。
在无线通信领域,谐波会引起频谱污染,减少频谱资源的利用效率。
针对谐波的治理,有以下几个主要方法:1.滤波器:通过引入滤波器来削弱或消除谐波信号。
滤波器可以根据谐波的频率特性进行设计,将谐波信号从电力系统中分离出来,保证电力系统的正常运行。
2.接地:正确接地可以有效降低谐波信号的存在。
接地系统的设计和维护需要严格按照相关标准进行,确保接地电阻的有效连接和在线监测,减少谐波的传播。
3.变压器改进:采用带低谐波的高效变压器,可以有效削弱变压器内部的谐波产生和传播。
例如,采用三脉动焊接变压器可以避免谐波的产生和增强Transformer(SVPWM)技术等。
4.现代电气设备:使用具有谐波抑制功能的现代电气设备,可以降低谐波产生和传播的风险。
例如,使用高效节能的电子节能灯、电力电容器、有源滤波器等。
谐波、谐振的危害及防治措施

谐波、谐振的危害及防治措施在电网运行中,不可避免地会产生谐波与谐振,二者既有联系,更有区别,以下就其定义、产生原因、危害及预防措施作以介绍,供参照。
1、定义谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。
通俗地说,基波频率是50HZ,那末谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。
谐振是交流电路的一种特定工作状况,在由电阻、电感和电容组成的电路中,当电压相量与电流相量同相时,就称这一电路发生了谐振。
谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。
2、产生原因谐波的产生是由于电网中存在着非线性负荷〔谐波源〕,如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。
谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些状况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。
谐波也可产生谐振,由谐波源和系统中的某一设备或某几台设备可能构成某次谐波的谐振电路。
3、危害及防治措施由于谐波的存在,使得电压、电流的波形发生畸变,可导致变压器、旋转电机等电气设备的损耗增大;电容器绝缘老化加快,使用寿命缩短;引起系统内继电保护和自动装置误动或拒动;干扰通讯信号等危害。
当电网中谐波含量超出国家规定,就必须采用措施消除或抑制谐波,电力系统多采纳滤波器装置来消除谐波。
谐振可导致系统一定范围内的过电压和过电流。
谐振过电压不仅危害设备的绝缘,而且产生大的零序电压分量,出现虚假接地和不正确的接地指示,并使小容量的异步电机发生反转。
继续的过电流会引起PT熔件熔断甚至烧毁PT。
在发生谐振时,运行人员应依据电压、电流的异常指示,推断谐振类型及可能产生的原因,并果断采用措施,防止事故扩展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谐波危害及抑制谐波的方法2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。
例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。
电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。
但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。
近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。
集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。
随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。
例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。
1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。
因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。
国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。
美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。
在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。
1 电网谐波的产生1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。
当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。
1.2由非线性负载所致1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。
当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。
1.2.2 主要非线性负载装置(1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。
这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。
(2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。
所产生的励磁涌流所含的谐波成份以3次谐波为主。
(3)单相电容器组开断时的瞬态过电压干扰:电力电子调速系统普遍应用于工业中改进电机效率及灵活性设备,调速装置内电力电子器件对过电压特别敏感,因此线路中瞬态过电压会造成调速系统的过电压保护误跳闸。
由于与中压母线相连的电容器要经常操作,这意味着调速系统误跳闸事故会经常发生;(4)电压互感器铁磁谐振过电压:在我国10kV、35kV等级的中性点不接地配电网中,为了监视对地绝缘,一般采用三相五柱式电压互感器。
在正常情况下,三相对地电压是平衡的,但是由于发生单相接地故障等原因,会导致三相对地电压平衡的破坏,还有可能使电压互感器线圈电感L和系统对地电容C在参数上配合,而产生谐振过电压。
(5)整流器和逆变器产生的谐波电压、电流:整流器的作用将交流电转成直流电,而逆变器是将直流电转变成交流电。
其电路中的二极管视为理想二极管,即正向阻抗接近零,反向阻抗无穷大。
因此,只允许电流单方向流动,从整流器的输出端看,每相电流波形为矩形波,不是正弦波,利用傅氏级数展开式展开周期的矩形波形,可以看到除了工频正弦波(50Hz基波)外,还叠加了一系列高次波形——谐波。
应该说电动机采用变频器进行调速,可以高水平完成调速外,也可以节省大量电能(近30%),但如前面分析,变频调速过程中要产生高次谐波,即形成高次谐波污染,造成厂区的电视、音响系统不能正常工作,还要干扰二次仪表——压力、流量、可编程控制器及智能控制器正常工作,谐波还要使变压器、电动机、电容器及电抗器产生过热。
(6)电弧炉运行引起电压波动:随着冶炼工业的发展,当然会更多地使用电弧炉,这是一个重要负荷。
运行时,电极和金属碎粒之间会发生频繁断路,而在熔化期间,电源两相短路,一旦熔化金属从电极上落下,电弧熄灭,电源又开路,因此,可以说冶炼过程是频繁的短路-开路-短路的过程,会引起用户端电压波动及白炽灯闪烁,一般电压波动频率是0.1Hz~几十Hz,这种谐波是以3次谐波为主。
2谐波的危害2.1污染公用电网--如果公用电网的谐波特别严重,则不但使接入该电网的设备(电视机、计算机等)无法正常工作,甚至会造成故障,而且还会造成向公用电网的中性线注入更多电流,造成超载、发热,影响电力正常输送。
2.2影响变压器工作--谐波电流,特别是3次(及其倍数)谐波侵入三角形连接的变压器,会在其绕组中形成环流,使绕组发热。
对Y形连接中性线接地系统中,侵入变压器的中性线的3次谐波电流会使中性线发热。
2.3影响继电保护的可靠性--如果继电保护装置是按基波负序量整定其整定值大小,此时,若谐波干扰叠加到极低的整定值上,则可能会引起负序保护装置的误动作,影响电力系统安全。
2.4加速金属化膜电容器老化--在电网中金属化膜电容器被大量用于无功补偿或滤波器,而在谐波的长期作用下,金属化膜电容器会加速老化。
2.5 增加输电线路功耗--如果电网中含有高次谐波电流,那么,高次谐波电流会使输电线路功耗增加。
如果输电线是电缆线路,与架空线路相比,电缆线路对地电容要大10~20倍,而感抗仅为其1/3~1/2,所以很容易形成谐波谐振,造成绝缘击穿。
2.6 增加旋转电机的损耗--国际上一般认为电动机在正常持续运行条件下,电网中负序电压不超过额定电压的2%,如果电网中谐波电压折算成等值基波负序电压大于这个数值,则附加功耗明显增加。
]2.7影响或干扰测量控制仪器、通讯系统工作--例如,直流输电中,直流换流站换相时会产生3~10kHz高频噪声,会干扰电力载波通信的正常工作。
3谐波抑制技术3.1整机电源需留有较大贮备量--为了使测量、控制装置能满足负载较大变化范围,因此在设计整机电源时,可给予较大贮备量,一般选取0.5~1倍余量;3.2对干扰大的设备与测控装置采用不同相线供电--因为测量、控制装置的许多干扰是由电源线窜入的,因此在规划供电线路时,对干扰大的设备与测控装置采用不同相线供电,;3.3将测量、控制装置的供电与动力装置的供电分开--因为动力装置的负荷变动大,测量、控制、微机及电视机的负荷小,动力装置产生的干扰大,供电电源分开后,测量、控制、微机及电视机的电源与动力装置的电源相互隔离,可以大大减少通过电源线的干扰。
3.4 其余抑制高次谐波的技术3.4.1开关电源干扰的抑制技术---一般采用的办法是:电源滤波、屏蔽及减少开关电源本身干扰能量。
采用电源滤波器,电源滤波器可以阻止电网中的干扰进入开关电源,也可以阻止开关电源的干扰进入电网。
屏蔽技术可以有效地防止向外辐射干扰。
减少开关电源本身干扰,利用改善线圈绕制工艺,确保绕组之间紧密耦合,以减少变压器漏感。
还可以在高频整流二极管上串入可饱和磁芯线圈,利用流过反向电流时,因磁芯不饱和而产生的较大电势阻止反向电流上升。
3.4.2 变压器空载合闸涌流抑止方法根据方程Φ1=-Φmcos(ωt+α)=Φmsinωt,如果合闸时,α=90(即U1=U1m便合闸),则:Φ1=-Φmcos(ωt+α)=Φmsinωt没有暂态分量,合闸后磁通立即进入稳定状态,理论上可以避免冲击涌流过程。
3.4.3 抑制单相电容器组开断瞬态过电压方法---如果采用选相断路器投切电容器,则可以消除或大大降低投切电容器产生的瞬态过电压,从而使接在母线上的电力电子调速系统可以稳定地工作,接在母线上的其余设备也可不受过电压干扰的影响。
3.4.4 抑制电压互感器铁磁谐振方法---其方法是要使它脱离谐振区,采用中性点不接地的电压互感器或采用电容分压器可以从根本上避免铁磁谐振。
3.4.5 抑止整流和逆变产生的谐波(1)在变频器前加装电源滤波器。
一种成本比较低的方法是在电源侧加装三只680μf 250VAC的电容,(分别接在L-N上) 这种方法可使电磁干扰电流降至原来的1/10,效果较明显;(2)变频器的电源电缆采用屏蔽电缆,屏蔽电缆穿铁管并接地,输出电缆也穿铁管并接地,屏蔽层应在接变频器处和电机处两端都接地。
3.4.6 抑止电弧炉运行时的干扰(1)在合适地段加入电容补偿装置,补偿无功波动;(2)可以重新安排供电系统。
4 结束语随着非线性电力设备的广泛应用,电力系统中谐波问题越来越严重,一方面造成了电力设备的损坏,加速绝缘老化,另一方面也影响了计算机、电视系统等电子设备正常工作,直接扰乱了人们的正常生活。
谐波问题涉及供电部门、电力用户和设备制造商,谐波问题已引起人们的高度重视。
应合理规划电网,电力电子设备(特别一次设备)应符合电磁发射水平,电子设备、电子仪器应满足电磁兼容性要求。
参考文献:1郎维川.供电系统谐波的产生、危害及其防护对策.《高电压技术》2002;62孙书敏.治理谐波危害、抑制电网污染、提高电源质量.《2002年(江苏)工程电气设计学术论文集》。